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ABSTRACT

Large text-to-video models trained on internet-scale data have demonstrated ex-
ceptional capabilities in generating high-fidelity videos from arbitrary textual
descriptions. However, similar to proprietary language models, large text-to-video
models are often black boxes whose weight parameters are not publicly available,
posing a significant challenge to adapting these models to specific domains such
as robotics, animation, and personalized stylization. Inspired by how a large lan-
guage model can be prompted to perform new tasks without access to the model
weights, we investigate how to adapt a black-box pretrained text-to-video model to
a variety of downstream domains without weight access to the pretrained model.
In answering this question, we propose Video Adapter, which leverages the score
function of a large pretrained video diffusion model as a probabilistic prior to guide
the generation of a task-specific small video model. Our experiments show that,
by incorporating broad knowledge and fidelity of the pretrained model probabilis-
tically, a small model with as few as 1.25% parameters of the pretrained model
can generate high-quality yet domain-specific videos for a variety of downstream
domains such as animation, egocentric modeling, and modeling of simulated and
real-world robotics data. As large text-to-video models are starting to become
available as a service, similar to large language models, we advocate for private
enterprises to expose the scores of video diffusion models as outputs in addition
to generated videos to allow flexible adaptation of large pretrained text-to-video
models by the general public. See website at https://video-adapter.github.io.

1 INTRODUCTION
Large text-to-video models with billions of parameters trained on internet-scale data have become
capable of generating highly realistic videos from general text descriptions (Ho et al., 2022; Hong
et al., 2022; Singer et al., 2022). When models are used for specific domains such as generating
video plans for robotics (Du et al., 2023b) and self-driving cars (Santana & Hotz, 2016), videos
for animation (Wang et al., 2019), or videos with customizable styles similar to those common in
text-to-image (Wang et al., 2019; Ramesh et al., 2022; Liu et al., 2022; Gal et al., 2022; Ruiz et al.,
2022; Zhang & Agrawala, 2023), a pretrained text-to-video model requires task-specific adaptation.
Efficient and effective adaptation of text-to-video models is what stands in the way from expanding
their current application of these models in media and entertainment to their potential to solve
real-world problems by modeling real-world physics and dynamics in problem-specific settings.
Unfortunately, similar to state-of-the-art language models (OpenAI, 2023; Anil et al., 2023), pre-
trained text-to-video models are black boxes to the general public; one can use them to generate
videos, but not finetune them to solve domain-specific tasks, as the parameters of pretrained text-to-
video models are not publicly available (Ho et al., 2022; Villegas et al., 2022; Blattmann et al., 2023).
This rules out direct applications of efficient finetuning from text-to-image, such as LoRA in stable
diffusion (Smith et al., 2023), DreamBooth (Ruiz et al., 2023), and ControlNet (Zhang & Agrawala,
2023), which require access to the pretrained model weights. While some finetuning-free techniques
can control image generation by manipulating visual or textual features (Ramesh et al., 2022; Gal
et al., 2022), it is not clear how to manipulate these features for video generation, as these features
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Figure 1: Video Adapter Generated Videos. Video Adapter is capable of flexible generation of diverse videos
with distinct styles including videos with manipulation and navigation based egocentric motions, videos with
personalized styles such as animation and science fictions, and simulated and real robotic videos.

would then have to capture complex temporal information extracted from networks with orders of
magnitude larger sizes than text-to-image (Blattmann et al., 2023).
Inspired by finetuning-free adaptation of language models through in-context learning (Brown et al.,
2020) and sophisticated prompting (Wei et al., 2022), which essentially modify the prior distribution
of pretrained langauge models to perform specific tasks, we ask the natural question of whether it is
possible to modify the prior distribution of pretrained text-to-video models to achieve downstream
tasks without finetuning the pretrained model. Intuitively, even though the exact video statistics in a
downstream task differ from the pretraining videos, certain video properties such as dynamics of the
world and semantics of objects from the large pretrained model are still tremendously helpful to the
generation of downstream videos. This suggests that a large pretrained video model could be used as
a knowledge prior to guide the generation of task-specific videos while maintaining broad properties
such as temporal consistency and object permanence.
To this end, we propose Video Adapter, a probabilistic approach for exploiting a black-box video
diffusion model to guide the generation of task and domain specific videos. By factoring the domain-
specific video distribution into a pretrained prior and a small trainable component, we can preserve
desirable characteristics of the pretrained model (i.e., temporal consistency and object permanence) in
generating specialized videos, effectively adapting the black-box pretrained model without requiring
access to the pretrained model weights. One limitation of Video Adapter is that it requires scores of
the black-box video diffusion model as outputs, but we note that this is hard to avoid if one wants to
effectively use the broad knowledge of pretrained models. Therefore, we advocate for proprietary
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text-to-video APIs to expose diffusion scores as additional outputs to broaden the applications of
large video diffusion models.
We evaluate Video Adapter on a variety of tasks and domains as illustrated in Figure 1. Quantitatively,
Video Adapter achieves better FVD and Inception Scores than the pretrained video model or the
task-specific small models in generating domain specific videos for robotics (Ebert et al., 2021)
and egocentric movements (Grauman et al., 2022). Qualitatively, we show that Video Adapter can
generate stylized videos such as sci-fi and animation, and further enable domain randomization
in robotics (Tobin et al., 2017) for bridging sim-to-real (Zhao et al., 2020) through randomized
stylisation of lighting and distractors.

