A GLUE Tasks

We provide more details of the tasks included in the GLUE benchmark. Their statistics are listed in
Table

MNLI: Multi-genre Natural Language Inference [58] contains 393K train examples obtained via
crowdsourcing. The task is to predict whether a given premise sentence entails, contradicts or neutral
with respect to a given hypothesis sentence.

QQP: Question Pairs [48] contains 364K train examples from the Quora question-answering website.
The task is to determine whether a pair of questions asked are semantically equivalent.

QNLI: Question Natural Language Inference contains 108K train examples derived from the Stanford
Question Answering Dataset (SQuAD) [41]]. The task is to predict whether a given sentence contains
the answer to a given question sentence.

SST-2: Stanford Sentiment Treebank [50] contains 67K train examples extracted from movie reviews
with human-annotated sentiment scores. The tasks is to determine if the sentence has positive or
negative sentiment.

CoLA: Corpus of Linguistic Acceptability [S7] contains 8.5K train examples from books and journal
articles on linguistic theory. The task is to determine whether a given sentence is linguistically
acceptable or not.

RTE: Recognizing Textual Entailment [2, [10, 21} [17] contains 2.5K train examples from textual
entailment challenges. The task is to predict whether a given premise sentence entails a given
hypothesis sentence or not.

MRPC: Microsoft Research Paraphrase Corpus [[12] contains 3.7K train examples from online news
sources. The task is to predict whether two sentences are semantically equivalent or not.

STS-B: Semantic Textual Similarity [3] contains 5.8K train examples drawn from multiple sources
with human annotations on sentence pair semantic similarity. The task is to predict how semantically
similar two sentences are on a 1 to 5 scoring scale.

B Hyperparameter Settings

Tuning hyperparameter of pretraining is often too costly and we keep most hyperparameters as default.
The auxiliary MLM pretraining uses the standard 15% [MASK] ratio. The crop transformation in the
SCL task uses 10% crop ratio, resulting in a sub-sequence that is 90% long of the original sequence.
The softmax temperature in the SCL task is 1. All pretraining tasks in COCO-LM have equal weights
except Acopy = 50 since the loss of the binary classification task is much lower than those of the
LM tasks, which are over 30, 000-way classification tasks. All token embeddings (used in the input
embedding layer and the language modeling head) are shared between the auxiliary Transformer and
the main Transformer. The detailed hyperparameters used are listed in Table [6|for pretraining, and
Tables [7]and [§] for GLUE and SQuAD fine-tuning, respectively.

All reported methods use exactly the same (or equivalent) set of hyperparameters for pretraining and
fine-tuning for fair comparison. For COCO-LM and all the baselines implemented under our setting,
all fine-tuning hyperparameters are searched per task; the median results of five runs with the same
set of five different random seeds are reported on GLUE and SQuAD.

C The Origins of Reported Baseline Scores

The baseline results listed in Table [1| are obtained from their original papers except the following:
BERT from Bao et al. [[1]], RoBERTa base/base++ GLUE from and SQuAD from Bao et al. [1]],
ELECTRA base/base++ GLUE from Xu et al. [61]], XLLNet base++ from Bao et al. [1]], RoOBERTa
base++ SQuAD from Bao et al. [I]. When multiple papers report different scores for the same
method, we use the highest of them in our comparisons.
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Size Task Metric(s) Domain

MNLI 393K Inference Accuracy Misc.

QQP 364K  Similarity Accuracy/F1 Social QA
QNLI 108K  QA/Inference  Accuracy Wikipedia
SST-2 67K Sentiment Accuracy Movie Reviews
CoLA  8.5K  Acceptability = Matthews corr. Misc.

RTE 2.5K Inference Accuracy Misc.

MRPC 3.7K  Paraphrase Accuracy/F1 News

STS-B 57K Similarity Pearson/Spearman.  Misc.

Table 5: The list of tasks in GLUE, their training data size, language tasks, evaluation metrics, and
domain of corpus.

Parameters base base++ large++
Max Steps 125K 1.95M 1.95M
Peak Learning Rate Se-4 2e-4 le-4
Batch Size 2048 2048 2048
Warm-Up Steps 10K 10K 10K
Sequence Length 512 512 512
Relative Position Encoding Buckets 32 64 128
Relative Position Encoding Max Distance 128 128 256
Adam € le-6 le-6 le-6
Adam (81, B2) (0.9,0.98) (0.9,0.98) (0.9, 0.98)
Clip Norm 2.0 2.0 2.0
Dropout 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01

Table 6: Hyperparameters used in pretraining.

