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Overview

This document contains the supplementary materials for the Common Task Framework For a Critical
Evaluation of Scientific Machine Learning Algorithms paper. For each model that was evaluated
on the CTF4Science, we share additional implementation and hyperparameter tuning details. This
document assumes familiarity with the main text and thus does not redefine terms and details covered

in the main text, such as the scoring metrics E1 — E'12.
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1 Dataset Files and Evaluation Metrics

Table 1: Files and corresponding evaluation metrics (E;—E;2) for benchmark datasets.

Score | Test Task Train / Burn-in File(s) | Ground Truth File
E; [Forecasting Short-time X 1train Xitest
Eo Forecasting Long-time X1 train X 1test
Es Noisy (medium) Reconstruction (denoising) | X 2¢ain X otest
E4 Noisy (medium) Forecast (long-time) X otrain X 3test
Es Noisy (high) Reconstruction (denoising) | X 3¢ain X dtest
Eg Noisy (high) Forecast (long-time) X3train X5 test
E7 Limited Data (clean) Forecast (short-time) X 4train X6test
Eg Limited Data (clean) Forecast (long-time) X 4train X6test
Eg Limited Data (noisy) Forecast (short-time) X 5train X Ztest
Eq10 |Limited Data (noisy) Forecast (long-time) X 5train X 7test
Eq1 |Parametric Generalization | Interpolation forecast X6,7,8train / X9irain X 8test
E12 |Parametric Generalization | Extrapolation forecast X6,7,8main / X10owain | Xoest

Table 2: Matrix shapes and indices for the Lorenz dataset (left) and Kuramoto-Sivashinsky dataset
(right). Start and end index refer to relative time-steps in the simulation used to generate the dataset
matrices. Each successive index represents one At time-step.

Lorenz Kuramoto-Sivashinsky
Matrix Shape | Start Index | End Index Matrix Shape | Start Index | End Index
Ximin |[10000, 3 0 10000 Ximin |[10000, 1024 0 10000
Xomin |[10000, 3 0 10000 Xomin |[10000, 1024 0 10000
X3wain |[10000, 3 0 10000 Xawain | [10000, 1024 0 10000
X 4train (100, 3 0 100 X 4train [100, 1024 0 100
X 5train [100,3 0 100 X 5train [100, 1024 0 100
Xemin |[10000, 3 0 10000 Xeumain |[10000, 1024 0 10000
X7umin |[10000, 3 0 10000 X7win | [10000, 1024 0 10000
Xswain |[10000, 3 0 10000 Xswain | [10000, 1024 0 10000
X 9train (100, 3 9900 10000 X 9train [100, 1024 9900 10000
X1 0train [100, 3 9900 10000 X1 0train [100, 1024 9900 10000
X1 test [1000, 3 10000 11000 X1 est [1000, 1024 10000 11000
Xowest |[10000, 3 0 10000 Xoest |[10000, 1024 0 10000
X3test [1000, 3 10000 11000 Xstest [1000, 1024 10000 11000
Xyest  |[10000, 3 0 10000 Xyest | [10000, 1024 0 10000
Xstest [1000, 3 10000 11000 Xstest [1000, 1024 10000 11000
Xotest [1000, 3 100 1100 Xotest [1000, 1024 100 1100
X 7test [1000, 3 100 1100 X 7test [1000, 1024 100 1100
Xstest [1000, 3 10000 11000 Xstest [1000, 1024 10000 11000
Xoest [1000, 3 10000 11000 Xoest [1000, 1024 10000 11000

2 Evaluations

2.1 Hyperparameter Optimization

Hyperparameter optimization is performed in our ctf4science Python packag using the
tune_module.py script. We employ Ray Tune [41] for systematic hyperparameter optimization
across all models. Hyperparameters are defined in YAML configuration files specifying parameter
types, bounds, and sampling distributions. Multiple parameter types are supported, including continu-
ous distributions (uniform, log-uniform), discrete distributions (random integer, log-random integer),
and categorical choices.

The optimization follows a trial-based approach where each trial randomly samples a hyperparameter
configuration from the defined search space. Each trial trains the model using a train/validation split
of the original training dataset. The tune_module.py script splits the training data into train and
validation sets, using the latter exclusively for evaluation. Thus, the test set remains unseen during
hyperparameter tuning.

Optimization terminates when either a predefined number of trials or a time budget is reached. We
employ ASHA (Asynchronous Successive Halving Algorithm) scheduling [39] for early stopping
of poorly performing trials. Resource allocation is automatically managed, distributing trials across
available computational resources.

?Available at https://github. com/CTF-for-Science/ctf4science
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Table 3: Average model performances for each metric group on each dataset. E1-E6 demonstrate
reconstruction and forecasting performance, E7-E10 demonstrate low-data regime performance, and
E11-E12 show parametric generalization performance.

Model E1-E6 E7-E10 E11-E12
Baseline Zeros 46.76 (£ 0.00) -46.87 (£ 0.00) _0.00 (£ 0.00)
Baseline Average -18.55 (&£ 0.00) -15.86 (& 0.00) 58.98 (£ 0.00)
Reservoir [B0IBIIB7]  55.77 (£ 21.25)  31.01 (& 8.59) 99.89 (£ 0.06)
KAN [46] 4517 (£2020) 12.57 (£ 21.60) 51.27 (& 2.03)
HigherOrder DMD [37] -17.10 (£ 0.00)  5.91 (& 0.00) 45.13 (& 0.00)
OptDMD [4] 572(£0.00)  23.55 (£ 0.00) 59.46 (& 0.00)
PyKoopman [7l[36] 32,94 (£ 0.12) -37.70 (£ 0.54) 26.56 (= 0.00)
LSTM [24] 78.07 (& 7.44) 41.33 (& 12.60) 70.34 (= 0.00)
ODE-LSTM (T3] 49.46 (£ 8.66) 30.60 (£ 15.78) 40.42 (& 0.00)
Spacetime [68] 42.05 (£ 18.00) 2127 (£ 8.66) 65.70 (£ 0.00)
DeepONet [47] 68.19 (& 15.02)  30.57 (£ 9.34) 81.10 (£ 9.77)
SINDy [8l[19] 29.52 (4 0.46) 30.60 (& 15.78) 48.73 (< 0.00)
ENO [40] 2570 (£ 31.14)  1.18 (& 35.58) 43.62 (£ 9.88)
NeuralODE [12] 10.23 (& 9.89) -22.55 (£ 10.32) 34.69 (& 13.78)

