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A Appendix1

A.1 Derivation of marginalized joint entropy2

The Janossy density function resides in a combination of continuous and discrete domains [8]. For3

the Janossy density of (Φ (x, ω) , Y (x, ω)) on ∆C × [C], we may follow the classical approach:4

P (P1 ∈ [p1 + dp1], · · · , PC ∈ [pc + dpc], Y = i)

≈P
(
Y = i

∣∣P1 = p1, · · · , PC = pC
)
P (P1 ∈ [p1 + dp1], · · · , PC ∈ [pc + dpc])

≈pif (p1, · · · , pC) dp1 · · · dpC , (1)

where f(·) is a density function of Φ (x, ω). So we may write the Janossy density of5

(Φ (x, ω) , Y (x, ω)) as follows:6

j (p1, · · · , pC , y = i) = pif (p1, · · · , pC) . (2)

Following the point process entropy [29, 17, 30, 8], the joint entropy of Φ (x, ω) and Y (x, ω) can be7

defined as8

H (Φ (x, ω) , Y (x, ω)) = −
C∑
i=1

∫
∆c

j (p1, · · · , pC , y = i) log j (p1, · · · , pC , y = i) dp1 · · · dpC .

(3)

We note that9 ∫
∆c

pif (p1, · · · , pC) dp1 · · · dpC =

∫
[0,1]

pif (pi) dpi = EPi. (4)

We may split the Jannosy density into two pieces:10

j (p1, · · · , pC , y = i) = (EPi)

(
pi
EPi

f (p1, · · · , pC)
)
. (5)

Plugging (5) into (3), we have11

H (Φ (x, ω) , Y (x, ω)) = H (Y (x, ω)) + EY [h (Φ (x, ω) |Y )] . (6)

On the other hand,12
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(6) = −
C∑
i=1

∫
∆c

j (p1, · · · , pC , y = i) log j (p1, · · · , pC , y = i) dp1 · · · dpC

= −
C∑
i=1

∫
∆c

(EPi)

(
pi
EPi

p (p1, · · · , pC)
)
log (EPi)

(
pi
EPi

p (p1, · · · , pC)
)

dp1 · · · dpC

= −
C∑
i=1

(EPi) log (EPi)−
C∑
i=1

∫
∆c

(EPi)

(
pi
EPi

p (p1, · · · , pC)
)
log

(
pi
EPi

p (p1, · · · , pC)
)

dp1 · · · dpC .

(7)

13

We apply Jensen’s inequality on the second term (by focusing on each summand). For each14

i ∈ {1, · · ·C},15

− (EPi)

∫
∆c

(
pi
EPi

p (p1, · · · , pC)
)
log

(
pi
EPi

p (p1, · · · , pC)
)

dp1 · · · dpC

=− (EPi)

∫
pi

∫
∆c\{pi}

(
pi
EPi

p (p1, · · · , pC)
)
log

(
pi
EPi

p (p1, · · · , pC)
)

dp−i
1···Cdpi

≤− (EPi)

∫
pi

(∫
∆c\{pi}

pi
EPi

p (p1, · · · , pC) dp−i
1···C

)
log

(∫
∆c\{pi}

pi
EPi

p (p1, · · · , pC) dp−i
1···C

)
dpi

=−
∫
pi

pif(pi) log

(
pi
EPi

f(pi)

)
dpi = −EPi

[
Pi log

(
Pi

EPi
f(Pi)

)]
, (8)

16

where dp−i
1···C indicates dp1 · · · dpC except dpi. By combining all terms together, we have17

(6) ≤ −
C∑
i=1

(EPi) log (EPi)−
C∑
i=1

EPi

[
Pi log

(
Pi

EPi
f(Pi)

)]
= −

∑
i

EPi
[Pi log (Pif(Pi))] .

(9)

A.2 Equivalent formulation of marginalized joint entropy18

Let us assume that Pi ∼ Beta(αi, βi) and P+
i ∼ Beta(αi + 1, βi).19

MJEnt[x] =−
∑
i

EPi
[Pi log (Pif(Pi))] = −

∑
i

∫ 1

0

pif(pi) log (pif(pi)) dpi

=−
∑
i

(EPi)

∫ 1

0

pif(pi)

EPi
log

(
pif(pi)

EPi

)
dpi −

∑
i

(EPi) log (EPi) (10)

=
∑
i

(EPi)
[
h(P+

i )− log (EPi)
]
, (11)

where h(P+
i ) is the differential entropy of P+

i .20

A.3 Proof of Theorem 3.121

For this appendix to be self-contained, we borrow the proof from [1] which presents the formula stated22

in Theorem A.1. But we are able to simplify the analytical formula so that it shows DirichletBALD[x]23

is a function of marginal probabilities, which is one of the key observations in Section 3.4. Let η =24

(η1, · · · , ηC) and η(i,++) = (η1, · · · , ηi−1, ηi + 1, ηi+1, · · · , ηC). Let B (η) = Γ(η1)···Γ(ηC)

Γ(
∑C

k=1 ηk)
, and25

Γ(·) is a Gamma function.26

Theorem A.1. [1, Theorem III.1] Assume that Φ (x, ω) := (P1, · · · , PC) ∼ Dirichlet(η1, · · · , ηC).27

Then the mutual information BALD[x] can be analytically calculated as follows.28

DirichletBALD[x] :=

(
C∑

k=1

ηk − C

)
Ψ

(
C∑

k=1

ηk

)
−

C∑
i=1

(ηi − 1)Ψ (ηi)−
C∑
i=1

(
ηi∑C

k=1 ηk

)
log

(
ηi∑C

k=1 ηk

)

+
C∑
i=1

∑
j ̸=i

(ηj − 1)B (η(i,++))

B (η)

[
Ψ(ηj)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]
+

C∑
i=1

ηiB (η(i,++))

B (η)

[
Ψ(ηi + 1)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]
,

29

where Ψ(·) is a Digamma function.30
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Note that the density function f(·) of Dirichlet(η1, · · · , ηC) is given by31

f (p) := f (p1, · · · , pC) =
1

B (η)

