
Neural Shape Deformation Priors
– Supplementary Material –

Jiapeng Tang1 Lev Markhasin2 Bi Wang2 Justus Thies3 Matthias Nießner1

1 Technical University of Munich 2 Sony Europe RDC Stuttgart
3 Max Planck Institute for Intelligent Systems, Tübingen, Germany

Our Neural Shape Deformation Priors method is based on transformer-based deformation networks
that represent the deformation as a composition of local surface deformations. The underlying
architectures are discussed in Appendix A. The used evaluation metrics are detailed in Appendix B.
Our notations are further explained in Appendix C. And more details about data-preprocessing are
given in Appendix D. In addition to the results shown in the main paper, we conducted further
experiments (see E). While our method exhibits good generalization to unseen poses and shapes, we
discuss and show failure cases in Appendix F.

A Network Architectures

Vector Cross Attention: In Figure 1, we illustrate the architecture of vector cross attention [1]
(VCA) which is a building block of our transformer-based deformation network (see Figure 3 in the
main paper). The feature vectors gi and fi are transformed with three linear projectors φ(gi), ψ(fi)
and α(fi), each of which is a fully-connected layer. To leverage relatively positional information of fi
and gi, xi − yi is encoded by a positional embedding module [2, 3] δ := θ(xi − yj) that consists of
two linear layers with a single ReLU [4]. Then, the summation result of δ(xi−yj) and φ(gj)−ψ(fi)
will be further processed by a MLP γ. Next, a softmax function ρ is used to generate normalized
attention scores that are used to calculate a weighted combination of α(fi) + δ(xi) to obtain f ′i .

: FC-256 : MLP-256 : FC-256

: MLP-256

: Softmax

: FC-256

VCA

VSA

BN

FPS

VCA

VSA

PTB

PAB

BN

VCA

Figure 1: Vector Cross Attention (VCA), Point Transformer Block (PTB), and Point Abstraction
Block (PAB).

Point Transformer Block (PTB): As illutrated in Figure 1, we introduce the architecture of point
transformer block. The point transformer block is used to encapsulate the information from kenc = 16

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Downsampling

PT
B

PA
B

B
N

FC
−

25
6

FC
−

25
6

for 𝑖𝑖 = 1, 2

Full attention block

B
N

FC
−

25
6

FC
−

25
6

for 𝑖𝑖 = 1, …, 4

fu
llP

TB

M
ax

po
ol

M
LP

Figure 2: Point Transformer Encoder.

V
C

A…

FC
-1

28

FC
-1

28

FC
-1

28

FC
-1

28

FC
-3

for 𝑖𝑖 = 1, …, 5

128 128 128 128 33
3

256

256

Figure 3: Attentive Deformation Decoder.

nearest neighborhoods while keeping the position of a point Xi unchanged. The input Xi is fed into a
vector attention block (VSA) and through a BatchNorm (BN) [5] (including a residual connection
from the input Xi).

Point Abstraction Block (PAB): The point abstraction block consists of a farthest point sampling
module (FPS), a VCA module, a VSA module, followed by a BN layer. The farthest point sampling
(FPS) is used to downsampled X which is then fed into a VCA followed by a VSA module. We
employ a skip connection from the original X to the VCA module. The output of the FPS and the
VSA module are fed into a batchnorm layer which computes the output of the point abstraction block.

Point Transformer Encoder As shown in Figure 2, a PTB is used to obtain an initial feature
encoding Z0 = {c0i , z0i }

n0
i=1, n0 = 5000. Two consecutive point abstraction blocks (PABs) with

intermediate set size of n1 = 500 and n2 = 100, are used to obtain downsampled feature point clouds
Z1 = {c1i , z1i }

n1
i=1 and Z2 = {c2i , z2i }

n2
i=1. To enhance global deformation priors, we stack 4 point

transformer block with full self-attention whose kenc is set to 100 to exchange the global information
in the whole set of Z2. By doing so, we can obtain a sparse set of local deformation descriptors
Z = {ci, zi}100i=1 that are anchored in {ci}. Finally, a global max-pooling operation followed by two
linear layers is used to obtain the global latent vector zglo.

Attentive Deformation Decoder The detailed architecture of attentive deformation decoder is
shown in Figure 3. It fuses near-by local latent codes Zq of q under the guidance of a global latent
code zglo into z, and feeds z into an MLP consisting of five stacked Res-FC blocks to estimate the
displacement vector of q.

B Evaluation Metrics

For defining the evaluation metrics, we assume two meshes T = {V,F} and T ′ = {V ′,F} being
the ground-truth and deformed mesh respectively, sharing the same connectivity.