2 PRELIMINARIES
We first introduce relevant background information on denoising diffusion probabilistic models
(DDPMs) and discuss their connection to Energy-Based Models (EBMs). We will then use this
connection to EBMs to convert black-box video diffusion models to probabilistic priors.
Denoising Diffusion Probabilistic Models. Denoising diffusion probablistic models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) are a class of probabilistic generative models where the
generation of a video τ = [x1, . . . , xH ] ∈ XH is formed by iterative denoising. Given a video τ
sampled from a video distribution p(τ), a randomly sampled Gaussian noise variable ϵ ∼ N (0, I),
and a set of T different noise levels βt, a denoising model ϵθ is trained to denoise the noise corrupted
video τ at each specified noise level t ∈ [1, T ]:

LMSE =
∥∥∥ϵ− ϵθ

(√
1− βtτ +

√
βtϵ, t

)∥∥∥2
Given this learned denoising function, new videos may be generated from the diffusion model by
initializing a video sample τT at noise level T from a Gaussian N (0, I). This sample τT is then
iteratively denoised following the expression:

τt−1 = αt(τt − γtϵθ(τt, t) + ξ), ξ ∼ N
(
0, σ2

t I
)
, (1)

where γt is the step size of denoising, αt is a linear decay on the currently denoised sample, and σt
is a time varying noise that depends on αt and γt. The final sample τ0 after T rounds of denoising
corresponds to the final generated video.
Energy-Based Models View of DDPMs. The denoising function ϵθ estimates the score (Vincent,
2011; Song & Ermon, 2019; Liu et al., 2022) of an underlying (unnormalized) EBM probability
distribution (LeCun et al., 2006; Du & Mordatch, 2019) characterizing the noise perturbed data.
Therefore, a diffusion model corresponds to an EBM, pθ(τ) ∝ e−Eθ(τ), where the denoising function
is given by ϵ(τt, t) = ∇τEθ(τt). The sampling procedure in a diffusion model corresponds to the
Langevin sampling procedure on an EBM (see derivation in Appendix A):

τt−1 = αt(τt − γ∇τEθ(τt) + ξ), ξ ∼ N
(
0, σ2

t I
)
. (2)

This equivalence of diffusion models and EBMs allows us to consider sampling from the product of
two different diffusion models p1(τ)p2(τ), such that each diffusion model corresponds to an EBM,
e−E1(τ) and e−E2(τ), and the product is given by e−E′(τ) = e−(E1(τ)+E2(τ)). In particular, we can
sample from this new distribution also by using Langevin sampling:

τt−1 = αt(τt − γ∇τE
′
θ(τt) + ξ), ξ ∼ N

(
0, σ2

t I
)
, (3)

which corresponds to the sampling procedure using denoising functions
τt−1 = αt(τt − γ(ϵθ1(τt, t) + ϵθ2(τt, t)) + ξ), ξ ∼ N

(
0, σ2

t I
)
. (4)

Below we will illustrate how this factored EBM parameterization of a diffusion model can allow a
black-box pretrained model to be leveraged as a probabilistic prior.

3 PROBABILISTIC ADAPTATION OF BLACK-BOX TEXT-TO-VIDEO MODELS
To explain how a black-box text-conditioned video diffusion model can be effectively used as a
probabilistic prior for video generation, we will first introduce the functional form of probabolistic
adaptation in Section 3.1, and then discuss how the probabilistic composition can be implemented
with diffusion models in Section 3.2. To generate high-quality videos, we also explain in Section 3.3
how the underlying probabilistic composition can be sharpened to generate low temperature samples.
3.1 BLACK-BOX TEXT-TO-VIDEO MODELS AS PROBABILISTIC PRIORS

Black-box text-to-video models were pretrained on massive datasets consisting of millions of videos,
and are therefore able to capture a powerful prior ppretrained(τ |text) on the natural distribution of videos
τ . Given a smaller task-specific dataset of video-text pairs, DAdapt = {(τ0, text0), . . . , (τn, textn)},
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Figure 2: Video Adapter Framework. Video Adapter only requires training a small domain-specific text-to-
video model with orders of magnitude fewer parameters than a large video model pretrained from internet data.
During sampling, Video Adapter composes the scores of the pretrained and the domain specific video models,
achieving high-quality and flexible video synthesis.