C∏
i=1

pηi−1
i . (12)

Then to derive the analytical form, we shall calculate each term as below [1]:32

DirichletBALD[x] = h (Φ (x, ω)) +H(Y (x, ω))− H (Φ (x, ω) , Y (x, ω)) . (13)

Given Φ (x, ω) := (P1, · · · , PC) ∼ Dirichlet(η1, · · · , ηC), the first differential entropy of Dirichlet33

distribution is well-known [11, 27].34

h (Φ (x, ω)) =−
∫
∆C

f (p) log f (p) dp

= logB (η) +

(
C∑

k=1

ηk − C

)
Ψ

(
C∑

k=1

ηk

)
−

C∑
i=1

(ηi − 1)Ψ (ηi) . (14)

For the second entropy term, we first need to use a simple property of Dirichlet distribution.35

EPi =
ηi∑C

k=1 ηk
. (15)

Then the second term can be obtained by following the Shannon entropy with the equation (15).36

H(Y (x, ω)) =−
C∑
i=1

EPi logEPi = −
C∑
i=1

(
ηi∑C

k=1 ηk

)
log

(
ηi∑C

k=1 ηk

)
. (16)

For the third joint entropy term, we need to prove the following lemma.37

Lemma 1. Assume that Φ (x, ω) := (P1, · · · , PC) ∼ Dirichlet(η1, · · · , ηC).38

E [Pi logPj ] =


ηi∑C

k=1 ηk

[
Ψ(ηi + 1)−Ψ

((∑C
k=1 ηk

)
+ 1
)]

if i = j,
ηi∑C

k=1 ηk

[
Ψ(ηj)−Ψ

((∑C
k=1 ηk

)
+ 1
)]

if i ̸= j.

To prove the Lemma 1, first we consider the i = j case.39

E [Pi logPi] =
1

B (η)

∫
∆C

(pi log pi)

C∏
k=1

pηk−1
k dp =

1

B (η)

∫
∆C

pηi

i log pi
∏
k ̸=i

pηk−1
k dp

=
1

B (η)

∫
∆C

d
dηi

pηi

i

∏
k ̸=i

pηk−1
k dp =

1

B (η)

d
dηi

∫
∆C

pηi

i

∏
k ̸=i

pηk−1
k dp

=
1

B (η)

d
dηi

B (η(i,++)) =
B (η(i,++))

B (η)

[
Ψ(ηi + 1)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]

=
ηi∑C

k=1 ηk

[
Ψ(ηi + 1)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]
.

Note that we may interchange the differentiation and the integral operator by applying Lebesgue’s40

dominated convergence theorem [13]. The second last equality can be derived by the definition of the41

Digamma function [3]. Similarly, for the i ̸= j case,42

E [Pi logPj ] =
1

B (η)

∫
∆C

(pi log pj)

C∏
k=1

pηk−1
k dp =

1

B (η)

∫
∆C

pηi

i p
ηj−1
j log pj

∏
k ̸=i,j

pηk−1
k dp

=
1

B (η)

∫
∆C

pηi

i

d
dηj

p
ηj−1
j

∏
k ̸=i,j

pηk−1
k dp =

1

B (η)

d
dηj

∫
∆C

pηi

i p
ηj−1
j

∏
k ̸=i,j

pηk−1
k dp

=
1

B (η)

d
dηj

B (η(i,++)) =
B (η(i,++))

B (η)

[
Ψ(ηj)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]

=
ηi∑C

k=1 ηk

[
Ψ(ηj)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]
.
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On the other hand, following the usual point process entropy calculation, we may write a Janossy43

density function of (Φ (x, ω) , Y (x, ω)) on ∆C × [C] as follows:44

j (p, y = i) = pif (p) =
1

B (η)
pηi

i

∏
j ̸=i

p
ηj−1
j , (17)

where p := (p1, · · · , pC) and f(·) is a density function of Φ (x, ω). Then the joint entropy of45

Φ (x, ω) and Y (x, ω) can be defined as46

H (Φ (x, ω) , Y (x, ω)) = −
C∑
i=1

∫
∆c

j (p, y = i) log j (p, y = i) dp. (18)

Then we have the following identity by plugging the Janossy density (17) of (Φ (x, ω) , Y (x, ω)) into47

the equation (18).48

H (Φ (x, ω) , Y (x, ω))

= (logB (η))

C∑
i=1

E [Pi]−
C∑
i=1

∑
j ̸=i

(ηj − 1)E [Pi logPj ]−
C∑
i=1

ηiE [Pi logPi] =: (∗).

By applying Lemma 1, we have49

(∗) = logB (η)−
C∑
i=1

∑
j ̸=i

ηi(ηj − 1)∑C
k=1 ηk

[
Ψ(ηj)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]

−
C∑
i=1

η2i∑C
k=1 ηk

[
Ψ(ηi + 1)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]
. (19)

By combining three terms (14), (16), and (19) in the equation (13), we have the following simplified50

formula:51

DirichletBALD[x]

=

(
C∑

k=1

ηk − C

)
Ψ

(
C∑

k=1

ηk

)
−

C∑
i=1

(ηi − 1)Ψ (ηi)−
C∑
i=1

(
ηi∑C

k=1 ηk

)
log

(
ηi∑C

k=1 ηk

)

+

C∑
i=1

∑
j ̸=i

(
ηi(ηj − 1)∑C

k=1 ηk

)[
Ψ(ηj)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]

+

C∑
i=1

(
η2i∑C
k=1 ηk

)[
Ψ(ηi + 1)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]

=

(
C∑

k=1

ηk − C

)
Ψ

(
C∑

k=1

ηk

)
−

C∑
i=1

(
ηi∑C

k=1 ηk

)
log

(
ηi∑C

k=1 ηk

)

−
C∑
i=1

ηi (ηi − 1)∑C
k=1 ηk

Ψ(ηi)−
C∑
i=1

(ηi − 1)

(
1− ηi∑C

k=1 ηk

)
Ψ

((
C∑

k=1

ηk

)
+ 1

)

+

C∑
i=1

(
η2i∑C
k=1 ηk

)[
Ψ(ηi + 1)−Ψ

((
C∑

k=1

ηk

)
+ 1

)]
.