(a) Average model performances for each metric group on Lorenz Dataset

Model E1-E6 E7-E10 E11-E12
Baseline Zeros 0.00 (% 0.00) 0.00 (% 0.00) 0.00 (& 0.00)
Baseline Average 0.23 (£ 0.00) 1.07 (£ 0.00) -20.92 (% 0.00)
Reservoir [30 5111571 63.16 (4= 3.14) -56.24 (£ 40.22)  36.23 (+ 4.04)
KAN [46] 19.62 (+2.28) -9.33 (£ 13.92) -0.96 (+ 1.42)
HigherOrder DMD [37] -33.33 (£ 0.00) -25.05 (& 25.09) 0.23 (4 0.00)
OptDMD [4] -17.09 (£ 17.48) -9.28 (£ 15.19) 3.56 (£ 0.01)
PyKoopman [7,56] -19.92 (4 16.40) -31.07 (£ 25.84) 1.21 (4 4.68)
LSTM [24] 32.07 (£ 18.29)  22.32 (4 7.49) -47.19 (& 0.00)
ODE-LSTM [15] 30.68 (£ 14.23)  16.54 (4= 5.32) -33.42 (£ 12.36)
Spacetime [68]] -38.16 (£ 50.00) -73.18 (£ 51.95) -12.62 (£ 0.00)
DeepONet [47] 14.96 (£ 6.05)  -2.52 (% 1.43) 2.08 (+ 5.65)
SINDy [81[19] -24.80 (£ 0.00)  16.39 (£ 0.00)  10.26 (£ 0.00)
FNO [40] 7.66 (1 36.18) -67.06 (+ 55.43) 0.11 (% 0.00)
NeuralODE [12] -31.44 (+ 15.59) -56.27 (£ 33.93) 6.09 (4 0.22)

(b) Average model performances for each metric group on KS Dataset

For our results, each combination of model, dataset, and pair_id is allocated 8 hours of tuning time
on dedicated nodes equipped with 1 NVIDIA A100 GPU with 40 GiB VRAM and 18 CPU cores
from an Intel Xeon Platinum 8360Y processor with 120GiB RAM. Some models complete tuning in
less than the alotted time.

2.2 Evaluation

Model evaluation is performed using our ctf4science Python packageﬂ’ s benchmark_module.py
script. Once hyperparameter tuning is complete, the best-performing parameters on the validation set
are used to retrain the model on the full training dataset. The retraining and subsequent evaluation
on the test dataset are repeated five times, using different random seeds where possible. We report
the mean and standard deviation of the resulting scores across these five runs as indicators of model
stability. For models that do not rely on random seeds, the standard deviation is zero. Reported
standard deviation values are clipped to a maximum of 100.

2.3 Wall-Clock Time

McGreivy and Hakim [S3]] compared ML methods with traditional approaches under conditions of
either equal accuracy or equal runtime, motivated by the claims of the methods in their study that those
methods achieve comparable accuracy with improved computational efficiency. In contrast, we take a
step back to first examine whether ML methods can achieve reasonable accuracy at all. Therefore,
our focus is on the accuracy metrics designed in the paper. Although our goal is not to provide a fair
assessment of the speed gain of the ML methods, we nevertheless report the computational costs of
the individual models in their current implementations for context. Wall-clock time is measured by
our ctf4science package’s performance_module.py script. The total wall-clock time, in seconds,
required to train and evaluate each model via our package’s run. py scripts without the visualization

option is provided in

3Available at https://github. com/CTF-for-Science/ctf4science
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Table 4: Model mean wall clock times for each pair_id on each dataset

Model pair_id 1 pair_id 2 pair_id 3 pair_id 4 pair_id 5 pair_id 6 pair_id 7 pair_id 8 pair_id 9
Baseline Zeros 0 0 0 0 0 0 0 0 0
Baseline Average 0 0 0 0 0 0 0 0 0
Reservoir [30[511157] 2 12 6 17 2 1 1 17 18
KAN [46] 186 134 180 25 1498 88 85 346 371
HighOrder DMD [37] 0 0 0 0 0 0 0 0 0
OptDMD [4] 4 5 5 3 3 0 0 0 0
PyKoopman [[7} 156] 0 0 0 0 1 0 0 0 0
LSTM [24] 1377 2723 146 2154 1293 51 54 689 485
ODE-LSTM [15] 15667 15876 12234 15057 14517 231 172 14447 15073
Spacetime [68] 331 832 469 1187 1035 28 27 847 744
DeepONet [47] 234 2 290 39 57 39 40 59 87
SINDy [81[19] 1080 937 2745 3 72 189 70 153 248
FNO [40] 417 1098 924 1477 375 19 21 907 2184
NeuralODE [12] 9468 2172 848 2390 786 51 27 4460 3589
PINN [59] 77 77 76 76 76 76 76 76 76
(a) Mean Wall Clock Times on Lorenz Dataset in Seconds
Model pair_id 1 pair_id 2 pair_id 3 pair_id 4 pair_id 5 pair_id 6 pair_id 7 pair_id 8 pair_id 9
Baseline Zeros 0 0 0 0 0 0 0 0 0
Baseline Average 0 0 0 0 0 0 0 0 0
Reservoir [301[511157] 306 424 637 185 107 28 26 64 245
KAN [46] 1367 77 1797 159 1495 2406 1851 2286 1840
HigherOrder DMD [37] 2 4 2 3 2 0 1 4 5
OptDMD [4] 78 77 89 57 46 1 1 11 15
PyKoopman [7,56] 44 2 45 3 62 1 0 16 3
LSTM [24] 3243 369 1414 835 728 50 50 1830 1171
ODE-LSTM [15] 22067 2270 2506 21957 17956 375 282 17238 1535
Spacetime [68] 6611 13981 1952 9439 6715 19 22 1110 3280
DeepONet [47] 1348 118 2414 334 2817 160 36 1965 6272
SINDy [8l[19] 53950 157 9 24 6731 139 649 16 348
FNO [40] 762 930 2154 597 2871 17 10 2852 30
NeuralODE [12] 2841 1635 421 451 196 39 21.24 4528  2957.52

(b) Mean Wall Clock Times on Kuramoto—Sivashinsky Dataset in Seconds

3 Foundation Model Results

We evaluated the performance of several widely used foundation models on our CTF. Each of these
models is advertised as being capable of performing zero-shot time-series forecasting. The results are
presented in As the foundation models are pre-trained, we did not perform hyperparameter
tuning or training. Instead, we provide their one-shot results, reflecting how such models would
typically be used in real-world applications.

Table 5: Foundation model performances for each metric on each dataset

Model avg score] E1  E2 E3 E4 ES E6 E7 ES§ E9 EI0 EIl EI2
Panda [36] 59.60|-69.13 -38.51 -100.00 -38.21 -100.00 -41.20 -97.19 -36.21 -51.01 -35.09 -56.99 -51.60
Moirai [43] -12.07| 49.96 -88.53 29.74 -84.33 25.61 -84.67 55.25 -87.20 52.28 -90.73 50.06 27.75
Chronos [3] -7.27| 34.80 -84.67 52.85 -86.53 53.40 -88.00 44.18 -88.47 54.01 -85.13 49.24 57.04
TabPFN [26] 28.80| 51.35 -26.27 84.06 -26.80 79.02 -1427 31.49 58.00 28.85 27.60 22.54 29.96
LLMTime [20)| -36.89| 4.59 -91.40  0.59 -100.00  0.44 -94.47 434 -9373 4.10 -9447 838 8.99
Sundial [44] 4526 53.24 4030 5094 39.68 4532 34.94 4519 4204 52.19 44.95 47.37 47.01
(a) Model Scores on Lorenz Dataset
Model avg_score El E2 E3 E4 E5 E6 E7 ES E9 EI0 EIl  EI2
Panda [36] 96.14] -6.28 -100.00 -100.00 -100.00 -100.00 -100.00 -171.75 -100.00 -100.00 -100.00 -103.81 -71.78
Moirai [43] 93.79[-100.00 -100.00 -25.53 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00
Chronos [3] 23.03| 37.89 2691 -100.00 -624 -100.00  3.44 -411 021 -23.40 -100.00 -7.02 -4.08
TabPEN [26]] 2510 9791 3.65 -100.00 201 -100.00  1.17  3.66 3091 -32.50 24.74 12.67 25.70
LLMTime [20]| -100.00 [-100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00
Sundial [44] 0.64| 717 822 419 -642 -0.75 334 -137 107 074 052 -1628 -1.40

(b) Model Scores on Kuramoto—Sivashinsky Dataset



4 Models

4.1 Baselines

We implement two baseline models. One of the baselines predicts all zeros. The other baseline
predicts the average of the input data per spatial dimension. We do not perform hyperparameter
optimization for either of these models.

