
BinaryFormer: 1-bit long-range transformers for 3D models
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D=384 and 6 heads. Combining a 4x reduction of the value tensor with the 
proposed Hamming Attention leads to a substantial complexity reduction, where 
now the MLP (with 4x channel expansion) dominates.
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(a) Concept of proposed 1-bit self-attention
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(b) Exemplary MACs for single transformer layer

Figure 1: (a) Concept of e�cient self-attention computation in long-range transformers using 1-bit
Hamming attention with splitting of weights and binarised values. (b) Reduction of MACs with
batch-size=1, N=2’048, D=384 and 6 heads. Combining a 4x reduction of the value tensor with
the proposed Hamming Attention leads to a substantial complexity reduction, where now the MLP
(with 4x channel expansion) dominates.

Algorithm 1 Forward Attention

1 def attention(x):

2 Q = x @ W_q

3 K = x @ W_k

4 V = x @ W_v

5 S = Q @ K.T / D**.5

6 P = softmax(S)

7 O = P @ V

8

9

10 return O

Algorithm 2 Backward Attention

1 def attention_backward(dO):

2 dV = P.T @ dO

3 dP = dO @ V.T

4 dS = dsoftmax(dP)

5 dQ = dS @ K / D**.5

6 dK = dS.T @ Q / D**.5

7 dW_v = x.T @ dV

8 dW_q = x.T @ dQ

9 dW_k = x.T @ dK

10 return dW_v, dW_q, dW_k

Here, @ denotes matrix multiplication and T the transpose operation.

2.1. Binarisation-aware floating point training

First, we explore a simpler scenario in which we only aim to speed up inference of trans-
formers. Here, the backward path through the self-attention layer may still comprise the
same amount of floating point MACs but the method must be made aware of the intended
binarisation. One could simply use a sign function on key and query tensors as follows:

sgn(x) := (x � 0 ! +1) ^ (x < 0 ! �1), (1)
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