Therefore DirichletBALD is a function of marginals of Φ (x, ω) with Dirich-52

let distribution parameters ηi and
∑C

i=1 ηi. Under Beta marginal distribution as-53

sumption, by letting ηi = αi and
∑C

k=1 ηk = αi + βi for any i since each54

marginal distribution of Dirichlet distribution follows Beta distribution, we have55

BetaMarginalBALD[x] :=

C∑
i=1

(αi − 1)Ψ (αi + βi)−
C∑
i=1

(
αi

αi + βi

)
log

(
αi

αi + βi

)
−

C∑
i=1

αi (αi − 1)

αi + βi
Ψ(αi)

−
C∑
i=1

βi (αi − 1)

αi + βi
Ψ(αi + βi + 1) +

C∑
i=1

(
α2
i

αi + βi

)
[Ψ (αi + 1)−Ψ(αi + βi + 1)] .

56
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Therefore Theorem 3.1 follows.57

On the other hand, since Beta marginal distributions are sufficient to calculate the mutual information,58

the same idea can be applied to the aleatoric uncertainty.59

Corollary 1. Under Beta marginal distribution approximation, let Pi ∼ Beta(αi, βi) in Φ (x, ω).60

Then the aleatoric uncertainty can be estimated as follows:61

BetaMarginalAleatoricUncertainty[x] := −
C∑
i=1

(αi − 1)Ψ (αi + βi) +

C∑
i=1

αi (αi − 1)

αi + βi
Ψ(αi)

+

C∑
i=1

βi (αi − 1)

αi + βi
Ψ(αi + βi + 1)−

C∑
i=1

(
α2
i

αi + βi

)
[Ψ (αi + 1)−Ψ(αi + βi + 1)] .

A.4 Proof of Theorem 4.162

First let a positive integer ∆−1 > 0 be given and let Υ := {In}, a collection of evenly divided63

intervals in [0, 1] where In :=
[
(n− 1)∆, n∆

)
for n = 1, · · · , (∆−1 − 1) and I∆−1 := [1−∆, 1].64

Let P̄i be a discretized random variable over Υ of Pi from Φ (x, ω). i.e., P̄i =
(
n− 1

2

)
∆ if Pi ∈ In65

such that P
[
P̄i =

(
n− 1

2

)
∆
]
= P [Pi ∈ In]. For any estimator P̂i of P̄i given the label {Y = i},66

by applying Fano’s inequality [12][7, Theorem 2.10.1], we have (note that our log has a base e)67

P
[
P̂i ̸= P̄i

∣∣∣∣Y = i

]
≥

H
(
P̄i

∣∣Y = i
)
− log 2

log∆−1
=

H
(
P̄i

∣∣Y = i
)
− log 2

− log∆
. (20)

We note that Shannon entropy and the differential entropy have the following connection [7, Theorem68

8.3.1]:69

H
(
P̄i

∣∣Y = i
)
+ log∆ = h

(
Pi

∣∣Y = i
)
+ ϵi = h

(
P+
i

)
+ ϵi, (21)

where ϵi is an adjustment constant depending on ∆ such that ϵi → 0 as ∆→ 0. Note that ϵi does not70

have to be non-negative. Then we can rewrite the inequality as follows:71

P
[
P̂i ̸= P̄i

∣∣∣∣Y = i

]
≥

h
(
P+
i

)
− log∆− log 2

− log∆
+

ϵi
− log∆

. (22)

Taking the expectation with respect to Y , we have72

E
[
P
[
P̂i ̸= P̄i

∣∣∣∣Y = i

]]
≥
∑

i (EPi)h(P
+
i )− log∆− log 2

− log∆
+

∑
i (EPi) ϵi
− log∆

=: (∗∗).

If we let ∆−1 = ⌊2eH(Y )⌋, there exists a δ ≥ 0 such that73

H(Y ) + log 2− δ = − log∆ = log⌊2eH(Y )⌋ ≤ H(Y ) + log 2. (23)

We also note that δ → 0 as H(Y )→∞ (or equivalently ∆→ 0). Therefore, when ∆−1 = ⌊2eH(Y )⌋,74

we have75

(∗∗) =
∑

i (EPi)h(P
+
i ) +H(Y )− δ

H(Y ) + log 2− δ
+

∑
i (EPi) ϵi

H(Y ) + log 2− δ

≥
∑

i (EPi)h(P
+
i ) +H(Y )

H(Y ) + log 2

(
1 +

δ

H(Y ) + log 2− δ

)
−
∑

i (EPi) |ϵi|+ δ

H(Y ) + log 2
. (24)

Let ϵ1 = δ
H(Y )+log 2−δ and ϵ2 =

∑
i(EPi)|ϵi|+δ

H(Y )+log 2 ≥ 0. Since ϵi → 0 and δ → 0 as ∆→ 0, ϵ→ 0 as76

∆→ 0. Therefore Theorem 4.1 follows.77

A.5 More Beta marginal formulations78

With Beta approximation, we are able to describe Beta marginal formulation of MeanSD. Since we79

are matching the variance of each marginal distribution, the empirical value of MeanSD should be80

the same as BetaMarginalMeanSD.81

BetaMarginalMeanSD[x] :=
1

C

C∑
i=1

√
αiβi

(αi + βi)2(αi + βi + 1)
= MeanSD[x]. (25)
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In [15], the expected information gain has been proposed and studied. We may82

also formulate the expected information gain with Beta marginal distributions.83

BetaMarginalEIG[x] :=H(Y )− EH
(
Y +
∣∣Y = i

)
=

C∑
i=1

(
αi

αi + βi

) C∑
j=1

(
αj + δi(j)

αj + βj + 1

)
log

(
αj + δi(j)

αj + βj + 1

)
− log

(
αi

αi + βi

) ,

(26)

84

where Y + is a categorical random variable over the posterior probability given Y = i, δi(j) = 1 if85

i = j, and δi(j) = 0 otherwise.86

A.6 Beta marginal approximation visualization examples87

Figure 1: An example of Beta approximations (red lines) for each marginal distribution after applying
softmax layer in MNIST dataset. Each Beta distribution is estimated by calculating the sample mean
and sample variance of the histogram generated by the Bayesian deep learning model.