4.2 LSTM/ODE-LSTM

LSTM networks are a specialized type of recurrent neural network (RNN) designed to address the
vanishing gradient problem inherent in traditional RNNs [24]. They achieve this through a unique
architecture featuring memory cells and gating mechanisms (input, forget, and output gates), which
regulate the flow of information over time. These gates enable LSTMs to selectively retain or discard
historical data, making them particularly adept at capturing long-term dependencies in sequential data.
In time-series forecasting, LSTMs excel at modeling temporal patterns, such as trends, seasonality,
and irregular fluctuations, by leveraging past observations to predict future values. Their ability to
handle complex, non-linear relationships and variable-length input sequences makes them a robust
choice for tasks like stock prediction, energy load forecasting, or weather modeling, where historical
context is critical to accurate predictions.

ODE-LSTMs are a flavor of LSTMs that try to further tackle the vanishing gradient problem by using
an ODE solver to model the hidden state of the LSTM [[15]. They show that traditional LSTMs can
still suffer from a vanishing or exploding gradient and provide theory demonstrating ODE-LSTMs do
not suffer from either of these problems.

We evaluate both a classical LSTM and the ODE-LSTM by searching over the following hyperpa-
rameters: hidden_state_size (dimension of the latent space), seq_length (input sequence length), and
Ir (learning rate).

hyperparameter type min (or options) max (or none)
hidden_state_size randint 3 32
seq_length randint 5 512
Ir log_uniform 107° 102

Table 6: Hyperparameter search space for the ODE-LSTM and LSTM models on metrics £; through
Eg for Lorenz. We train with a batch size of 128 for 200 epochs.

hyperparameter type min (or options) max (or none)
hidden_state_size randint 8 256
seq_length randint 5 512
Ir log_uniform 105 1072

Table 7: Hyperparameter search space for the ODE-LSTM and LSTM models on metrics F through
E for Kuramoto-Sivashinsky. We train with a batch size of 128 for 200 epochs.

hyperparameter type min (or options) max (or none)
hidden_state_size randint 3 32
seq_length randint 5 74
Ir log_uniform 10~° 102

Table 8: Hyperparameter search space for the ODE-LSTM and LSTM models on metrics E7 through
FEq5 for Lorenz. We train with a batch size of 5 for E7 through E( and a batch size of 128 for F1;
and E 5 for 200 epochs.



hyperparameter type min (or options) max (or none)
hidden_state_size randint 8 256
seq_length randint 5 74
Ir log_uniform 10~° 102

Table 9: Hyperparameter search space for the ODE-LSTM and LSTM models on metrics E7; through
FE5 for Kuramoto-Sivashinsky. We train with a batch size of 5 for E; through E1g and a batch size
of 128 for F1; and E4 for 200 epochs.

4.3 SpaceTime

State-Space Models (SSMs) are mathematical frameworks that describe systems using latent (hidden)
states evolving over time, observed through measurable outputs. They are widely used in control
theory, signal processing, and time-series analysis to model dynamic systems. Modern adaptations
like S4 (Structured State Space for Sequence Modeling) and SpaceTime are deep learning variants
of SSMs tailored for sequential data. These models parameterize state transitions with structured
matrices to efficiently capture long-range dependencies while remaining computationally tractable.
Unlike LSTMs, SSMs are particularly effective at time-series forecasting of long-range dependencies
with minimal memory overhead.

SpaceTime [68]] is one such SSM that claims to be a state-of-the-art model on time-series forecasting
and classification tasks. The authors claim that their model captures “complex, long-range, and
autoregressive” dependencies, can forecast over long horizons, and is efficient during training and
inference. They demonstrate improved performance over the popular S4 SSM and NLinear.

Based on the hyperparameter optimization described in the original paper and the hyperparameters
which can be adjusted in the publicly available code, we do a hyperparameter search over the
following values: lag (input sequence length), horizon (output sequence length), n_blocks (number
of SpaceTime layers in the model encoder), dropout, weight_decay, kernel_dim (dimension of SSM
kernel in each block), and Ir (learning rate).

hyperparameter type min (or options) max (or none)

lag randint 32 512

horizon randint 32 512
n_blocks choice {3.4,5,6} .

dropout choice {0,0.25}
weight_decay choice {0, 0.0001}

kernel dim choice {32,64,128} .

Ir log_uniform 1075 102

Table 10: Hyperparameter search space for the SpaceTime model on metrics F; through Fg for
Lorenz and Kuramoto-Sivashinsky. We train with a batch size of 128 for 200 epochs.

hyperparameter type min (or options) max (or none)

lag randint 10 45

horizon randint 10 45

n_blocks choice {3,4,5,6} .

dropout choice {0, 0.25}

weight_decay choice {0, 0.0001}
kernel_dim choice {32,64,128} .

Ir log_uniform 10~° 10—2

Table 11: Hyperparameter search space for the SpaceTime model on metrics £ through Fq for
Lorenz and Kuramoto-Sivashinsky. We train with a batch size of 5 for 200 epochs.



hyperparameter type min (or options) max (or none)

lag randint 10 45

horizon randint 10 45

n_blocks choice {3.4,5,6}

dropout choice {0, 0.25}

weight_decay choice {0, 0.0001}
kernel dim choice {32,64,128} .
Ir log_uniform 1075 1072
Table 12: Hyperparameter search space for the SpaceTime model on metrics F;; through E;5 for

Lorenz and Kuramoto-Sivashinsky. We train with a batch size of 128 for 200 epochs.
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Figure 1: Architecture of the Deep Operator Network. The target field at the evaluation point &
is approximated by the inner product of the outputs of the branch net, which takes as input the
measurements v of the input function v € V and returns a set of coefficients b(v), and the trunk net,
which encodes the coordinates £ into a vector t(&).

4.4 Deep Operator Networks

Deep Operator Networks (DeepONets) [47] recently emerged as a powerful tool designed to efficiently
model high-dimensional physical systems and complex input-output relationships, as well as to solve
challenging problems in scientific machine learning and engineering, such as partial differential
equations. Specifically, DeepONets are a class of neural operators which decompose an operator G :
V — U between infinite-dimensional functional spaces V and U{ into two cooperating sub-networks,
namely branch and trunk net. The trunk encodes the input functionv € V : Q' € R? — R™ — which
is typically sampled at a finite set of n fixed sensors, resulting in the measurement vector v € R™ " —
into p coefficients b (v) € RP. Instead, the branch net provides the evaluation of a neural learnable
p-dimensional basis t (¢) € RP at the spatial coordinates £ in the domain Q C R?. Doing so, the
value of the output function u € U : {2 — R+ at the evaluation point £ € €2 is approximated through

the basis expansion
u(§) = G (v) (§) = b (v) - £ (£).