2

Vertex ℓ2 error: The vertex ℓ2 distance error is the mean square distance between ground-truth
vertices V = {vi} and deformed vertices V ′ = {v′

i}:

ℓ2(T ′, T) :=
1

|V|

|V|∑
i=1

∥vi − v′
i∥22,

where |V| denotes the number of mesh vertices.

Chamfer distance: To calculate the chamfer distance between T ′ and T , we firstly sample two
point set PT ′ and PT from T ′ and T individually. Then, the Chamfer distance of two point sets is
defined as:

CD(T ′, T) := CD(PT ′ ,PT) =
∑

x∈PT ′

min
y∈PT

∥x− y∥22 +
∑
y∈PT

min
x∈PT ′

∥x− y∥22.

Face Normal Consistency The face normal consistency describes the mean cosine similarity score
of the triangle normals of two meshes. Let N and N ′ denote the set of face normals of T and T ′

respectively. We define Face Normal Consistency as:

FNC(T ′, T) :=
1

|N |

|N |∑
i=1

|n′ · n|,

where |N | = |F| denotes the number of triangle faces and · denotes the dot product of two vectors.

C Notation

We will explain our notation in more detail after having briefly defined it in Section 3. By S, C,
T , T ′ we denote meshes of the considered shapes. S = {V,F} is the source mesh and V is the
set of vertices of S while F is the set of faces of S. S is deformed in a 2-step approach. By C we
denote the canonical shape and T is the target shape. We select a sparse set of handles H = {hi}ℓi=1

of the original shape. The handles can be dragged to new target locations O = {oi}ℓi=1 which
define the target mesh T . The continuous deformation field learnt in our work is denoted by D.
We apply D to deform the vertices of S to obtain the deformed mesh T ′ = {V +D(V),F} where
V +D(V) are the vertices of the deformed mesh. We denote the backward deformation field by Db

and the forward deformation field by Df . It holds Df (Db(·)). Since our method performs operations
in the point cloud domain, we sample point clouds from the surface meshes. PS = {pi}ni=0 is a
surface point cloud of canonical mesh S with size n = 5000. We define the binary user handle
mask as M = {bi | bi = 1 if pi is a handle or bi = 0 else, i = 1, . . . , n}. The point cloud PS is
passed through the backward transformation network Ωb and mapped into the canonical pose P ′

C , i.e.
P ′
C = PS +Db(PS). Then the point cloud P ′

C is passed through the forward transformation network
Ωf and mapped into the target pose P ′

T , i.e. P ′
T = P ′

C +Df (P ′
C). Further, consult Table 1 for the

definition of all items.

D Data

To train and evaluate our method, we use the DeformingThing4D [6] dataset, which is available
under a non-commercial academic license. It does not contain personally identifiable information or
offensive contents. We have obtained the consent to use the dataset.

Train/test split The DeformingThing4D consists of a large number of quadruped animal animations
with various motions, such as “bear3EP Jump”, “bear9AK Jump”, or “bear3EP Lie” where "bear3EP"
and "bear9AK" are identity names, and "Jump" and "Lie" are motion names. Similar to the D-
FAUST [7] used in OFlow [8], the train/test split is based on these identity and motion names of
deforming sequences. We firstly divide the animations of the dataset into two parts, seen identities
and unseen identities. For the animations of seen identities, we further divide it into seen motions of
seen identities (used as training set), and unseen motions of seen identities (used as the test set of S1).
The animations of unseen identities are used as the test set of S2. Finally, the train, test S1, and test
S2 datasets individually contains 1296, 143, and 55 deforming sequences.

3

Notations Meaning

S, C, T , T ′ Source mesh, canonical mesh, target mesh, deformed mesh
V,F Vertices, faces of source mesh S
H,hi Set of handles, i-th handle location
O,oi Set of target locations of handles, i-th target location
M,bi Binary user handle mask, i-th element of M

PS ,PC ,PT Surface point clouds of size n sampled from the surface of S, C, T
PO Target handle point locations

QS ,QC ,QT Non-surface point clouds of size m sampled from the 3D space of S, C, T
qi i-th non-surface querying point
n Size of surface point clouds PS ,PC ,PT
m Size of non-surface point clouds QS ,QC ,QT
pi i-th point from PS

P ′
C ,P ′

T Mapping of PS in canonical pose, target pose
Db,Df Backward deformation field, forward deformation field