how can one leverage the powerful prior captured by a pretrained video diffusion model to synthesize
videos similar to those in DAdapt? One approach is to directly finetune the weights of ppretrained(τ |text)
using DAdapt, but ppretrained(τ |text) has billions of parameters whose weights are often proprietary
to private enterprises. Similar challenges with large language models have led to prompting and
in-context learning. Analogously, we propose Video Adapter as a finetuning-free method to adapt
pretrained video diffusion to a new dataset of videos DAdapt through probabilistic composition.
Specifically, given DAdapt, we learn a separate small video diffusion model pθ(τ |text) to represent the
distribution of videos in DAdapt. We then adapt ppretrained(τ |text) to DAdapt by constructing a product
distribution pproduce(τ |text) in the form (see adaptation to multiple domains in Appendix D):

pproduct(τ |text)︸ ︷︷ ︸
Product Distribution

∝ ppretrained(τ |text)︸ ︷︷ ︸
Pretrained Prior

pθ(τ |text)︸ ︷︷ ︸
Small Video Model

, (5)

By fixing the pretrained model ppretrained(τ |text), we train the small video model pθ(τ |text) via
maximum likelihood estimation on DAdapt. This allows pθ(τ |text) to exhibit high likelihood across
videos in DAdapt, but because pθ(τ |text) is a small model trained on less diverse data, it can exhibit
erroneously high likelihood across many unrealistic videos. The product distribution pproduct(τ |text)
removes unrealistic videos by downweighting any videos τ that are not likely under the pretrained
prior, enabling one to generate videos in the style of DAdapt that are realistic under ppretrained(τ |text).
3.2 IMPLEMENTING PROBABILISTIC ADAPTATION

To adapt the black-box model pproduct(τ |text) from Equation 5, as well as to sample from it, we exploit
the EBM interpretation of diffusion models discussed in Section 2. Based on the EBM interpretation,
the pretrained diffusion model ppretrained(τ |text) corresponds to an EBM e−Epretrained(τ |text) while the
smaller video model pθ(τ |text) parameterizes an EBM e−Eθ(τ |text). The product distribution then
corresponds to:

pproduct(τ |text) ∝ ppretrained(τ |text)pθ(τ |text) ∝ e−(Epretrained(τ |text)+Eθ(τ |text)) = e−E′(τ |text),

which specifies a new EBM E′(τ) from the sum of energy functions of the component models.
Substituting this EBM into Equation 3, we can sample from the product distribution pproduct(τ |text)
through the diffusion sampling procedure:

τt−1 = αt(τt − γ∇τ (Epretrained(τt|text) + Eθ(τt|text)) + ξ), ξ ∼ N
(
0, σ2

t I
)

which corresponds to sampling from Equation 1 according to
τt−1 = αt(τt − γ(ϵpretrained(τt, t|text) + ϵθ(τt, t|text)) + ξ), ξ ∼ N

(
0, σ2

t I
)
.

Thus, to probabilistically adapt the pretrained black-box model to a new dataset DAdapt, we can
use the standard diffusion sampling procedure, but change the denoising prediction to the sum of
predictions from both the black-box pretrained model and the task-specific small model. To control
the strength of the pretrained prior in final video generation, we can introduce a weight term λ to scale
the pretrained distribution pλpretrained(τ |text), which corresponds to scaling the denoised prediction
from ϵpretrained(τt, t|text) by a scalar λ

ϵ(τt, t|text) = ϵθ(τt, t|text) + λϵpretrained(τt, t|text). (6)
The combined model can be further refined by integrating multiple steps MCMC sampling between
each diffusion noise distribution similar to (Du et al., 2023a; Sjöberg et al., 2023). Note that the prior
strength λ can be tunable or time-dependent, which we found to be useful in practice (Appendix B).
3.3 ADAPTING LOW TEMPERATURE SAMPLING

In practice, text conditioning in the denoising model ϵ(τt, t|text) from Equation 6 are often
parametrized using classifier-free guidance (Ho & Salimans, 2022) to generate sharp images or
videos conditioned on text while avoiding distractions from spurious likelihood modes of diffusion
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Algorithm 1 Sampling algorithm of Video Adapter
Input: Pretrained black-box model ϵpretrained(τ, t|text), inverse temperature ω, prior strength λ.
Initialize sample τT ∼ N (0, I)
for t = T, . . . , 1 do

ϵ̃text ← ϵθ(τt, t|text) + λϵpretrained(τt, t|text) // Compute score using text-conditioned prior.
ϵ← ϵθ(τt, t) // Compute unconditional score.
ϵ̃cfg ← ϵ+ω(ϵ̃text−ϵ) // Compute weight for low temperature sampling.
τt−1 = ddpm_sample(τt, ϵ̃cfg) // Run diffusion sampling (can use other samplers).

end for

models. This corresponds to sampling from the modified probability distribution:

pcfg(τ |text) ∝ p(τ)

(
p(τ |text)
p(τ)

