
BinaryFormer: 1-bit long-range transformers for 3D models

base

ch(V)=96

+Hamming

0E+00 2.25E+09 4.5E+09 6.75E+09 9E+09

Linear Weight Q@Kt S@V Project MLP (4x)

Exemplary MACs for single transformer layer, with batch-size=1, N=2’048,
D=384 and 6 heads. Combining a 4x reduction of the value tensor with the
proposed Hamming Attention leads to a substantial complexity reduction, where
now the MLP (with 4x channel expansion) dominates.

query key

value

binarised
➞ no-gradfloating

concat qb∈ NxD�

weight

θ
learned

wq∈ Nx1�

binarised
➞ no-grad

floating

concat
kb∈ NxD�

weight

θ
learned

wk∈ Nx1�scalar
weight
multiplication

v∈ NxD/4�softmax

output (matrix-multiply)

derivative without
NxNxD floating point
MACs ➞ only NxN

forward path w/o FP
matrix multiplication

(a) Concept of proposed 1-bit self-attention

base

DV=96

+Hamming

0E+00 1.75E+09 3.5E+09 5.25E+09 7E+09 8.75E+09

Linear Weight Q@Kt S@V Project MLP (4x)

Exemplary MACs for single transformer layer, with batch-size=1, N=2’048,
D=384 and 6 heads. Combining a 4x reduction of the value tensor with the
proposed Hamming Attention leads to a substantial complexity reduction, where
now the MLP (with 4x channel expansion) dominates.

query key

value

binarised
➞ no-gradfloating

concat qb∈ NxD�

weight

θ
learned

wq∈ Nx1�

binarised
➞ no-grad

floating

concat
kb∈ NxD�

weight

θ
learned

wk∈ Nx1�scalar
weight
multiplication

v∈ NxD/4�softmax

output (matrix-multiply)

derivative without
NxNxD floating point
MACs ➞ only NxN

forward path w/o FP
matrix multiplication

(b) Exemplary MACs for single transformer layer

Figure 1: (a) Concept of e�cient self-attention computation in long-range transformers using 1-bit
Hamming attention with splitting of weights and binarised values. (b) Reduction of MACs with
batch-size=1, N=2’048, D=384 and 6 heads. Combining a 4x reduction of the value tensor with
the proposed Hamming Attention leads to a substantial complexity reduction, where now the MLP
(with 4x channel expansion) dominates.

Algorithm 1 Forward Attention

1 def attention(x):

2 Q = x @ W_q

3 K = x @ W_k

4 V = x @ W_v

5 S = Q @ K.T / D**.5

6 P = softmax(S)

7 O = P @ V

8

9

10 return O

Algorithm 2 Backward Attention

1 def attention_backward(dO):

2 dV = P.T @ dO

3 dP = dO @ V.T

4 dS = dsoftmax(dP)

5 dQ = dS @ K / D**.5

6 dK = dS.T @ Q / D**.5

7 dW_v = x.T @ dV

8 dW_q = x.T @ dQ

9 dW_k = x.T @ dK

10 return dW_v, dW_q, dW_k

Here, @ denotes matrix multiplication and T the transpose operation.

2.1. Binarisation-aware floating point training

First, we explore a simpler scenario in which we only aim to speed up inference of trans-
formers. Here, the backward path through the self-attention layer may still comprise the
same amount of floating point MACs but the method must be made aware of the intended
binarisation. One could simply use a sign function on key and query tensors as follows:

sgn(x) := (x � 0 ! +1) ^ (x < 0 ! �1), (1)

5