See [47, 113, 48] for a complete presentation of DeepONets, including also universal approximation
theorems for operators. A graphical summary of the DeepONet architecture is available in Figure[I]

DeepONets for dynamical systems DeepONets are versatile neural architectures designed to
learn mappings between functional spaces. DeepONets are traditionally exploited for inferring the
space-time evolution of physical variables, such as the solution of partial differential equations,
starting from known quantities, such as forcing terms, initial conditions, parameters or control
variables [47,,148] 166l 32]. However, it is possible to adapt and employ DeepONets in the proposed
CTF in order to model and forecast time-series data and dynamical systems, as proposed by, e.g.,
(L0, (1111421 23] 1221 154]. Specifically, we consider the operator

Ut(f) = G (ut_l, ceey ut—k) (6) ~ b (ut_l, veey ut_k) -t (f)



where u; : 2 — R™ and u; € R" are, respectively, the solution of the dynamical system under
investigation at time ¢ and the corresponding spatial discretization, k is the lag parameter and
¢ € Q C R? are the spatial coordinates where to predict the evolution of the dynamics. Along with
the evaluation point £, the trunk input may be enlarged with the time instance ¢ or the time-step At,
as proposed by [48,142]].

DeepONets implementation The implementation of DeepONets within the proposed CTF is based
on the DeepXDE library [49]]. In particular, when dealing with forecasting tasks, we predict the state
evolution in an autoregressive manner, and we enlarge the trunk input with the time-step At, as it
results in better performance. As proposed by [48]], we consider a scaler to normalize the data before
training. Moreover, we employ branch and trunk networks with the same number of neurons per
hidden layer, so as to reduce the number of hyperparameters.

The Kuramoto-Sivashinsky dataset deals with one-dimensional scalar-valued functions, that is d =
n, = 1. The KS solution is discretized and evaluated at n = 1024 spatial points uniformly spaced
in the domain €2 = [0, 327]. Notice that we take into account the same locations across all the
input-output pairs, resulting in a lower computational cost.

The Lorenz test case, instead, considers a three-dimensional state variable evolving over time, without
spatial dependence. Among different alternatives, we adapt DeepONet in this context by considering
the fictitious domain © = 1, 2, 3 and the state function u; : Q = {1,2,3} — R mapping the index
¢ € Q = {1,2,3} into the &-th component of the state vector at time ¢. For instance, if £ = 1,
DeepONet predicts the evolution of the first component of the state variable starting from the past
state values encoded by the branch net.

Hyperparameters The DeepONet hyperparameters mainly concern the neural network architec-
tures and the corresponding training procedure. In addition, the lag parameter determines the length
of the past state history fed into the branch input for forecasting. Notice that the lag value cannot be
larger than the dimension of burn-in data, and it is set equal to zero when dealing with reconstruction
tasks. Table[I3]provides a summary of the hyperparameters in play, along with the corresponding
search spaces explored for hyperparameters tuning.

hyperparameter type min (or options) max (or none)
lag integer 1 99
branch_layers integer 1 5
trunk_layers integer 1 5
neurons integer 1 512
activation choice {"tanh", "relu", "elu"}
initialization choice {"Glorot normal", "He normal"}
optimizer choice { "adam", "L-BFGS" }
learning_rate loguniform 10-° 1071
epochs integer 10000 10000

Table 13: Hyperparameter search space for DeepONet.

4.5 Sparse Identification of Nonlinear Dynamics

Sparse Identification of Nonlinear Dynamics (SINDy) [[8] is a powerful algorithm designed to discover
interpretable and parsimonious governing equations from time-series data. Given the data matrices

l'l(tl) 1‘1(t2) l‘l(tm) .fl(tl) i‘l(tg) .i?l(tm)
: A L A

enltt) Tn(ts) o @n(tm) in(t) Enlts) o En(tm)

collecting, respectively, the state vector x(t) = [z1(¢), ..., 2, (t)] and the corresponding time deriva-
tives x(t) = [21(t), ..., &, (t)] at the time instances ¢4, ..., t,,, we aim at identifying the (possibly
nonlinear) underlying governing equation x(¢) = f(x(t)). To this aim, SINDy considers the follow-
ing approximation

X =

X =0(X)=
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II. Sparse Regression to Solve for Active Terms in the Dynamics

Figure 2: Schematic of the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm from [8]],
demonstrated on the Lorenz equations. The temporal evolution of the state variable and its derivative
are collected in the data matrices X and X. The dynamical system X = ©(X)Z is then identified
through sparsity promoting algorithms.

where O (X)) is a library of candidate regression terms, such as polynomials or trigonometric functions,
while = are the corresponding regression coefficients. Sparsity promoting strategies are crucial to
identify simple and interpretable dynamical systems, capable of avoiding overfitting and accurately
extrapolating beyond training data. In particular, the regression coefficients = are determined through
sparse regression strategies, such as Least Absolute Shrinkage and Selection Operator (LASSO) or
Sequentially Thresholded Least SQuares (STLSQ). See Figure 2] for a scheme of the SINDy algorithm
on the Lorenz system.

SINDy can easily handle parametric dependencies: indeed, augmenting the state vector with the
(possibly time-dependent) parameter values p and adding p-dependent terms in the library ©(X, u),
it is possible to identify parametric sparse dynamical systems.

Identifying sparse dynamical systems from high-dimensional data may be computationally expensive.
A possible workaround is given by dimensionality reduction techniques, such as Proper Orthogonal
Decomposition (POD) [8] or autoencoders [9], which project state snapshots onto a low-dimensional
manifold. SINDy can thus be applied on the low-dimensional latent variables, allowing for efficient
and accurate forecasting of the high-dimensional state evolution.

SINDy implementation The implementation of SINDy is based on the PySINDy library [16]. After
collecting the data and approximating the time derivatives through numerical schemes, the SINDy
algorithm is applied to identify a sparse dynamical system describing the data evolution over time.
The integrator solve_ivp by scipy [64] is considered to simulate the system and to predict future state
values. Notice that, whenever the identified model is very complex and the integrator fails, the static
dynamical system x = 0 is employed.

The Kuramoto-Sivashinsky dataset deals with the temporal evolution of a chaotic partial differential
equation on the spatial domain [0, 327]. The KS solution is discretized and evaluated at n = 1024
locations, resulting in a collection of high-dimensional snapshots over time. Proper Orthogonal
Decomposition (POD) is thus exploited to compress the temporal data, and SINDy is applied to
identify the dynamics of the most energetic POD coefficients. Therefore, the KS predictions are
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retrieved by integrating the SINDy model and projecting the POD coefficients onto the original
high-dimensional state space.

Parametric SINDy models are considered when testing the ability of the model to generalize to
different parameter values. Since the parameter values employed for data generation are not publicly
available, we take into account fictitious values mimicking the interpolatory and extrapolatory
regimes.