D Deformation field between two arbitrary poses, i.e. Df (Db(·))
Ωb,Ωf Backward transformation network, forward transformation network
X ,Y Query sequence, key-value sequence

xi, fi, f
′
i Coordinate of i-th query point, corresponding feature vector, aggregated feature

yj ,gj Coordinate of j-th key-value point, corresponding feature vector
VCA Vector cross attention
φ,ψ, α Fully-connected layers
γ Attention weight normalization function, e.g. softmax function
δ Positional embedding module

VSA Vector self-attention operator
PTB,PAB Point transformer block, point abstraction block

BN BatchNorm Layer
Z Set of local deformation descriptors

q, zq A point in C, corresponding feature vector
ci, zi Coordinates and feature vector of i-th deformation descriptor
zglo Global latent vector

Lb, Lf , Ltotal Backward loss function, forward loss function, end-to-end loss function

Table 1: Notations in order of appearance in the main paper.

Data preparation In Section 3.3 of the main text, we mentioned that our method utilizes a set of
triplets including source S, canonical C, and target mesh T with dense correspondence for training.
The point clouds PS ,PC ,PT of size n with one-to-one correspondence are sampled from the surfaces
of S, C, T . And the non-surface point sets QS ,QC ,QT of size m are sampled from their 3D space.
Here, we provide the details of data preparation. Firstly, we sample Np surface points {xi}

i=Np

i=1
from the canonical mesh C; we also store the corresponding barycentric weights of sample points.
Then, each point is randomly permuted by a small displacement vector δni

= xi + β ∗ ni along the
normal direction ni of the corresponding triangle. The displacement distance β is from a Gaussian
distribution N(0, σ2). Next, for source S and target T meshes, we use the same barycentric weights
to obtain PS ,PT with correspondences, and use the same displacements δn to obtain QS ,QT with
correspondences. Concretely, we pre-compute Np = 20,000 points from each canonical surface
mesh, and get the non-surface points with 50% of surface points permuted by σ = 0.02, with 50%
of surface points permuted by σ = 0.1. During training, we down-sample n = 5000 points of
PS ,PC ,PT , and down-sample m = 5000 of QS ,QC ,QT . To maintain one-to-one correspondence,
we use the same sampling indices for S, C, T .

E Additional Results

Effects of point cloud sampling density To study the effect of sampling density of input point
cloud, we individually train our model by using point clouds of size 2500, 5000, 7500 as input.
Quantitative results are shown in Table 2. We can observe that the results of different evaluation

4

metrics only show a slightly small variance. To balance accuracy and computational cost, we use
5000 points in our final model.

#sampling points
New motions (S1) Unseen identities (S2)

ℓ2 ↓ CD ↓ FNC ↑ ℓ2 ↓ CD ↓ FNC ↑

Ours-2500 0.789 1.008 96.27 0.905 1.285 96.57
Ours-5000 0.752 0.948 96.59 0.795 1.241 96.68
Ours-7500 0.732 0.944 96.39 0.789 1.251 96.66

Table 2: Quantitative results of different input point cloud density on the S1 and S2 test sets of
DeformingThing4D [6] dataset.

Robustness to noisy source mesh To analyze the robustness of noise effects, we individually train
our model by adding gaussian noise permutations to the source meshes. The standard deviation of
gaussian noise is set to 0, 0.0025 or 0.005. The comparison in Table 3 shows that with the noise
becoming larger, the performance of our method experiences only slight variation; however, this
demonstrates the robustness of our method to noisy source meshes.

#standard deviation
New motions (S1) Unseen identities (S2)

ℓ2 ↓ CD ↓ FNC ↑ ℓ2 ↓ CD ↓ FNC ↑

Ours-0 0.752 0.948 96.59 0.795 1.241 96.68
Ours-0.0025 0.774 0.973 95.90 0.808 1.278 96.65
Ours-0.0050 0.851 1.017 96.50 0.911 1.392 96.16

Table 3: Quantitative results of source meshes with different noise intensities on the S1 and S2 test
sets of DeformingThing4D [6] dataset.

Robustness to partial source mesh To investigate the robustness to incomplete source meshes,
we randomly sample 5 seeds from the source mesh surface, and then remove the corresponding kr
nearest vertices and corresponding faces. The kr is calculated by kr = pr ∗ |V|, where pr is the
incompleteness ratio and |V| is the number of source mesh vertices. Again, our model is directly
evaluated under two different settings of pr = 0.05 and pr = 0.1. The quantitative results are
provided in Table 4. As seen, there are not significant numerical variations between different
incompleteness ratios. This clearly demonstrates the robustness of our approach to incomplete source
meshes.