Figure 2: An example of Beta approximations (red lines) for each marginal distribution after applying
softmax layer in CIFAR-10 dataset.

Figure 1 and Figure 2 shows an example of Beta approximations obtained from the MNIST and88

CIFAR-10 datasets. P1, · · · , P10 show each marginal distribution of the predictive probability of89

each digit. We observe that the Beta approximation is a reasonable approximation.90

A.7 Rank correlation study with BetaMarginalEIG91

A good advantage of explicit formula is that we can study the behavior of each measure directly. For92

example, if C = 2 and Φ (x, ω) ∼ Dirichlet(α, β) such that P1 ∼ Beta(α, β) and P2 ∼ Beta(β, α),93

we are able to plot the behavior of each Beta marginal measure.94
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(a) BetaMarginalBALD (b) BetaMarginalMeanSD (c) ExpectedEffectiveLoss (d) BetaMarginalEIG

Figure 3: 3D plot of each uncertainty measure when Beta marginal assumption holds.

With BetaMarginalEIG, we are able to generate the same type of plot shown in Figure 1. EIG shows95

positive correlations with BALD and MeanSD, but the correlation is around 70% implying that EIG96

might show more variations.97

Figure 4: Same experiments with BetaMarginalEIG described in Figure 1 from the main article. This
is another independent experiment (as a validation), so the captured correlation values are slightly
different.
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Figure 5: Pairwise scatter plot at C = 10, 000 companion with Figure 4.

A.8 BALD and BetaMarginalBALD98

Although BALD and BetaMarignalBALD shows high rank-correlation (under softmax applied99

Gaussian distribution assumption), we might wonder how much different they are in the value.100

We plot the RMSE (rooted mean square error) between two measures. Under Dirichlet distribu-101

tion assumption, RMSE between BALD and BetaMarginalBALD is < 0.002 upto C ≤ 1, 000.102

However, under softmax-applied Gaussian distribution assumption, RMSE between BALD and103

BetaMarginalBALD shows < 0.07 upto C ≤ 1, 000. This implies that Beta marginal approxi-104

mation still preserves a high rank-correlation, but the absolute values are slightly shifted. e.g.,105

BALD [x] ≈ BetaMarginalBALD [x] + err for some constant err ∈ R. This study also implies that106

Beta marginal approximation is a reasonable assumption.107

A.9 Toy example with ExpectedEffectiveLoss and BetaMarginalEIG108

As observed by high rank-correlation in Figure 4, BALD, ExpectedEffectiveLoss, and Beta-109

MarginalEIG show similar selections.110

Figure 8 shows the active learning curves for ExpectedEffectiveLoss and BetaMarginalEIG with111

MNIST and 3×CIFAR-100. This experiment also confirms that BALD and ExpectedEffectiveLoss112

are tightly aligned as we show that both are highly correlated. In MNIST, BetaMarginalEIG per-113

8



Figure 6: Scatter plot at C = 1, 000 between BALD and BetaMarginalBALD (left), RMSE between
BALD and BetaMarginalBALD over various class dimensions (middle), and Spearman’s rank
correlations over various class dimensions (right). The first row is the result from C-dimensional 100
random Dirichlet samples. The second row is obtained from softmax-applied 100 random Gaussian
samples. Then we repeat the process 10 times. In both cases, we observe > 96% rank correlations as
well.

(a) BALD (b) ExpectedEffectiveLoss (c) BetaMarginalEIG

Figure 7: Top-K selected points are marked by red color. The first row shows the top K = 25
point selections. The second row shows the top K = 500 point selections among around 0.6 million
uniform grid points. The same experiments shown in Figure 2 in the main article.

forms similar to BALD and ExpectedEffectiveLoss. However, in 3×CIFAR-100, BetaMarginalEIG114

performs similar to BALD at first, but it essentially performs better than BALD and similar to the115

random case. Recall that the rank correlation between BALD and BetaMarginalEIG is around 70%.116

9



(a) MNIST (b) 3×CIFAR-100

Figure 8: Active learning curves for ExpectedEffectiveLoss and BetaMarginalEIG with MNIST and
3×CIFAR-100.

A.10 Non-negative BalEntAcq region117

In this section, we study the non-negative region of BalEntAcq [x]. BalEntAcq[x]118

is non-negative when MJEnt[x] ≥ 0. Under Beta marginal distribution approxima-119

tion, let Pi ∼ Beta(αi, βi) in Φ (x, ω). Then we can fully write MJEnt[x] as follows:120

MJEnt[x] =
∑
i

(EPi)h(P
+
i ) +H(Y )

=
C∑
i=1

(
αi

αi + βi

)[
logB(αi + 1, βi)− αiΨ(αi + 1)− (βi − 1)Ψ(βi)− (αi + βi − 1)Ψ(αi + βi + 1)− log

(
αi

αi + βi

)]
.

121

Then, we are able to generate a 3D plot and a contour plot of BalEnt [x] when C = 2. i.e.,122

Φ (x, ω) ∼ Dirichlet(α, β) such that P1 ∼ Beta(α, β) and P2 ∼ Beta(β, α).123

Figure 9: BalEnt 3D plot (left) and Positive BalEnt contour plot (right) over parameters (α, β).
For the contour plot, starting from the outside, contours are generated when BalEnt [x] =
−3,−2,−1, 0, 0.1, 0.2, 0.3.