Hyperparameters The SINDy algorithm can exploit different differentiation methods to approx-
imate time derivatives, different terms in the library ©(X) — such as, e.g., polynomials and/or
trigonometric functions up to a chosen order — as well as different sparse regression techniques.
Table[14] provides a summary of the hyperparameters in play, along with the corresponding search
spaces explored for hyperparameter tuning.

hyperparameter type min (or options) max (or none)
POD_modes integer 1 50
differentiation_method choice { "finite_difference", "spline", .
"savitzky_golay", "spectral”,
"trend_filtered", "kalman" }
differentiation_method_order integer 1 10
feature_library choice { "polynomial",
"Fourier", "mixed" }
feature_library_order integer 1 10
optimizer choice {"STLSQ", "SR3",
"SSR", "FROLS"}
threshold choice { "adam", "L-BFGS" } .
learning_rate loguniform 1073 103
alpha loguniform 1073 10t

Table 14: Hyperparameter search space for SINDy. The POD_modes parameter has an effect only
for the Kuramoto-Sivashinsky test case.

4.6 Dynamic Mode Decomposition

The Dynamic Mode Decomposition (DMD) is a data-driven method developed by Schmid [62] in the
fluid dynamics community to identify spatio-temporal coherent structures from high-dimensional
data. The DMD algorithm is based on the Singular Value Decomposition (SVD) of a data matrix; in
particular, DMD is able to provide a modal decomposition where each mode consists of spatially
correlated structures that have the same linear behaviour in time. The DMD method is found to
have a significant connection with the Koopman operator theory [60]: in particular, the DMD can
be formulated as an algorithm able to learn the best-fit linear dynamical system to advance in time

(Figure [3).

There are many variants of DMD, connected to existing techniques from system identification and
modal extraction [6]. Here, we will provide a brief overview of the underlying idea of the original
DMD algorithm, from which all the other variants can be derived. The first step is to collect a set of
snapshots of the system at different time steps. The data matrix is then constructed by stacking the
snapshots in columns, i.e., X = [x1,X2,...,Xn,]| € CNn XN where x, € CMe s the k-th snapshot
at time t; and V; is the number of snapshots. The original formulation from [62, |60] supposed
uniform sampling in time, i.e. t; = kAt, where At is the time step and 511 = t; + At. Overall, the
DMD algorithm seeks the leading spectral decomposition of the best-fit linear operator A € CNnxNn
that advances the system in time, i.e.

Xpr1 R AXE — Xy, ~® AX [N,

As we said above, the DMD algorithm is based on the SVD of the data matrix X of rank r, which
can be written as X ~ UXV*: U € CN»*" represents the left singular vectors and are also known
as modes, describing the dominant spatial structures extracted from the data; the diagonal matrix
3 € R™ " contains the singular values, which are related to the energy/information retained by
the modes; in the end, V* € C"* ¢ represents the right singular vectors, which are related to the
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Figure 3: Scheme of the Dynamic Mode Decomposition algorithm from [28]]. The data matrix X is
constructed by stacking the snapshots in columns. The SVD of the data matrix is computed, and the
dynamical matrix is fitted to the data. This allows us to compute the state of the system for future
time instances.

temporal dynamics of the modes. This compression operation allows to compute the dynamical
matrix A in a more efficient way [28), 6], avoiding the direct inversion of the high-dimensional
snapshot matrix.

Indeed, in the literature different variants of DMD have been proposed: in this context, the High-
Order DMD (HODMD) [38]], which exploits time delay embedding to fit the optimal Koopman
Operator, and the Optimised DMD (OptDMD) [5,161]], which is a variant of DMD that can also use
the Bagging algorithm to improve the robustness of the DMD algorithm against noise. This latter
variant has been shown to be the most robust and stable algorithm for real-world applications [18]].
The implementation of the DMD algorithm is available in the pyDMD package [17, 27], which is
a Python library for DMD and its variants. The library is designed to be easy to use and flexible,
allowing users to customise the algorithm for their specific needs.

Parametric DMD The extension of DMD to parametric systems is a recent development in the
field of system identification. Different approaches have been proposed in the literature; in this work,
the implementation of Andreuzzi et al. 1] within pyDMD is adopted. Up to now, the package does
not support the OptDMD algorithm directly, we have implemented a wrapper to use the OptDMD
algorithm with the parametric DMD following the same approach of the package, based on the
interpolation of the forecasted reduced dynamics. We appreciate that further work and rigorous
testing of this implementation are planned for future work. Similar to SINDy, since the parameter
values employed for data generation are not publicly available, fictitious values mimicking the
interpolatory and extrapolatory regimes have been used.

Hyperparameter tuning The hyperparameters of the DMD algorithm depend on the specific
variant adopted. Every DMD algorithm has a set of hyperparameters that can be tuned to improve the
performance of the algorithm; however, the rank of the SVD is common to all of them and plays a
crucial role in the reduction process. The HODMD algorithm also includes the delay embedding,
defining the size of the lagging window to use. The OptDMD algorithm can also put constraints on the
DMD eigenvalues to ensure that the dynamics follow a certain behaviour. In the end, the parametric
DMD can operate in two different modes: partitioned and monolithic. The hyperparameters of both
DMD algorithms are listed in Tables[T3]and [T6]

4.7 Koopman operator-based dynamic system prediction

The Koopman operator Koopman operator theory is a useful tool that has found increasing
attention in the data-driven scientific computing community and can essentially be seen as an
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hyperparameter | type min (or options) max (or none)
rank randint 3 50
delay randint 0 200
parametric choice  {"partitioned", "monolithic"}

Table 15: Hyperparameter search space for the HODMD algorithm for Lorenz and Kuramoto-
Sivashinsky (the parametric hyperparameter has an effect only for metrics F1; and E15).

hyperparameter | type min (or options) max (or none)
rank randint 3 50
delay randint 0 100
parametric choice { "partitioned", "monolithic"}
eig_constraints choice "none", "stable", "conjugate_pairs"}

Table 16: Hyperparameter search space for the OptDMD algorithm for Lorenz and Kuramoto-
Sivashinsky (the parametric hyperparameter has an effect only for metrics F1; and E15).

extension of dynamic mode decomposition - viewing the statespace of the dynamic system through
the lens of nonlinear observables. This point-of-view dates back to early work by [33| 34] and a
modern review can be found in [[7]. We outline the method briefly before describing the set-up for the
chosen implementation and our testing on the CTF. Consider a dynamical system (either an ODE or a
semi-discretisiation of a PDE) of the form:

dx
= _r
dt (),

where f : RN — RY may be a nonlinear forcing. The central idea in Koopman operator theory is
then to learn a coordinate transform (i.e. a set of nonlinear observables) ® : RN — RM  under which
the dynamics becomes (approximately) linear, i.e.

d:

ch ~ Az, z(t) = d(x(1)).
In this new coordinate system, the exact solution of the linear dynamics is straightforward. The
inference of ® and A can be formulated as a regression problem.

Numerical implementation and parameter choices In our current CTF test we use the PyKoopman
Python library as the main reference point for the Koopman method for dynamic system prediction
[56]. The Python package serves as a good reference since it is regularly maintained and has an up-to-
date implementation of several central features of the Koopman operator framework. As mentioned
above there are two central parameters that affect the performance of the Koopman method: the
observables and the regression method. Exploiting the existing implementation in PyKoopman we
allowed in our CTF testing the variation of the following set of parameters:

* Type of observable: Options include the identity, polynomials of variable degree, time delay
(of variable depth), radial basis functions (of variable number) and random Fourier features,
as well as the concatation of all of the aforementioned observables with the identity;

* Type of regressor: DMD, EDMD, HAVOK and KDMD;
* Regressor rank;

* Least-squares regularisation and rank of the regularisation (this option is implemented only
in EDMD and KDMD).