)ω

∝ p(τ)p(text|τ)ω,

where ω corresponds to the classifier free guidance strength, typically chosen to be significantly
larger than 1. By upweighting the expression p(text|τ) via the inverse temperature ω, the modified
distribution pcfg(τ |text) above can generate lower temperature video samples conditioned on the text.
It appears straightforward to similarly construct low temperature samples when adapting the black-box
model by sampling from the distribution

pcfg
product(τ |text) ∝ pcfg

pretrained(τ |text)pcfg
θ (τ |text), (7)

but using the classifier-free distribution pcfg
pretrained(τ |text) as the probabilistic prior is now problematic,

since classifier-free guidance has restricted pcfg
pretrained(τ |text) to very few high probability modes

which might be incompatible with DAdapt. To effectively leverage a broad probabilistic prior while
simultaneously generating low temperature samples emulating DAdapt, we propose to first construct a
new text-conditioned video distribution following Section 3.1:

pproduct(τ |text) ∝ ppretrained(τ |text)pθ(τ |text).
We can then use the density ratio of this composed text-conditioned distribution with the unconditional
video density pθ(τ) learned on DAdapt to construct a new implicit classifier pproduct(τ |text). By
increasing the inverse temperature ω on this implicit classifier, we can generate low temperature and
high quality video samples conditioned on a given text by sampling from the modified distribution:

p∗product(τ |text) = pθ(τ)

(
pproduct(τ |text)

pθ(τ)

)ω

,

which corresponds to sampling from a modified denoising function:
ϵ̃θ(τ, t|text) = ϵθ(τ, t) + ω(ϵθ(τ, t|text) + λϵpretrained(τ, t|text)− ϵθ(τ, t))

We quantitatively and qualitatively ablate the effect of this denoising function in Figure 6 and Table 2,
showing that this variant leads to better blending of styles between models. The overall pseudocode
for the proposed approach with classifier-free guidance is given in Algorithm 1.

4 EXPERIMENTS
In this section, we illustrate how a black-box pretrained text-to-video model can deliver a rich set of
downstream capabilities when combined with a task-specific video model. In particular, leveraging
a high quality and broad probabilistic prior enables (1) controllable video synthesis from edge-
only inputs, (2) high-quality video modeling that outperforms both the pretrained model and the
task-specific video model, and (3) domain randomization and data augmentation for robotics. See
experiment details and additional experimental results in Appendix B and in supplementary material.1

4.1 ADAPTING TO SPECIFIC VIDEO DOMAINS

Setup. We first demonstrate that the probabilistic prior in Video Adapter can be used to adapt and
modify the styles of videos. We curate two adaptation datasets DAdapt, one with an “animation” style
and the other with a “scifi” style, where videos containing relevant keywords in their descriptions
are grouped together to form DAdapt. A black-box large video diffusion model with 5.6B parameters
was pretrained on mapping Sobel edges to all videos, and two task-specific small models with 330M
parameters were trained to map Sobel edges to DAdapt videos.
Stylizing Video Generation. In Figure 4 and Figure 5, we demonstrate how the pretrained prior
can adapt the animation and scifi models to alternative styles while maintaining the original animation
and scifi contents. These results show that Video Adapter can effectively combine rich knowledge of

1See video visualizations in the supplementary zip file.
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Figure 4: Video Adapter enables stylization of a Animation Specific Model. Video Adapter enables a large
pretrained model to adapt and change the style a small animation style model.
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Figure 5: Video Adapter enables stylization of a SciFi Specific Model. Video Adapter enables a large
pretrained model to adapt and change the style a small Scifi animation style model.

styles from the black-box model, such as “digital art”, “outdoor video”, “storybook illustration”, with
the animation content of the small model, thereby achieving flexible stylization.
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Figure 3: Instance Specific Stylization. Video Adapter
enables the stylization of video model trained on a single
animation style

Specific Animation Style. We further trained
a small video model on an “animation” style
of a particular artist. In Figure 3, we illustrate
how the pretrained prior can maintain the anime
content while changing the styles such as back-
ground color.

Analysis. In Figure 6, we change the mag-
nitude of the weight on the pretrained prior,
and compare Video Adapter with directly in-
terpolating the classifier-free scores between
the pretrained and adapter models (as in Equa-
tion 7). We find that Video Adapter main-
tains the adapter style more accurately, whereas
classifier-free score interpolation collapses to
the teacher style with intermediate interpolation, leading to erratic artifacts.

4.2 HIGH-QUALITY EFFICIENT VIDEO MODELING

Setup. To demonstrate Video Adapter’s ability in adapting the black-box pretrained model to
domains that are not a part of pretraining, we consider adapting to Ego4D (Grauman et al., 2022)
and Bridge Data (Ebert et al., 2021). These adaptations are nontrivial, as Ego4D consists of mostly
egocentric videos that are not commonly found on the internet. Similarly, the Bridge Data consists of
task-specific videos of a WidowX250 robot that is out of the distribution of the pretraining data. For
Ego4D, we take a subset of the original dataset consisting of 97k text-video pairs and split them into
train (90%) and test (10%) to form DAdapt. For the Bridge Data, we take the entire dataset consisting
of 7.2k text-video pairs and use the same train-test split to form DAdapt.
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Figure 6: Analysis of Video Adapter. As adaptation weight increases, Video Adapter modifies the style as
instructed (left), whereas directly mixing two classifier-free guidance scores fails to adapt the video (right).