#incompleteness ratio
New motions (S1) Unseen identities (S2)

ℓ2 ↓ CD ↓ FNC ↑ ℓ2 ↓ CD ↓ FNC ↑

Ours-0.0 0.752 0.948 96.59 0.795 1.241 96.68
Ours-0.05 0.770 0.957 95.80 0.804 1.244 96.66
Ours-0.10 0.823 1.002 96.44 0.858 1.261 96.55

Table 4: Quantitative results of source meshes with different incomplete ratios on the S1 and S2 test
sets of DeformingThing4D [6] dataset. Note that our model is directly evaluated on partial meshes
without fine-tuning.

Evaluations on real animals scans. We evaluate our pre-trained model on the real animal scans
captured by ourselves. As show in Figure 4, our method can still learn realistic shape deformations,
which demonstrates the generalization ability of our approach to real captured models.

5

(a) (b) (c) (a) (b) (c)

Figure 4: Evaluation on real animal scans. (a) Real animal scans (b) Source meshes obtained via the
Screened PSR [9] and handles. (c) Ours.

Evaluations on reconstructed animals from real images. In addtion, we evaluate our pre-trained
model on the reconstructed animals from real RGB images using the BARC [10] method. As shown
in Figure 5, our method estimates realistic deformations for reconstructed animals from natural
images. This also demonstrates the generalization ability of our method.

(a) (b) (c) (d) (e)

Figure 5: Evaluation on reconstructed animals from real RGB images using the method of BARC [10]
(a) Real images. (b) Reconstructed source meshes and handles. (c) Ours. (d) Reconstructed source
meshes and handles. (e) Ours.

Evaluations on non-realistic user-specified handles. While our goal of data-driven deformation
priors is to obtain deformations that are as realistic as possible, we also evaluate our method on
non-realistic or non-physical-aware handles. As shown in Figure 6, our method will try to find the
closest deformation of animals that can best explain the provided handle displacements. However,
our method could be easily trained on non-realistic or non-physical-aware samples and learn the
respective deformation behavior.

(a) (b) (a) (b) (a) (b)

Figure 6: Evaluation on non-realistic user-specified handles. (a) Source meshes and handles. (b)
Ours.

6

Without dense correspondence While our current method uses an existing dataset where dense
correspondences between temporal mesh frames are available, our framework can also be trained
on datasets without dense correspondences through some adjustments on inputs and loss functions.
Concretely, we change our method to receive sparse handle correspondences as inputs, and utilize
Chamfer distance as the loss function that does not require ground-truth meshes with dense correspon-
dences as supervision. In Figure 7, we visualize several test results of such a modified framework. As
seen, without dense correspondences for training, our method can still obtain accurate deformations.

Bucks_actions1
bear3EP_Hitback_00
00_bear3EP_Hitback
_0006

(a) (b) (c) (a) (b) (c)

Figure 7: The evaluation results of our modified framework that uses sparse handles as input and
does not require dense correspondences as supervision. (a) Source meshes and handles. (b) Target
meshes and handles. (c) Our results with vertex error map.

Video animations To visualize the deformation behaviours of the different approaches, we use a
sequence of handle movements as inputs, and run our model frame by frame to obtain a deformation
motion sequence. We refer to the supplemental video for an animated sequence.

F Limitations

(a) (b) (c) (a) (b) (c)

Figure 8: The failure cases. (a) Source meshes and handles. (b) Target meshes and handles. (c) Our
results with vertex error map.

While compelling results have been demonstrated for shape manipulation, a few limitations still exist
in our approach that can be addressed in future work. Two representative failure cases are depicted
in Figure 8. We can see that our method cannot well address extreme shape deformations (e.g. left
of Figure 8) or manipulate unseen identities that are far from the training data distribution (e.g. the
elephant in the right of Figure 8). We believe this issue can be alleviated by a larger training dataset,
a richer data augmentation strategy, and/or few shot generalization techniques in the future.

References
[1] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for image recognition.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10076–10085, 2020.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
conference on computer vision, pages 405–421. Springer, 2020.

7

[4] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, 2010.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[6] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias Nießner. 4dcomplete:
Non-rigid motion estimation beyond the observable surface. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12706–12716, 2021.

[7] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J Black. Dynamic faust:
Registering human bodies in motion. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6233–6242, 2017.

[8] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow:
4d reconstruction by learning particle dynamics. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 5379–5389, 2019.

[9] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Transac-
tions on Graphics (ToG), 32(3):1–13, 2013.

[10] Nadine Rüegg, Silvia Zuffi, Konrad Schindler, and Michael J Black. Barc: Learning to regress
3d dog shape from images by exploiting breed information. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3876–3884, 2022.

8

	Network Architectures
	Evaluation Metrics
	Notation
	Data
	Additional Results
	Limitations