Figure 9 suggests that in Dirichlet distribution’s parameter space, there exist (uncountably and)124

infinitely many parameters which produce non-negative BalEnt [x] values. Then we also plot the125

non-negative region (red shaded) of BalEntAcq in our toy example.126

Figure 10-(b) illustrates that there exist infinitely many points which produce the same BalEntAcq [x]127

values. Therefore we may imagine that we are conducting a uniform sampling on each contour128

surface {BalEnt[x] = λ} for each λ ≥ 0, then moving to the surface for each λ ≥ 0. This observation129

also explains how BalEnt[x] diversifies the selection near the decision boundary.130
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(a) Decision boundary (b) Non-negative BalEntAcq region (c) Acquired 25 BalEntAcq points

Figure 10: Non-negative BalEntAcq region illustration from the toy example

A.11 Implementation of balanced entropy active learning131

Implementation of BalEntAcq active learning is almost the same as the usual MC dropout-based132

uncertainty methods. The difference is the dropout samples at inference time; BalEntAcq requires an133

additional estimation step of Beta parameters for each marginal distribution. Algorithm 1 explains the134

whole steps of BalEntAcq active learning. Moreover, we do not apply any early stopping criteria in135

each training because we understand that early stopping conflicts with dropout-based model training.136

In other words, if we stop too early in model training by observing validation accuracy or loss, we137

observe that model weights cannot reach to the fully mixing states of the randomness in MC dropouts,138

similar to the early stage of Markov Chain Monte Carlo (MCMC).

Algorithm 1: BalEntAcq active learning algorithm

1 Input: 1) Unlabeled dataset Dpool, 2) initially labelled dataset D(0)
training, 3) the number of dropout

samples M at inference time, 4) active learning budget K for each iteration, 5) total active
learning budget Ktot

2 Initialize all weights of Bayesian neural network Φ and set n← 0
3 Repeat at iteration n ≥ 0

4 Train the model Φ with D(n)
training

5 For each x ∈ Dpool \ D(n)
training,

6 Generate M dropout samples
7 Estimate Beta parameters (αi, βi) for each marginal distribution
8 Calculate BalEntAcq[x]

9 Set D(n+1)
training ←D

(n)
training

⋃{
top K BalEntAcq-valued x ∈ Dpool \ D(n)

training

}
, and n← n+ 1

10 Until
∣∣∣D(n−1)

training

∣∣∣ reaches to Ktot

139

A.12 More experimental details140

Table 1 shows a summary of dataset, configurations, and hyperparmeters used in our experiments.141

For each experiment, we repeat 3 times to generate the full active learning accuracy curve.142

Scenario Dataset # Classes K Ktot Backbone Loss Image size Batch size Optimizer Epochs Learning rate Dropout MC trials
Full dropouts MNIST 10 1 300 CNN Cross-entropy 28× 28 128 Adam 150 0.01 50% 100

Fixed feature CIFAR-100 100 500 10, 000 ResNet-50 Cross-entropy 224× 224 128 Adam 150 0.0003 20% 100

Redundant images CIFAR-100 100 500 30, 000 ResNet-50 Cross-entropy 224× 224 128 Adam 150 0.0003 20% 100

Pre-trained backbone TinyImageNet 200 1, 500 30, 000 ResNet-50 Cross-entropy 64× 64 128 Adam 100 0.0003 20% 100

Table 1: Detailed configurations used in our experiments.

In SimCLR [6] feature training, we trained ResNet-50 with 224× 224 image size, 192 batch size,143

500 epochs, and 0.0003 learning rate with Adam optimizer for CIFAR-10/CIFAR-100.144
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A.12.1 Simply last+ layer Bayesian145

Dropout-based Bayesian neural network typically requires adding dropout layer with ReLU activation146

for each convolutional or linear layer to approximate a Gaussian process [18]. But this requires a high147

computational cost. Therefore we adopt several additional last layer dropout architecture to build148

a Bayesian neural network equipped with Beta approximation. There exist several different lines149

of works to justify the effectiveness of this simple last layer modification [33, 36, 4, 26, 21]. More150

precisely, similar to Laplace approximation applied at the last layer [26, See Theorem 2.4] and [21],151

we may replace several last linear layers with a dropout applied and ReLU activated linear layers.152

For example, we may add two or more dropout layers after ResNet-50 fixed backbone in our CIFAR-153

100 experiments to avoid any pathological cases [14]. In practice, we observe a single dropout layer154

application is sufficient to achieve our Beta approximated marginals as shown below. We note that in155

MNIST experiment, we use 50% dropout rate and for all other our experiments, we use 20% dropout156

rate.157

A.12.2 Choices of prioritization in BalEntAcq158

In this section, we study the impact of the prioritization in BalEnt [x].159

P1. P1 [x] = −BalEnt [x]. This is the case where we put higher priority when the posterior160

uncertainty captures very small values. Note that this also includes high epistemic uncertainty161

(BALD) valued case. For example, when C = 2 with Φ (x, ω) ∼ Dirichlet(α, β), the162

posterior uncertainty goes to −∞ as α→ 0 and β → 0. Therefore BalEnt [x]→ −∞. But163

this case also achieves the highest epistemic uncertainty.164

P2. P2[x] =
{

BalEnt[x]−1 if BalEnt[x] ≥ 0,

BalEnt[x] if BalEnt[x] < 0
. This is the same case as our proposed acquisi-165

tion measure.166

P3. P3 [x] = BalEnt [x]. This is the case where we put higher priority when the posterior167

uncertainty captures very high values (close to zero). As discussed in Section 4.1, we want168

to prioritize more when the information imbalance gap is higher.169

Figure 11 and Table 2 show that selecting the points near BalEnt[x] ≈ 0 is a better way to improve170

the accuracy as we discussed in Section 4.1. When we prioritize the small posterior uncertainty case,171

P1 shows a very poor performance in a fixed feature scenario. However, under the backbone and172

augmentation scenario, the performance of P1 is similar to the high posterior uncertainty case of P3.173

This could be because of the evolution of the feature space and the batch normalization during the174

active learning process. i.e. previously captured uncertainty values will not be preserved under the175

backbone with augmentation scenario.

(a) 3×CIFAR-100 (b) TinyImageNet

Figure 11: Active learning curves depending on different prioritization.