Bridge Ego4D

Model FVD ↓ FID ↓ Param (B)↓ FVD ↓ IS ↑ Param (B) ↓
Small (S) 186.8 38.8 0.07 228.3 2.28 0.07
Small (S) + Pretrained 177.4 37.6 0.07 156.3 2.82 0.07
Small (L) 152.5 30.1 0.14 65.1 3.31 2.8
Small (L) + Pretrained 148.1 29.5 0.14 52.5 3.53 2.8
Pretrained 350.1 42.6 5.6 91.7 3.12 5.6
Pretrained Finetune 321.0 39.4 5.6 75.5 3.33 5.6

Table 1: Video Modeling Quantitative Performance Video Adapter (Small + Pretrained) achieves better FVD,
FID, and Inception Scores than both the pretrained model, pretrained model finetuned for equivalent number of
TPU hours, and the task-specific small model with parameters as fewer as 1% of the pretrained model.

For the pretrained model, we use the 5.6B base model pretrained on generic internet videos from (Ho
et al., 2022). For the task-specific small model, we downscale the video diffusion model from (Ho
et al., 2022) by a factor of 80, 40, and 2 to create a diverse set of small models to be trained on
task-specific DAdapt. Table 1 shows the number of parameters of pretrained and small video models.
Both the pretrained model and the small models are trained to generate subsequent frames conditioned
on the first frame.

Quantitative Results. Table 1 shows the quantitative performance of Video Adapter under different
video modeling metrics. On the Bridge Data, training a small model with parameters equivalent to
1.25% of the pretrained video model (first row) already achieves better metrics than the pretrained
model. However, Video Adapter incorporating the pretrained model as a probablistic prior is able to
further improve the metrics of the small model (second row). On Ego4D, due to the complexity of the
egocentric videos, the smallest model with 1.25% of the pretrained video model can no longer achieve
performance better than the pretrained model (first row), but incorporating the pretrained model
during sampling still improves performance (second row). After increasing the size of the small
model, Video Adapter is able to achive better metrics than both the pretrained and task-specific model.
We further compare Video Adapter to finetuning the pretrained model for an equivalent number of
TPU hours (see Appendix C), and show that Video Adapter achieves better performance than full
tuning. Note that we only compare to full tuning out of curiosity as opposed to benchmarking, as the
motivation of this work is the lack of weight access to the black-box pretrained models.

Model FVD ↓ FID ↓
CFG Mix 167.4 33.1
Small (L) 152.5 30.1
Video Adapter 148.1 29.5

Table 2: Ablations. Video Adapter im-
proves the underlying video modeling
performance of models on while directly
mixing classifier-free scores (CFG Mix)
hurts performance.

Qualitative Results. Figure 7 and Figure 8 show the gener-
ated videos on Bridge Data and Ego4D. On the Bridge Data in
Figure 7, the pretrained model produces videos that do not cor-
respond to the task described by the text (there is no robot arm
movements in the generated video). The task-specific small
model produces videos with unrealistic movements that tele-
port the robot arm. Video Adapter, on the other hand, produces
videos with realistic movements that complete the task.
On Ego4D in Figure 8, the pretrained model produces high
quality videos that contain little egocentric movement (first
row), as the pretraining data mostly consists of generic videos from the internet that are not egocentric.
The task-specific small model trained on Ego4D, on the other hand, produces videos with egocentric
movement but of low quality (second row) due to limited model capacity. Video Adapter combines
the best of both and generates high-quality egocentric videos (third row).
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Figure 7: Video Adapter on Bridge Data. The pretrained model (first row) produces videos that are high-quality
but are generally static and fail to complete the task. The small (L) model (second row) produces low-quality
videos with unrealistic arm movements. Video Adapter (third row) produces high-quality videos and successfully
completes the task.

Walks around.
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Small

Video 
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Figure 8: Video Adapter on Ego4D. The pretrained model (first row) produces high-quality but nearly static
videos that do not reflect the egocentric nature.The small (L) model (second row) produces low-quality videos
but with more egocentric movements. Video Adapter (third row) produces high-quality and egocentric videos.

Ablations. In Table 2, we report generative modeling performance of the small model on Bridge
either using Video Adapter, or a interpolation between the classifier-free scores of pretrained and
small models. We find that Video Adapter improves performance, while interpolation between
classifier-free scores hurts performance.