Note that in principle a neural network-based DMD is also implemented in the PyKoopman package,
but in our fine-tuning we found that this lead consistently to worse performance than the above four
types of regressors thus we did exclude it from the hyperparameter tuning.

Parametric PyKoopman Out-of-the-box PyKoopman does not have a parametric implementation,

thus in order to test the Koopman method on task 4, we loosely follow [2, 21] and implement a
custom parametric version of PyKoopman by spline interpolation of the learned Koopman operator
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and corresponding eigenfunctions. We acknowledge that further work and rigorous testing of
various parametric versions of the Koopman method are required to identify the best performing
implementation for task 4.

Further comments on the use with chaotic systems We note that the performance of the Koopman
operator on the KS and Lorenz system is notably subpar, especially when compared to results reported
in prior work [55]]. This is not unexpected and a likely source of challenge is the chaotic nature of
both equations, which has also been noticed by the authors of the PyKoopman package. Essentially,
in chaotic systems there may not be a dominating low-rank structure that can be learned and exploited
with the Koopman method (cf. the section on “Unsuccessful examples of using Dynamic mode
decomposition on PDE system” in [53]).

Hyperparameter tuning Based on the available choices implemented in the PyKoopman package
and the examples described in the documentation [S5], we performed a hyperparameter search over the
following parameters: type of observable and potential concatenation with the identity, observables
integer parameter (representing the polynomial degree in case of polynomial observables, the number
of time delay steps in the case of time delay observables and the parameter D in the random Fourier
feature case), the number of centers for the radial basis function observables, observables float
parameter (representing the radial basis function kernel width and the parameter v in the radial basis
function case respectively), regressor type, regressor rank, TLSQ rank (the regularisation rank called
only when the regressor is EDMD and KDMD). The details of the parameter space explored are
shown in Table 7

hyperparameter type min (or options) max (or none)
observables choice {Identity, Polynomial, TimeDelay,
RadialBasisFunctions,
RandomFourierFeatures }
Identity concatenation | choice {true, false}
Integer parameter randint 1 10
# RBF centers randint 10 1000
Float parameter uniform 0.5 2.0
regressor type choice  {DMD,EDMD, HAVOK, KDMD} .
regressor rank randint 1 200
TLSQ rank randint 1 200

Table 17: Hyperparameter search space for the PyKoopman model.

4.8 Reservoir Computing

In its broadest sense, reservoir computing (RC) is a general machine learning framework for pro-
cessing sequential data. RC functions by projecting data into a high-dimensional dynamical system
and training a simple readout from these dynamics back to a quantity or signal of interest. Although
there exists a large and ever-growing body of literature on leveraging physical systems to act as
high-dimensional “reservoirs” [63]], the most common form of RC remains an echo state network
(ESN) [29,152]]. ESNs are a form of recurrent neural network (RNN) that have been demonstrated
to achieve state-of-the-art performance in the forecasting of chaotic dynamical systems [58| [65].
We now introduce the specific form of ESN we use in evaluating performance on the CTF datasets,
following many of the conventions presented in [58].

ESNs for Lorenz63 system. Given a time series ug,...,ur, a randomly instantiated, high-
dimensional dynamical system is evolved according to
hit1 = (1 — a)hy + atanh (Wyphy + Whyue + 0p1) (D

where « is the so-called leak rate hyperparameter, W5, and W}, are fixed, random matrices, o} is a
bias hyperparameter and 1 denotes a vector of ones. Wp,;, € RV+*Ne (N}, denotes the number of
entries in h) is taken to be a random, sparse matrix with density &~ 2% and non-zero entries sampled
from U (—1,1) and then scaled such that the spectral radius of Wy, is p. Wy, € RNwxNu (N,
denotes the number of entries in u) is a random matrix with each entry drawn independently from
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U(—o,0). Initializing hg as hg = 0, we generate a sequence of training reservoir states ho, . .., hy.
We discard the initial N, training states as an initial transient and then perform a Ridge regression
(with Tikhonov regularization /3) to learn a linear map W, such that

Wung(hi) = u;. )

g : Nj — Ny, is often taken to be the identity map or simply squaring every odd indexed entry of h;.
We assume the latter convention, following the work of Pathak et al [S7]. Once trained the reservoir
dynamics can be run autonomously as

ht+1 = (]. — Ck)ht + «atanh (Whhht + WhuWuhg(ht) + O'b].) (3)

to obtain a forecast of arbitrary length. A summary of tunable hyperparameters for this architecture
applied to the Lorenz system are presented in Table@ Ngpin = 15 for error metrics E7 through
E1o and Ngpp, = 100 for all other metrics.

ESNs for KS system. RC approaches typically rely on the latent dimension N, >> N,,. However,
the computational cost of the previous algorithm scales roughly quadratically with Nj,. Thus, while
the above approach works well for relatively small systems, without modification it does not scale
well to large states such as those encountered in PDE simulations. Pathak et al. introduced a parallel
reservoir approach to address this issue by dividing a high-dimensional input into g lower dimensional
“chunks” [37]. A single reservoir then accepts as input only N,, /g + 2L values, where L is a locality
parameter that dictates the overlap of input for two adjacent reservoirs. The output of the single
reservoir is only g entries of the state. Since computational cost grows linearly in the number of
reservoirs, this parallel approach allows for the application of RC to higher dimensional systems.
Each individual reservoir is trained exactly as for the Lorenz system; there are now just g reservoirs
representing different regions of the domain.

Since we introduce two new hyperparameters in the parallel setup (L and g), when we perform our
hyperparameter tuning for the KS system we fix a = 1 and o3, = 0, following the work of Pathak et
al. The complete hyperparameter search space for the KS system is given in Table[T9]

hyperparameter type min (or options) max (or none)
« uniform 0 1
o loguniform 0.0001 1.0
op uniform 0 2
P uniform 0.02 1
B loguniform 10-10 1071
Ny, randint 500 3000

Table 18: Hyperparameter search space for the reservoir model on the Lorenz 63 system.

hyperparameter type min (or options) max (or none)
g choice {16, 32, 64, 128}
o loguniform 0.0001 1.0
L randint 1 10
p uniform 0.02 1
B loguniform 10-10 1071
Ny, randint 500 3000

Table 19: Hyperparameter search space for the reservoir model on the KS system.

4.9 Fourier Neural Operator

Neural operators are a class of machine learning models designed to learn mappings between function
spaces, in contrast to the finite-dimensional Euclidean spaces typically used in conventional neural
networks. Although the inputs and outputs are discretized in practice, neural operators aim to
generalize across discretizations and treat functions as the primary objects of learning.

The Fourier Neural Operator (FNO), in particular, is a neural operator architecture that replaces
the kernel integral operator with a convolution operator defined in Fourier space, which allows for
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learning of operators in the frequency domain. It maps the input to the frequency domain using
the Fourier transform, applies spectral convolution by multiplying learnable weights with the lower
Fourier modes, and maps the result back to the physical domain via the inverse Fourier transform.
This allows the model to learn families of PDEs, rather than solving individual instances. Without the
high cost of evaluating integral operators, it maintains competitive computational efficiency.

Let D C R be a bounded domain. We consider learning an operator G' that maps between function
spaces:
G:A—=U “

where A = L?(D;R%) is the input function space and & = L?(D;R%) is the output function
space.