176

12



Scenario Redundant images + Fixed feature Backbone + Augmentation
Dataset/Acq. Size/Test size 3×CIFAR-100/500/10,000 TinyImageNet/1,500/10,000

Train Size/Pool Size 5,000/150,000 15,000/150,000 25,000/150,000 30,000/150,000 6,000/100,000 15,000/100,000 24,000/100,000 30,000/100,000
P1 37.6± 0.7% 41.5± 0.4% 45.6± 1.1% 48.4± 0.8% 28.2± 1.2% 35.8± 1.0% 41.7± 0.7% 43.6± 0.2%

P2 (BalEntAcq) 56.9± 0.6% 63.5± 0.4% 66.6± 0.3% 67.4± 0.1% 30.0± 0.9% 38.5± 0.2% 42.8± 0.7% 45.3± 0.4%
P3 53.6± 0.1% 60.5± 0.6% 63.4± 0.2% 64.7± 0.2% 28.9± 0.5% 36.2± 0.9% 41.0± 0.9% 43.6± 0.2%

Table 2: Selected accuracy table depending on different prioritization. Mean and standard deviation
are from 3 repeated experiments. The best performance in each column is shown in bold.

A.12.3 Behavior of different precision levels177

As shown in the proof of Theorem 4.1, we may have some freedom to choose the level of the178

precision in the Pi estimation. Therefore we report the active learning behavior for other precision179

choices. It is not clear which precision level achieves the optimal performance, but our preference180

of − log∆ ≈ H(Y ) + log 2 shows a reasonably superior performance in any scenario as shown in181

Figure 12 and Table 3.182

Case 1. − log∆ ≈ H(Y )− log 2,183

Case 2. − log∆ ≈ H(Y ),184

Case 3. − log∆ ≈ H(Y ) + log 2 (our choice),185

Case 4. − log∆ ≈ H(Y ) + 2 log 2,186

Case 5. − log∆ ≈ H(Y ) + 3 log 2.187

(a) 3×CIFAR-100 (b) TinyImageNet

Figure 12: Active learning curves depending on different precision levels.

Scenario Redundant images + Fixed feature Backbone + Augmentation
Dataset/Acq. Size/Test size 3×CIFAR-100/500/10,000 TinyImageNet/1,500/10,000

Train Size/Pool Size 5,000/150,000 15,000/150,000 25,000/150,000 30,000/150,000 6,000/100,000 15,000/100,000 24,000/100,000 30,000/100,000
Case1 55.4± 0.7% 62.0± 0.3% 64.2± 0.1% 65.0± 0.1% 27.5± 0.1% 36.2± 0.1% 40.6± 0.5% 42.6± 0.5%
Case2 57.2± 0.3% 64.2± 0.2% 66.9± 0.3% 67.4± 0.2% 29.9± 1.2% 37.8± 0.5% 42.4± 0.5% 44.2± 0.8%

Case3 (BalEntAcq) 56.9± 0.6% 63.5± 0.4% 66.6± 0.3% 67.4± 0.1% 30.0± 0.9% 38.5± 0.2% 42.8± 0.7% 45.3± 0.4%
Case4 56.3± 0.7% 63.6± 0.2% 66.4± 0.3% 67.4± 0.2% 29.9± 0.2% 39.0± 0.5% 42.2± 0.9% 45.2± 0.3%
Case5 55.6± 0.6% 63.2± 0.1% 65.9± 0.5% 67.2± 0.5% 30.5± 0.5% 39.1± 0.7% 42.9± 0.3% 45.4± 0.5%

Table 3: Selected accuracy table depending on different precision levels. Mean and standard deviation
are from 3 repeated experiments. The best performance in each column is shown in bold.

A.12.4 More details about the main experiment188

Figure 13 shows the full active learning curves, negative log-likelihood, average epistemic uncertainty189

for selected samples, and average aleatoric uncertainty for selected samples. We note that our proposed190

method selects neither high epistemic uncertainty (=model uncertainty) nor aleatoric uncertainty191

(=data uncertainty) samples. Nevertheless, BelEntAcq shows a good performance improvement192

during the active learning iterations. Furthermore, we observe that BelEntAcq keeps choosing low193

aleatoric uncertainty points but increasing epistemic uncertainty points.194
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(a) Accuracy (b) Negative log-likelihood (c) Epistemic uncertainty (d) Aleatoric uncertainty

Figure 13: Full active learning curves obtained from different scenarios. From the top row, each row
represents a result of MNIST, CIFAR-100, 3×CIFAR-100, and TinyImageNet.

A.12.5 Model architectures195

In this section, we describe model architectures what we have used in our experiments.196

Toy example - moon dataset197

BNN(198

(classifier): Sequential(199

(0): Linear(in_features=2, out_features=72, bias=True)200

(1): ReLU(inplace=True)201

(2): Linear(in_features=72, out_features=72, bias=True)202

(3): Dropout(p=0.2, inplace=False)203

(4): ReLU(inplace=True)204

(5): Linear(in_features=72, out_features=72, bias=True)205

(6): Dropout(p=0.2, inplace=False)206

(7): ReLU(inplace=True)207

(8): Linear(in_features=72, out_features=3, bias=False)208

)209

)210

MNIST211

CNNBNN(212
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(features): Sequential(213