4.3 SIM-TO-REAL VIDEO AUGMENTATION

Setup. One important application of controllable video synthesis is to render realistic robotic videos
from simulation with a variety of data augmentations so that policies trained on the augmented
observations are more likely to generalize well to real-world settings (Zhao et al., 2020). To demon-
strate Video Adapter’s capability in supporting sim-to-real transfer, we train a task-specific small
edge-to-real model on 160k real robot trajectories of the LanguageTable dataset (Lynch et al., 2022),
generating videos of execution conditioned on the Sobel edges of the real videos. Similarly, we
train another small edge-to-sim model on 160k simulated robot videos. Note that the simulated and
real robotics data are not paired (paired sim-to-real data are hard to find) but are connected through
edge-conditioning. We again leverage the edge-conditioned large model pretrained on internet data
for style specification.
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Figure 9: Video Adapter on sim-to-real transfer. First row: simulated videos of execution plans generated by
Video Adapter. Second row: real videos of execution plans generated by Video Adapter. Third row: real videos
of execution plans generated by Video Adapter with data augmentation.

Adapted Videos. Figure 9 shows the generated robotic videos from Video Adapter. Video Adapter
can effectively generate paired simulated and real robotic videos that complete a task described by
a language prompt, and further generate videos with various data augmentation styles that can be
utilized to train policies with better sim-to-real transfer abilities through techniques similar to domain
randomization (Tobin et al., 2017).

5 RELATED WORK

Text-to-Video Synthesis. Following the recent success of text-to-image models (Nichol et al., 2021;
Balaji et al., 2022; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022b; Yu et al., 2022;
Chang et al., 2023), large text-to-video models with autoregressive (Hong et al., 2022; Villegas et al.,
2022; Wu et al., 2022a; 2021) and diffusion (Ho et al., 2022; Singer et al., 2022; Blattmann et al.,
2023; Zhou et al., 2022; Esser et al., 2023) architectures have been developed, often by extending
existing text-to-image models. Unfortunately, the model weights of large text-to-video models are
generally not publically available, preventing downstream adaptations of these models.
Adapting Pretrained Models Adapting pretrained models for customized editing, inpainting, and
stylization has been extensively studied in text-to-image and image-to-image translation models (Gal
et al., 2022; Hertz et al., 2022; Kawar et al., 2022; Li et al., 2022; Lugmayr et al., 2022; Meng et al.,
2021; Ruiz et al., 2022; Saharia et al., 2022a; Sasaki et al., 2021; Su et al., 2022). In text-to-video,
most existing work either leverages text prompts (Molad et al., 2023; Esser et al., 2023), finetunes a
pretrained model on stylized data (Wu et al., 2022b), or performing light training on a copy of the
pretrained video model similar to ControlNet (Dhesikan & Rajmohan, 2023). Text-only adaption
can be unreliable, whereas finetuning, prefix-tuning (Li & Liang, 2021), low-rank adaptation (Hu
et al., 2021), and ControlNet all require access to the pretrained model weights, which are often not
available for text-to-video models. Black-box adaptation has been applied extensively in language
models (Brown et al., 2020; Wei et al., 2022; Liu et al., 2023), and large video models will soon face
the same problem.
Compositional Generative Models. The techniques in this paper are further related to existing
work on compositional generative modeling (Liu et al., 2022; Nie et al., 2021; Du et al., 2020; 2023a;
2021; Liu et al., 2021; Wang et al., 2023; Wu et al., 2022c; Deng et al., 2020; Urain et al., 2021;
Gkanatsios et al., 2023; Gandikota et al., 2023; Po & Wetzstein, 2023), where different generative
models are probabilistically combined to jointly generate outputs. In (Du et al., 2020), an approach
to combine different probability distributions using EBMs is introduced. Most similar in spirit to
this work, (Deng et al., 2020) composes a pretrained language model with a small EBM to improve
language generation. However, different from this work, the small EBM is used to improve to global
consistency of the language model, whereas we aim to use a small model to probabilistically adapt to
a large pretrained video model to separate domains.

6 LIMITATION AND CONCLUSION

As video foundation models become more powerful but remain proprietary, black-box adaptation of
these models is inevitible. We have proposed Video Adapter for leveraging black-box text-to-video
models as probabilistic priors for guiding generation of specific videos. One limitation of Video
Adapter is it still requires training a small domain-specific model, so adaptation is not completely
training free. Another limitation is Video Adapter requires diffusion scores from pretrained black-box
models. We advocate future video diffusion models to make scores as a part of the output to improve
accessibility of these models.
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Appendix
In the Appendix we provided a detail derivation of connection between diffusion models and EBMs
in Section A. We further provide additional experimental details in Section B. Finally, we provide a
comparison with using the same computational budget to finetune the existing large pretrained model
in Section C.

A CONNECTION BETWEEN DIFFUSION AND EBM
The sampling procedure in a diffusion model corresponds to the Langevin sampling procedure on an
EBM. To see this, we consider perturbing a sample τ t−1 ∼ p

(
τ t−1

)
from target distribution p(τ t−1)

with a Gaussian noise, i.e.,
τ t = τ t−1 + ξ, ξ ∼ N

(
0, σ2

t I
)

which corresponds to the transition operator

T (τ t|τ t−1) ∝ exp

(
−
∥∥τ t − τ t−1

∥∥2
2σ2

t

)
where the joint distribution of τ t and τ t−1 is

p(τ t, τ t−1) ∝ exp

(
ψ
(
τ t−1

)
−
∥∥τ t − τ t−1

∥∥2
2σ2

t

)
.