D More Implementation Details

Pretraining and Fine-tuning Costs. The pretraining cost of COCO-LM’s CLM task is similar to
ELECTRA, which is BERT plus the auxiliary network whose size is 1/3 of the main network. The
addition of SCL task requires one more forward and backward pass on the cropped sequence X “°P.
With 256 V100 (32 GB Memory), one pretraining run takes about 20 hours in base setting, about
two-three weeks in base++ setting, and about three-four weeks in large++ setting. The fine-tuning
costs are the same with BERT plus relative positive encodings as the same Transformer model is
used.

MLM Mode for Corrective Language Modeling. When creating the MLM replaced sequence
XMIM we find it slightly improves the downstream task performance to disable dropout (i.e., set the
auxiliary MLM in inference mode) for computing the auxiliary network’s output distribution where
plausible replacing tokens are sampled. We hypothesize that this leads to more stable generation of
challenging replaced tokens to be corrected by the main Transformer and thus improves downstream
task results.

Projection Heads. For the auxiliary model trained with MLM, we follow the standard MLM head
setup in BERT/RoBERTa that includes a linear layer to project the contextualized embeddings from
the encoder to same-dimensional vectors before feeding to the final linear layer that outputs the MLM
probability. However, we do not include the projection layer for the main model trained with the
CLM task (i.e., only having the final linear layer). We find this improves the training stability.

Masking Special Tokens for Auxiliary Model Training. BERT only masks real tokens (other than
artificial symbols like [SEP] and [CLS]) for MLM training, while RoOBERTa also masks special
tokens. We follow the RoBERTa setting which results in slightly improved performance for some
tasks.
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Parameters GLUE Small Tasks Search Space GLUE Large Tasks Search Space

Max Epochs {2,3,5,10} {2,3,5}

Peak Learning Rate baselbase++: {2e-5, 3e-5, 4e-5, 5e-5}  baselbase++: {1e-5, 2e-5, 3e-5, 4e-5}
large++: {7e-6, le-5, 2e-5, 3e-5} large++: {5e-6, 7e-6, le-5, 2e-5}

Batch Size {16, 32} 32

Learning Rate Decay Linear Linear

Warm-Up Proportion {6%, 10%} 6%

Sequence Length 512 512

Adam € le-6 le-6

Adam (81, B2) (0.9, 0.98) (0.9, 0.98)

Clip Norm - -

Dropout 0.1 0.1

Weight Decay 0.01 0.01

Table 7: Hyperparameter ranges searched for fine-tuning on GLUE. GLUE small tasks include CoLA,
RTE, MRPC and STS-B. GLUE Ilarge tasks include MNLI, QQP, QNLI and SST-2.

Parameters SQuAD Search Space
Max Epochs {2,3}

baselbase++: {2e-5, 3e-5, 4e-5, 5e-5}
large++: {7e-6, le-5, 2e-5, 3e-5}

Peak Learning Rate

Batch Size {16, 32}
Learning Rate Decay Linear
Warm-Up Proportion {6%, 10%}
Sequence Length 512
Adam € le-6
Adam (51, B2) (0.9, 0.98)
Clip Norm -
Dropout 0.1
Weight Decay 0.01

Table 8: Hyperparameter ranges searched for fine-tuning on SQuAD.

E More Discussions on PLM Research

Currently, the biggest challenge with PLM research is perhaps its prohibitive computation cost. On
one hand, PLMs have influenced a wide range of tasks, and any further technical improvement
matters a lot for downstream applications. On the other hand, its expensive computing cost and long
experimental cycles pose great challenges for careful and thorough studies of the problem space,
as any test of new designs comes with a considerable computing cost—pretraining a new language
model can easily consume thousands of dollars, or even millions for extra large models.

Such challenges call for more systematic evaluation pipelines that can accurately and reliably judge
whether or not a new PLM is really better than previous ones. Currently, the evaluation of PLMs
largely relies on GLUE-style benchmark which contains a set of different tasks that are weighed
equally for PLM evaluations—usually the average performance over these tasks is treated as a final
measure for the effectiveness of a PLM. However, we find that the small tasks in GLUE have very
high variances which may provide unreliable indications for a PLM’s performance. For example,
on CoLA and RTE, fine-tuning with different random seeds from the same pretrained checkpoint
can easily result in a 5-point difference between the best and the worst seed. In contrast, large tasks
like MNLI give relatively stable and consistent results for the same model pretrained/fine-tuned with
different random seeds, and thus serve as better indicators for PLMs’ effectiveness.

In this paper, we try to improve the robustness of our observations, for example, by reporting the
downstream performance with different training time for future comparisons under limited computing
budget, and also by making our code and models publicly available for the reproducibility of our study.
We hope our efforts will facilitate more future research to improve the community’s understanding
and development of this important problem space.
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