(0): CNN2D(in_channel=1, out_channel=32, kernel_size=5,214

stride=1, dropout_p=0.5, apply_max_pool=True,215

apply_relu=True)216

(1): CNN2D(in_channel=32, out_channel=64, kernel_size=5,217

stride=1, dropout_p=0.5, apply_max_pool=True,218

apply_relu=True)219

)220

(classifier): Sequential(221

(0): Linear(in_features=1024, out_features=128, bias=True)222

(1): Dropout(p=0.5, inplace=False)223

(2): ReLU(inplace=True)224

(3): Linear(in_features=128, out_features=10, bias=False)225

)226

)227

SVHN228

RESNETBNN(229

(features): ResNet18(remove_last_fully_connected_layer=True)230

(classifier): Sequential(231

(0): Linear(in_features=512, out_features=512, bias=True)232

(1): Dropout(p=0.2, inplace=False)233

(2): ReLU(inplace=True)234

(3): Linear(in_features=512, out_features=10, bias=False)235

)236

)237

CIFAR-100 and 3×CIFAR-100238

RESNETCLASSIFIER(239

(classifier): Sequential(240

(0): Linear(in_features=2048, out_features=2048, bias=True)241

(1): Dropout(p=0.2, inplace=False)242

(2): ReLU(inplace=True)243

(3): Linear(in_features=2048, out_features=100, bias=False)244

)245

)246

TinyImageNet247

RESNETBNN(248

(features): ResNet50(remove_last_fully_connected_layer=True)249

(classifier): Sequential(250

(0): Linear(in_features=2048, out_features=2048, bias=True)251

(1): Dropout(p=0.2, inplace=False)252

(2): ReLU(inplace=True)253

(3): Linear(in_features=2048, out_features=200, bias=False)254

)255

)256

A.13 Relationship with the efficient active learning algorithm with abstention257

It is well-known that any active learning method cannot improve the label complexity better than258

passive learning (random acquisition) in general [35, 23, 5]. Therefore under some conditions on259

labels or models, it is possible to achieve exponential savings [2, 19, 9, 22, 10, 20, 37, 25, 31]. Zhu and260

Nowak recently proposed an efficient active learning algorithm with abstention in binary classification261

[39] in the parametric setting with high probability. This section illustrates the relationship with the262

recently proposed efficient Algorithm by Zhu and Nowak [39]. Note that we are not proving the263

equivalence between the two algorithms.264
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As demonstrated in A.10, we can see that our proposed BalEntAcq method shares a high similarity265

with active learning strategy with abstention [28, 32, 31, 39].266

Intuitively, Algorithm 1 in [39] works in the following way. Set an abstention parameter γ > 0.267

Train a binary classifier h(x). For unlabelled point x ∈ X , we can calculate a uncertainty bound,268

UB[x] := [lcb(x), ucb(x)]. If UB[x] ⊆
[
1
2 − γ, 1

2 + γ
]
, we abstain the point x, i.e., we do not query269

the point x. If 1
2 ∈ UB[x] and UB[x] ̸⊆

[
1
2 − γ, 1

2 + γ
]
, we query the point x. At each iteration m,270

we add geometrically increasing 2m queried points.271

The key insight of this Algorithm 1 to achieve exponential label savings is to abstain from the point272

very close to the decision boundary. Similarly, as we demonstrated in A.10, our BalEntAcq[x] finds273

a margin by focusing on the positive sign of BalEntAcq[x] which corresponds to finding x outside274

the abstention region such that
∣∣x− 1

2

∣∣ > γ near the decision boundary. Then following the positive275

BalEntAcq[x] values, we acquire points toward the decision boundary direction, which corresponds276

to the condition 1
2 ∈ UB[x]. We know that the point near the decision boundary should have high277

aleatoric uncertainty. On the other hand, Corollary 1 implies that aleatoric uncertainty is increasing278

as α, β → +∞. So MJEnt[x] → −∞. Then BalEntAcq[x] → −∞. Therefore, our BalEntAcq[x]279

will acquire points near the decision boundary but will not acquire the point if it’s too close to the280

decision boundary. This strategy in our BalEntAcq[x] exactly matches the key insight of Algorithm281

1. So we may be able to theoretically guarantee that our proposed acquisition function BalEntAcq[x]282

could be a universally working active learning algorithm by achieving exponential label savings.283

A.14 Acquisition time complexity284

We note the time complexity of the acquisition calculation for each active learning iteration. We285

denote by N number of unlabelled points, C number of classes, K the acquisition size. For BADGE,286

we use the last layer feature vector and then apply k-means++.

Method BalEntAcq BALD Entropy MeanSD PowerBALD BADGE Random
Time Complexity O(CN) O(CN) O(CN) O(CN) O(CN) O (CNK) O(N)

Case Average Elapsed Time (sec)

MNIST with Acq. size 1 7.1 6.9 6.8 6.3 − − 0.1
CIFAR-100 with Acq. size 500 10.2 9.4 9.5 9.6 9.6 302.5 0.1

3×CIFAR-100 with Acq. size 500 18.9 18.5 18.4 18.2 18.4 1227.4 0.3
SVHN with Acq. size 2500 20.7 19.7 19.3 19.4 20.3 85.4 0.1

TinyImageNet with Acq. size 1500 183.4 178.7 178.4 176.4 182.0 4936.1 0.2

Table 4: First two rows show the theoretical time complexity. Remaining rows present the average
calculation time what we observed in our experiments.

287

A.15 More experiments with smaller acquisition size288

In this section, we conduct more experiments with 3×MNIST and 3×CIFAR-10 by adding more289

baselines such as VarRatio [x] := 1−maxi EPi [16], BatchBALD, and CoreSet. The main purpose290

of these experiments is to test the relatively smaller acquisition size. We acquire 25 points for each291

active learning iteration. For 3×MNIST, we use CNN architectures. For 3×CIFAR-10, we fix the292

feature space obtained from SimCLR [6], the same setting we used in our main experiments. Overall,293

the additional experimental results are well-aligned with our main results. We observe that BADGE is294

the best performing baseline. However, we note that BADGE is not linearly scalable, and it requires295

more computational costs. Figure 14 and Table 5 show full results.296
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(a) 3×MNIST (b) 3×CIFAR-10

Figure 14: Active learning curves of smaller batch size with 3×MNIST and 3×CIFAR-10.