Given an input function a € A, the FNO approximates the operator G through a kernel integral
operator:

G(a)(z) =0 <Wa(x) +b+ /D k(z,y)a(y) dy) (5)

where W € R%*da ig 3 linear transformation, b € R% is a bias term, x : D x D — R%u*da jg g
learnable kernel function, and o : R% — R% is a pointwise non-linear activation function.

The kernel is parameterized in Fourier space as:

K(a,y) =Y R(k)e* @) (6)

kezd

where % (k) are the Fourier coefficients of the kernel. The translation-invariant kernel x(z,y) =
k(x — y) enables efficient convolution. This leads to the implementation:

G(a)(z) =0 | Wa(z) + b+ Z R(k)a(k)e2mik o

kezd

where @(k) represent the Fourier coefficients of the input function a. In practice, the sum over k € Z¢
is truncated to a finite number of low-frequency modes.

Model Architecture The architecture (Figure[d) begins with an initial fully connected multilayer
perceptron (MLP) that projects the input to a higher-dimensional space, followed by four Fourier
layers, and concludes with two fully connected MLPs that project the output to the desired dimensions.

Each Fourier layer performs a spectral convolution by first transforming the data into the frequency
domain using Fast Fourier Transform (FFT), then multiplying the Fourier coefficients with learable
weights in the frequency space, and finally transforming back to physical space using inverse FFT.
The Fourier layer only keeps a limited number of the lower Fourier modes, with high modes being
filtered out. Additionally, each layer adds a linearly transformed version of its input to the output
of the spectral convolution, which helps preserve local features and adds flexibility to the layer’s
expressiveness. Every Fourier layer is followed by a GELU activation function to introduce non-
linearity.

Hyperparameters Based on our implementation of the FNO model, which closely follows that of
the original paper, we test the hyperparameters as shown in Table[20] The number of Fourier modes
is tuned separately for each mode.

hyperparameter type range or options
Fourier modes integer [8,32]
Network width integer [32, 128]
Batch size choice 16, 32, 64, 128
Learning rate (Ir) | loguniform [0.0001, 0.01]

Table 20: Hyperparameter search space for the FNO model.
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Figure 4: Architecture of the Fourier Neural Operator from [40]

4.10 Kolmogorov-Arnold Networks

Kolmogorov—Arnold Networks (KANs) are a recently proposed alternative to traditional Multi-Layer
Perceptrons (MLPs) [45]. With learnable activation functions placed on edges that replace linear
weights, KANs have been shown to provide improved accuracy and greater interpretability compared
to traditional methods.

KANs were inspired by the Kolmogrov-Arnold representation theorem which posits that any multivari-
ate continuous function f on a bounded domain can be expressed as a finite composition and addition
of univariate continuous functions [31]. In other words, for a smooth function f : [0,1]" — R,

2n+1

f(x) = f(z1,22, ... 20) = Z Q4 (Z (bq,p(xp)) @

where ¢g p, : [0,1] = Rand ®,: R — R.

Model Architecture While the Kolmogrov-Arnold representation theorem is restricted to a small
number of terms and only two hidden layers, this theorem can be generalized to increase the width
and depth of the network. A single KAN layer is defined as a matrix of 1D functions thus the inner
and outer functions in Equation ¢q,p and @, each represent a single KAN layer. A deeper network
can be constructed by adding more KAN layers. A general KAN network with L layers can be
represented as a composition of L functions:

) = Z_ $itiris s Z_ (Z B2.i5 s <Z ®1,is,in (Z ¢0,i1,io(zio)>)>

ir—1=1 ir—2=1 ip=1 11=1 i0=1

where n; is the number of nodes in the [t" layer and ¢; ; 1 is the activation function that connects the

k" neuron in the [*" layer to the j" neuron in the [ + 1 layer. The network architecture is better
illustrated in Figure[5| which was adapted from Figure 2.2 in [43].

Each activation function is comprised of a basis function b(z) and a spline function:
d(x) = wpb(x) + wyspline(x)
where
x

1+e®
spline(z) = Z ¢;Bi(x)

b(z) = silu(z) =

Initially, wy is set to 1 and spline(x) a2 0. The weights of the basis function is initialized according
to Xavier initializations.
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Figure 5: Sample architecture of a Kolmogorov-Arnold Network with three layers of size [2, 3, 1].
Activation functions ¢ are placed on the edges and are parametrized as a spline. Each output of a
node is a sum of its inputs.

KAN Implementation Although KANs have primarily been applied to science-related tasks such
as function approximation and PDE solving, Example 14 of the pykan package demonstrates their
use in a supervised learning setting. In this work, the KAN implementation from that example was
adapted to address the reconstruction and forecasting tasks posed in the Common Task Framework.

For forecasting tasks, the input-output pairs were constructed in an autoregressive manner, where
each input consisted of lagged observations used to predict future values. The input and output
dimensions depend on both the number of spatial dimensions in the dataset and the chosen lag.

The Lorenz 63 system is a three-dimensional dynamical system. For a lag of [, the input dimension
was set to dj, = 3[. While prediction windows greater than 1 were tested during training, a prediction
window of 1 produced the best results. Therefore, the output dimension was fixed at do,, = 3.

For the Kuramoto—Sivashinsky (KS) dataset, which contains 1024 spatial points, the input dimension
was set to dj; = 1024/ and the output dimension to dyy = 1024.

For reconstruction tasks, the model was trained in an autoencoding fashion, where each input was
mapped directly to itself as the target output. For the Lorenz 63 system, the input and output
dimensions were both set to di, = doy = 3. For the Kuramoto—Sivashinsky (KS) system, the
dimensions were set to di, = doy = 1024.

Hyperparameters Based on the hyperparameter settings provided in the pykan package and the
results reported in the original paper [45], the hyperparameters outlined in Tables|[21|and [22| were
selected and tuned for this model. Broadly, the hyperparameters fall into two categories: (1) model
architecture and (2) training.

Architecture-related hyperparameters include the number of layers, dimensions of hidden layers, grid
resolution, the polynomial degree of the spline basis (k), and the lag. Training-related hyperparameters
include the number of training steps (epochs), learning rate, overall regularization strength (), and
the regularization coefficient for the spline parameters (Acoef)-

4.11 Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNSs), introduced by Raissi et al. [59]], have emerged as a
powerful framework for solving differential equations using deep learning. Unlike standard neural

networks, PINNs embed physical laws directly into the loss function, enabling them to honor both
data fidelity and governing equations. The loss function is typically composed of two terms:

L(0,7) = Laaa(0)+ALDE(O, ) Z lug (i, ts) — u(zs,t )”2"')‘72 ”N ug(wi,t )}sz
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hyperparameter type min (or options) max (or none)
steps randint 50 107
lag* randint 1 5
Ir loguniform 10-° 1071
num_layers randint 1 5
{one-five}_dim** randint 1 10
grid randint 1 100
k randint 1 3
A loguniform 1077 1073
Acoe f loguniform 1077 1073

Table 21: Hyperparameter search space for the KAN model on the Lorenz 63 system. NOTE: The
lag parameter is set to zero for reconstruction tasks (pair_id = 2 or 4)*. The dimension of each layer
is defined separately. For example the number of nodes in layer two would be defined as two_dim™**.

hyperparameter type min (or options) max (or none)
steps randint 50 10%
lag™ randint 1 2
batch choice {-1, 50-100}
Ir loguniform 107° 1071
num_layers randint 1 5
{one-five}_dim** randint 1 10
grid randint 1 100
k randint 1 3
A loguniform 1077 1073
Acoe f loguniform 1077 1073

Table 22: Hyperparameter search space for the KAN model on the KS system. NOTE: The lag
parameter is set to zero for reconstruction tasks (pair_id = 2 or 4)*. The dimension of each layer is
defined separately. For example the number of nodes in layer two would be defined as two_dim™*.