We can express the Bayes estimator of τ t−1 given the perturbed observation τ t as

m(τ t) =

∫
τ t−1pθ(τ

t−1|τ t)dτ t−1 = τ t + σ2
t∇ log p

(
τ t
)

(8)

Proof By the property of Gaussian distribution, we have
σ2∇x′p (x′|x) = p (x′|x) (x− x′) . (9)

Therefore, we have

σ∇x′

∫
p (x′|x) p(x)dx =

∫
(x− x′) p (x′, x) dx =

∫
xp (x′, x) dx− x′p(x′) (10)

⇒ σ∇x′ log p (x′) =

∫
x
p (x′, x)

p (x′)
dx− x′ = E [X|x′]− x′ (11)

Thus, we can represent the perturbed data with an EBM p(τ t) ∝ exp (Eθ (τ
t, σt)), and learn the

parameters through regression (Vincent, 2011; Saremi et al., 2018; Saremi & Hyvarinen, 2019; Song
& Ermon, 2019), which leads to the optimal solution

min
θ

Eτt−1∼D,ξ∼N (0,σ2
t I)

[∥∥τ t−1 −m(τ t)
∥∥2]

= Eτt−1∼D,ξ∼N (0,σ2I)

[∥∥−ξ −∇Eθ

(
τ t−1 + ξ, σt

)
)
∥∥2] , (12)

whch also corresponds to the denoising diffusion training objective.
Once we have the trained Eθ (τ

t), we can then recover the sample τ t−1 according the denoising
sampling procedure

τ t−1 = αtm(τ t) + αtξ = αt(τ t − γ∇τtEθ

(
τ t, σt

)
) + αtξ, ξ ∼ N

(
0, σ2

t I
)

(13)
which corresponds to the sampling via stochastic localization (El Alaoui et al., 2022) and Equation 2
in the main paper.

B EXPERIMENTAL DETAILS

B.1 EXPERIMENT DETAILS

Dataset The large pretrained model is trained on 14 million video-text pairs plus 60 million image-
text pairs, and with the LAION-400M image-text dataset. The images are spatially resized to 24x40
and videos using anti-aliased bi-linear resizing. We use different frame rate for different types of
videos for best visualization results. For the Bridge (Ebert et al., 2021) we directly use the released
opensource dataset. For Ego4D (Grauman et al., 2022) data, we take a small portion of the released
dataset. For Anime and Sci-Fi style, we curate two separates datasets with their respective keywords.
The keywords used for filtering data for Anime style are (in small letter) “disney”, “cartoon”, “anime”,
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“animation”, “comic”, “pixar”, “animated”, “fantasy”. The keywords used for filtering data for Sci-Fi
style are “science fiction”, “sci-fi”, “scifi”, “astronaut”, “alien”, “NASA”, “interstellar”. For the
animation with a particular artist style, we use the Case Closed animation (also named Detective
Conan). For the Language Table dataset, we used the data from (Lynch et al., 2022).

Dataset Pretrain Bridge Ego4D Anime Sci-Fi Case Closed LangTable Sim LangTable Real

# Train 474M 2.3k 97k 0.6M 21k 5k 0.16M 0.16M

Table 3: Training data size. Number of text-video or text-image pairs used for training the pretrained large
model and each of the small model. Training data for particular styles can be magnitude smaller than the
pretraining dataset.