Scenario Full dropouts + CNN Fixed feature
Dataset/Acq. Size/Test size 3×MNIST/25/10,000 3×CIFAR-10/25/10,000

Train Size/Pool Size 100/180,000 200/180,000 300/180,000 200/150,000 300/150,000 500/150,000
Random 83.0± 2.5% 89.1± 2.4% 91.9± 1.1% 61.3± 2.3% 64.9± 0.6% 68.1± 0.7%
BALD 76.5± 6.0% 83.8± 2.8% 88.9± 5.5% 49.8± 0.8% 53.7± 1.7% 57.7± 1.1%

Entropy 73.2± 3.5% 81.5± 2.8% 89.0± 1.0% 48.5± 3.7% 53.0± 3.7% 59.1± 0.7%
MeanSD 79.1± 2.7% 88.3± 2.8% 93.5± 1.2% 55.0± 0.7% 58.3± 0.8% 63.0± 0.6%

Variation Ratios 80.3± 1.3% 91.1± 0.5% 92.9± 1.0% 53.0± 2.7% 55.0± 1.0% 61.8± 1.6%
PowerBALD 83.8± 4.5% 89.4± 1.5% 92.6± 0.4% 61.0± 0.5% 65.6± 0.6% 68.3± 0.5%

BADGE (not-scalable) 89.0± 0.7% 94.2± 0.4% 95.8± 0.3% 63.2± 0.5% 66.8± 0.8% 70.3± 0.7%
BatchBALD (not-scalable) 85.7± 2.4% 93.3± 1.2% 95.4± 0.2% − − −

CoreSet (not-scalable) 80.0± 0.7% 86.4± 0.5% 89.5± 1.2% 57.8± 0.9% 60.5± 1.4% 65.2± 0.5%

BalEntAcq (ours) 86.3± 2.0% 92.8± 0.5% 95.7± 0.2% 62.7± 1.6% 65.9± 1.4% 70.1± 0.5%

Table 5: Selected accuracy table. Mean and standard deviation are from 3 repeated experiments.

A.16 Miscellaneous297

In our prioritization experiment, one might be interested in the reciprocal form of BalEnt[x] itself.298

But in this case, the majority of acquired points have positive values. So there’s no meaningful299

difference with P2 [x]. However, as the result of P1 [x] suggests, adding negative values close to −∞300

should not be helpful to improve the active learning performance. Figure 15 shows the additional301

prioritization active learning curve.302

P4. P4 [x] = BalEnt [x]−1. This is the case where we put the reverse priority for the negative303

value case after acquiring all positive values.304

(a) 3×CIFAR-100 (b) TinyImageNet

Figure 15: Active learning curves depending on different prioritization.
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A.17 Comparison with CoreMSE305

Recently, the Bayesian active learning framework considering the Expected Loss Reduction (ELR)306

for the optimal Bayes classifier has been proposed [38, 34]. Under this framework, they attempt to307

optimize the loss reduction in a holistical way, accounting for average loss reduction from all points.308

However, this non-parametric approach requires a very expensive computational cost. With a large309

dataset size, ELR [38], wMOCU [38], CoreLog [34], and CoreMSE [34] require a vast memory size310

unless we apply size reductions on the data space and MC samples [34]. If the number of classes311

is large, running the algorithm in practice is impossible. Therefore the naive application of the312

ELR-based algorithm is not scalable. Moreover, both works have pitfalls in the convergence proof313

by assuming the finite data and parameter space. Both pieces of the works end up with null proof.314

Nevertheless, we tested the performance of CoreMSE [34] with MNIST, seemingly the best method315

under this framework. Figure 16 and Table 6 show the full active learning results.

Figure 16: Active learning curves with CoreMSE in MNIST

316

Scenario Full dropouts + CNN
Dataset/Acq. Size/Test size MNIST/1/10,000

Train Size/Pool Size 50/60,000 100/60,000 300/60,000
Random 78.6± 4.9% 86.4± 2.7% 93.6± 0.7%
BALD 82.6± 1.3% 90.5± 0.8% 95.3± 0.4%

Variation Ratios 83.4± 3.2% 90.0± 1.2% 96.2± 0.2%
CoreMSE 85.3± 2.1% 91.3± 1.3% 95.8± 0.8%

BalEntAcq (ours) 85.4± 1.0% 91.4± 1.3% 96.5± 0.1%

Table 6: Selected accuracy table. Mean and standard deviation are from 3 repeated experiments.

A.18 Application to another Bayesian neural network with variational dropouts317

In this section, we report our active learning experiment when we train a Bayesian neural network318

with variational dropouts [24] with 3×CIFAR-10 with acquisition size 50 under a fixed feature319

scenario.320

We use an Adam optimizer with a learning rate of 0.0003 and 500 epochs in each experiment.321

Compared to MC-dropout Bayesian neural network models, we observe that the convergence with322

variational dropouts is not stable, so it requires much longer epochs if we newly train the model at323

each active learning iteration. Therefore, we continue to train the model from the previously trained324

model at each iteration except the initial iteration so that the convergence can be more stable.325

Here is the architecture we used for our 3×CIFAR-10 experiment.326

VARIATIONAL_DROPOUT_CLASSIFIER(327

(classifier): Sequential(328
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(0): VariationalDropout(in_features=2048, out_features=1024)329

(1): VariationalDropout(in_features=1024, out_features=1024)330

(2): Linear(in_features=1024, out_features=10, bias=False)331

)332

)333

We observe a similar result from the MC-dropout Bayesian neural networks. Our BalEntAcq334

consistently outperforms other linearly scalable baselines and is eventually on par with BADGE.

Figure 17: Active learning curves with variational dropouts in 3×CIFAR-10

335

Scenario Fixed feature + variational dropouts
Dataset/Acq. Size/Test size 3×CIFAR-10/1/10,000

Train Size/Pool Size 500/50,000 750/50,000 1000/50,000
Random 67.0± 0.5% 69.9± 0.4% 71.2± 0.7%
BALD 62.1± 1.5% 66.4± 0.8% 69.5± 0.8%

Entropy 60.8± 1.7% 64.9± 1.3% 66.5± 1.9%
MeanSD 63.5± 0.6% 68.0± 0.9% 70.3± 0.9%

PowerBALD 67.0± 1.2% 69.8± 0.2% 71.2± 0.2%
BADGE (not-scalable) 69.1± 0.1% 72.0± 0.4% 73.2± 0.1%

BalEntAcq (ours) 68.2± 0.8% 71.9± 0.6% 73.5± 0.2%

Table 7: Selected accuracy table. Mean and standard deviation are from 3 repeated experiments.
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