Here, ug(zx,t) denotes a neural network approximation of the solution with fitting parameters 6, and
independent variable inputs (z, ). u(z,t) is the ground truth at data points (z,t), and N, [u] = 0
represents the residual, with differential operator A, and fitting model parameters . The first term,
Ldata, ensures agreement with observed data (e.g., initial and boundary conditions), while the second
term, LDE, enforces consistency with the known physical laws through collocation points.

PINNs were originally designed as differential equation solvers [35], and they excel at interpolating
solutions within a domain where collocation points are defined. Their primary strength lies in
approximating solutions to known equations. While they can, in principle, be extended to infer
unknown parameters of the governing equations by treating them as learnable variables in the loss
function, this joint optimization (i.e. over both the neural network parameters ¢ and the model
parameters ) is notoriously difficult. In complex spatio-temporal settings, this often leads to poor
convergence and suboptimal solutions, as observed in our CTF. Recent extensions show promising
directions for improvement [67} [14].

Implementation. We use the DeepXDE library [49] to implement the PINN architecture, building
on the inverse modeling example provided for the Lorenz system [50]. In our implementation, we
assume a parametric form of the target differential equation (e.g., Lorenz or Kuramoto—Sivashinsky)
and treat all coefficients as learnable parameters.

Hyperparameters. Our hyperparameter search includes the learning rate, network depth and
width, and the number of training, boundary, and collocation points used to evaluate the data and
physics loss terms. Table [23|summarizes the hyperparameter search space.
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hyperparameter type range (or options)
Number of layers integer [3,6]
Number of neurons per layer integer [10, 40]
Number of boundary points integer [200, 1000]
Number of domain points (for PDE) integer [200, 1000]
Learning Rate loguniform [1075,1072]

Table 23: Hyperparameter search space for PINNs.

4.12 Neural-ODE

Nerual-ODE:s are a type of neural network that uses an ODE solver to model the hidden state of a
neural network.[12]]. This is very similar to ODE-LSTMs, another model evaluated in this work,
except it makes use of a vanilla MLP instead of LSTM.

We search over the following hyperparameters: hidden_state_size (dimension of the latent space),
seq_length (input sequence length), batch size, and Ir (learning rate).

hyperparameter type min (or options) max (or none)
hidden_state_size randint 8 1024
seq_length randint 5 74
batch_size randint 5 120
Ir log_uniform 1075 1072

Table 24: Hyperparameter search space for Neural-ODE models. We train for 100 epochs.

4.13 LLMTime

LLMTime [20]] is a time-series foundation model that uses pre-trained LLMs to perform zero-shot
forecasting of time-series data. Their approach is to modify the tokenization of each model so that
time-series forecasting is casted as a next-token prediction in text problem. For our evaluation, we
used the 11ama-7b as LLMTime’s base LLM and used the default temperature of 1.0, an alpha of
0.99, and a beta of 0.3. We also used LLMTime’s default Llama tokenizer. LLMTime is only able to
forecast univariate time-series, so we auto-regressively forecast each dimension with a context of 200
tokens and a prediction length of 100 tokens at a time. Once each dimension has been forecasted,
they are concatenated and evaluated on the test set. For reconstruction tasks, we take the first 10
time-steps of the training data and forecast each dimension until we have a vector containing the
same number of timesteps as in the testing dataset and then concatenate and calculate our metrics as
before.

4.14 Chronos

Chronos [3]] is a pre-trained probabilistic time-series foundation model from Amazon. The model
is informed by the success of transformers and LLMs, and as such tokenizes time series values
using scaling and quantization and trains using the cross-entropy loss function. The model is
only capable of doing univariate time-series forecasting. For our evaluation, we use the pre-trained
chronos-t5-base model and do a one-shot forecast of each dimension of each dataset independently
and concatenate them when calculating our metrics. For reconstruction tasks, we take the first 10
time-steps of the training data and forecast each dimension until we have a vector containing the
same number of timesteps as in the testing dataset and then concatenate and calculate our metrics as
before. Chronos has a much smaller context length than LLMTime due to requiring more VRAM for
inference.

4.15 Moirai
Moirai_MOoE [43] is a time-series forecasting foundation model from Salesforce Al Research. The

model uses a sparse mixture-of-experts transformer architecture and is able to do one-shot multivariate
time-series forecasting on arbitrary time-series datasets. For our evaluation, we used the pre-trained
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base model and predicted 10 time-steps at a time with a context length of 20. For reconstruction
tasks, we take the first 10 time-steps of the training data and forecast until we have a matrix containing
the same number of timesteps as the testing dataset. Moirai_MoE has a much smaller context length
than LLMTime due to requiring more VRAM for inference.

4.16 Sundial

Sundial [44] is a family of native, flexible and scalable time-series foundation models from Tsinghua
University, tailored specifically for time series analysis. It is pre-trained on TimeBench (about
one trillion time points), adopting a flow-matching approach rather than fixed parametric densities.
Sundial directly models the distribution of next-patch values in continuous time-series without discrete
tokenisation; it is built on a decoder-only Transformer architecture. For our evaluation, we used the
pre-trained sundial-base-128m model; the model can handle multivariate time-series forecasting
directly. For the KS evaluation, due to RAM limitations, we have split the "spatial" dimension into
batches, forecasting each batch independently and concatenating the results. For reconstruction tasks,
we take some of the first time-steps of the training data (around 10%) and forecast until we have a
matrix containing the same number of timesteps as the testing dataset.

4.17 Panda

Panda [36] is a foundation model for nonlinear dynamical systems based on Patched Attention for
Nonlinear DynAmics. Panda is motivated by dynamical systems theory and adopts an encoder-only
architecture with a fixed prediction horizon. It is pre-trained purely on a synthetic dataset of 2 x 10*
chaotic dynamical systems, discovered using a structured algorithm for dynamic systems discovery
introduced in the same work. For our evaluation, we used the pretrained model weights provided on
the official code repository associated with [36]. The main free parameter in the forecasts with Panda
is the context length. In the Lorenz evaluation we allow this to be the full dataset that we provide, but
due to RAM limitations for the KS dataset we have to limit the context to 512 observations.

4.18 TabPFN-TS

TabPFN for Time Series (TabPEN-TS) [26]] is based on the tabular foundation model TabPENv?2 [25]],
adapted to the task of time series forecasting. We use the pretrained model weights, leaving the only
remaining parameter as the amount of data for each specific system that the model is exposed to
before performing zero-short forecasting. In the case of the Lorenz system, this is the entirety of the
available training data for the task. However, for the KS system, we restrict to at most 500 time steps
to be used for context. This restriction was introduced as a result of limited available memory, and is
similar to the restriction placed on Panda.
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