Architecture. To pretrain the large model, we use the same pretraining dataset, base architecture,
and training setup as (Ho et al., 2022), with modifications of first-frame conditioning for Bridge
and Ego4D, and edge conditioning for stylisation and sim-to-real. Specifically, the large model
architecture consists of video U-Net with 3 residual blocks of 1024 base channels and channel
multiplier [1, 2, 4], attention resolutions [6, 12, 24], attention head dimension 64, and conditioning
embedding dimension 1024. To support first frame conditioning, we replicate the first frame across
all future frame indices, and concatenate the replicated first frame channel-wise to the noisy data
following (Du et al., 2023b). To support edge conditioning, we run a sobel edge detector and use
gradient approximations in the x-direction as the conditional video, and concatenates these edge
frames with noisy data similar to first-frame conditioning. The large model consists of 5.6 billion
parameters in total. For the set of small models for adaptation, Ego4D Small (L) has 512 base
channels in each of the residual blocks. Ego4D Small (S) and Bridge Small (S) have a single residual
block with 32 base channels. Bridge Small (L) has a single residual block with 64 base channels.
The set of stylisation models (animation, sci-fi, and particular anime style) have 3 residual blocks
and 256 base channels. For illustrating the generated videos at a higher resolution, we train two
additional spatial super resolution models 24x40 → 48x80 (1.4B) and 48x80 → 192x320 (1.2B). We
additionally use T5-XXL (Raffel et al., 2020) to process input text prompts which consists of 4.6
billion parameters, which we omit from the parameter count as all large and small models require
text embeddings.
Training and Evaluation. We train each of our video diffusion models for 2M steps using batch
size 2048 with learning rate 1e-4 and 10k linear warmup steps. The large 5.6B pretrained model
requires 512 TPU-v4 chips, whereas various small models require anywhere between 8 and 256
TPU-v4 chips depending on the size. We use noise schedule log SNR with range [-20, 20]. We use
128 samples and 1024 samples to compute the FVD, FID, and Inception Scores metric on Bridge and
Ego4dD, respectively.
Sampling. All diffusion models are trained with 1000 timesteps of sampling. To generate videos,
we combined scores from both pretrained models and adapter models for all timesteps except the
last 100 timesteps. The last 100 timesteps capture high frequency information in an image, and we
found better image quality if we did not combine scores in these timesteps. For simplicity, we use a
pretrained neural strength of 0.2 for Ego4D and 0.1 for Bridge, and 0.4 for all animation datasets, but
found additional gains when using large neural strength at earlier timesteps and smaller ones later.
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C COMPARISON TO FINETUNING
To illustrate the computational efficiency of Video Adapter, we further compare video modeling
metrics of Video Adapter to finetuning the pretrained model for an equivalent number of TPU time.
Specifically, the pretrained model requires 512 TPU-v4 chips whereas the small model on Bridge
data requires 8 TPU-v4 chips. The small Bridge model requires 100k steps to reach convergence, and
hence we finetune the pretrained model for 100,000 / 64 = 1,560 steps. Video Adapter achieves better
FVD and FID than finetuning the pretrained model for an equal number of TPU steps as shown in
Table 1.

D COMPOSING MULTIPLE FACTORS

Given a set of N separate datasets {Di}i=1:N specifying a set of N different styles of videos, we can
also apply our probabilistic adaptation framework across these N models by learning N separate
distributions {pi(τ |text)}i=1:N . We can directly sample from the product distribution

pproduct(τ |text)︸ ︷︷ ︸
Product Distribution

∝ ppretrained(τ |text)︸ ︷︷ ︸
Pretrained Prior

∏
i=1:N

pi(τ |text)︸ ︷︷ ︸
N Different Video Models

, (14)

which now assigns high likelihood to videos that exhibit each of the composed styles.
We can directly sample from this composed model using the modified composite denoising function

ϵ̃θ(τ, t|text) = ϵθ(τ, t) + ω

N∑
i=1

(ϵi(τ, t|text) + λϵpretrained(τ, t|text)− ϵi(τ, t)),

which simply corresponds to using a weighted average over the predictions of each of the N models.

E COMPARISON TO PARAMETER EFFICIENT FINETUNING
The problem setting of Video Adapter is that pretrained model weights are not accessible. This
scenario is common in large language models (e.g., GPT-4, Bard), and large text-to-video models are
heading in the same direction. Parameter efficient finetuning (e.g., LoRA, null-text inversion, prefix-
tuning) requires access to pretrained model weights, whereas Video Adapter does not. Therefore
Video Adapter is not comparable to parameter efficient finetuning.
Nevertheless, we conducted comparisons to LoRA and null-text inversion out of curiosity (prefix-
tuning is omitted since it has only been applied to language models). For LoRA, we use rank 1
and rank 64 to compare to the smaller and larger task-specific VideoAdapter model. For null-text
inversion, we use an unconditional null embedding of size [64, 4096] (the same dimension as the
original text embeddings). We report the video modeling metrics in Table 4.

Bridge Ego4D

Model FVD ↓ FID ↓ FVD ↓ IS ↑
Small (S) 186.8 38.8 228.3 2.28
Small (S) + Pretrained 177.4 37.6 156.3 2.82
Small (L) 152.5 30.1 65.1 3.31
Small (L) + Pretrained 148.1 29.5 52.5 3.53
LoRA-Rank1 170.2 32.2 74.5 3.4
LoRA-Rank64 165.5 31.6 50.3 3.5
Null-text inversion 288.8 40.2 90.2 3.1

Table 4: Comparison of Video Adapter to parameter efficient finetuning under fixed compute budget. Video
Adapter performs close to LoRA-Rank64 on Ego4D and better than parameter efficient finetuning on Bridge.

We observe that LoRA-Rank1 performs slightly better than Video Adapter (small). However, In the
LoRA-Rank1 case, LoRA still performs worse than training a small domain specific model. In this
case, Video Adapter can simply use the small model without the pretrained prior. In comparison, we
found LoRA-Rank64 leads to mixed results when compared to Video Adapter (large), i.e., LoRA
outperforms Video Adapter on Ego4D but not on Bridge data. We found that null-text inversion
performs the worst, potentially due to limited flexibility of null-embeddings during finetuning.
Our results illustrate that Video Adapter, despite requiring only black-bo adaptation without access
to pretrained model weights performs better than Null-text inversion and very comparably to LoRA
finetuning (with pretrained model weights).
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