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A Assumptions
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B Background details on MMD, HSIC, KSD and quantile estimation

In this section, we present more background details than those presented in Section 2 on the Maxi-
mum Mean Discrepancy, on the Hilbert Schmidt Independence Criterion, and on the Kernel Stein
Discrepancy.

Maximum Mean Discrepancy. Gretton et al. (2012a) introduce the Maximum Mean Discrepancy

(MMD) which is a measure between probability densities p and q on Rd. It is defined as the
integral probability metric (IPM; Müller, 1997) over a reproducing kernel Hilbert space Hk (RKHS;
Aronszajn, 1950) with associated kernel k. Gretton et al. (2012a, Lemma 4) show that the MMD is
equal to the Hk-norm of the difference between the mean embeddings µp(u) := EX⇠p [k(X,u)] and
µq(u) := EY⇠q [k(Y, u)] for u 2 Rd. The square of the MMD is equal to
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where X and X 0 (respectively Y and Y 0) are independent. Using a characteristic kernel (Fukumizu
et al., 2008; Sriperumbudur et al., 2011) guarantees that MMD

2

k(p, q) = 0 if and only if p = q,
a crucial property for using the MMD to construct a two-sample test. With i.i.d. samples Xm :=

(Xi)1im from p and i.i.d. samples Yn = (Yj)1jn from q, Gretton et al. (2012a, Lemma 6)

propose to use the unbiased quadratic-time MMD estimator \MMD
2

k(Xm,Yn) defined as

1

m(m� 1)

X

(i,i0)2im2

k(Xi, Xi0)�
2

mn

mX

i=1

nX

j=1

k(Xi, Yj) +
1

n(n� 1)

X

(j,j0)2in2

k(Yj , Yj0)

=
1>K̃XX1
m(m� 1)

� 2
1>KXY1

mn
+

1>K̃YY1
n(n� 1)

16



where K̃XX and K̃YY are the kernel matrices KXX :=
�
k(Xi, Xj)

�
1i,jm

and KYY :=�
k(Yi, Yj)

�
1i,jn

with diagonal entries set to 0, where KXY :=
�
k(Xi, Yj)

�
1im,1jn

, and
where 1 is a one-dimensional vector with all entries equal to 1 of variable length determined by the
context7. As noted by Kim et al. (2022), this MMD estimator can be rewritten as a two-sample
U -statistic (both of second order) (Hoeffding, 1992)
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where iba denotes the set of all a-tuples drawn without replacement from {1, . . . , b} so that
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This kernel can easily be symmetrized (Kim et al., 2022) using a symmetrization trick (Duembgen,
1998), this corresponds to working with
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and the MMD expression as a U -statistic still holds when replacing hMMD

k with its symmetrized
variant h̄MMD

k .

Hilbert Schmidt Independence Criterion. For a joint probability density pxy on Rdx ⇥ Rdy with
marginals px on Rdx and py on Rdy , Gretton et al. (2005) introduce the Hilbert Schmidt Independence

Criterion (HSIC) which is defined as
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a natural unbiased HSIC estimator (Gretton et al., 2008; Song et al., 2012) is then
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which is a fourth-order one-sample U -statistic. For za = (xa, ya) 2 Rdx ⇥Rdy , a = 1, . . . , 4, we let
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We stress the fact that this HSIC estimator can actually be computed in quadratic time as shown by
Song et al. (2012, Equation 5) who provide the following closed-form expression
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with
diagonal entries set to 0. Again, this kernel can be symmetrized (Song et al., 2012; Kim et al., 2022)

7We use this convention for the notation 1 in this whole section.
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using a symmetrization trick (Duembgen, 1998), and the HSIC expression as a U -statistic still holds
when replacing hHSIC

k with its symmetrized variant
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k (z1, z2, z3, z4) :=
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Kernel Stein Discrepancy. For probability densities p and q on Rd, Chwialkowski et al. (2016) and
Liu et al. (2016) introduce the Kernel Stein Discrepancy (KSD) defined as

KSD
2

p,k(q) := MMD
2

hKSD
k,p

(q, p)

= Eq,q

⇥
hKSD

k,p

�
Z,Z 0

�⇤
� 2Eq,p

⇥
hKSD

k,p

�
Z,X

�⇤
+ Ep,p

⇥
hKSD

k,p

�
X,X 0

�⇤

= Eq,q

⇥
hKSD

k,p

�
Z,Z 0

�⇤

where the Stein kernel hp,k : Rd ⇥ Rd ! R is defined as
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The Stein kernel satisfies the Stein identity Ep[hKSD

k,p (X, ·)] = 0. The KSD is particularly useful for
the goodness-of-fit setting with a model density p and i.i.d. samples ZN := (Zi)1iN drawn from
a density q because it admits an estimator which does not require samples from the model p. The
quadratic-time KSD estimator can be computed as the second-order one-sample U -statistic
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consistency of notation. As presented in Section 2, Chwialkowski et al. (2016, Theorem 2.2) show
the consistency of the KSD goodness-of-fit provided that the kernel k is C0-universal (Carmeli et al.,
2010, Definition 4.1) and that
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as introduced in Equation (7).

Quantile estimation. There exist many approaches to estimate the quantiles of the test statistics
under the null hypothesis in the three frameworks: using the quantile of a known distribution-
free asymptotic null distribution (Gretton et al., 2008, 2012a), sampling from an asymptotic null
distribution with eigenspectrum approximation (Gretton et al., 2009), using permutations (Gretton
et al., 2008; Albert et al., 2022; Kim et al., 2022; Schrab et al., 2021), using a wild bootstrap (Fromont
et al., 2012; Chwialkowski et al., 2014, 2016; Schrab et al., 2021, 2022), using a parametric bootstrap
(Key et al., 2021; Schrab et al., 2022), using other bootstrap methods (Liu et al., 2016), to name but
a few. Permutation-based tests have been shown to correctly control the non-asymptotic level for
the two-sample (Schrab et al., 2021; Kim et al., 2022) and independence (Albert et al., 2022; Kim
et al., 2022) problems. For the two-sample test, using a wild bootstrap also guarantees well-calibrated
non-asymptotic level (Fromont et al., 2012; Schrab et al., 2021). For the goodness-of-fit setting, while
a wild bootstrap guarantees only control of the asymptotic level (Chwialkowski et al., 2016), using a
parametric bootstrap results in a well-calibrated non-asymptotic level (Schrab et al., 2022). In this
work, we focus on the wild bootstrap approach, though we point out that our results also hold using a
parametric bootstrap for the goodness-of-fit setting as done by Schrab et al. (2022).

C Detailed experimental protocol

In this section, we present details on our experiments and on the tests considered.
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Implementation and computational resources. All experiments have been run on an AMD Ryzen
Threadripper 3960X 24 Cores 128Gb RAM CPU at 3.8GHz, except the LSD test (Grathwohl et al.,
2020) for which a neural network has been trained using an NVIDIA RTX A5000 24Gb Graphics
Card. The overall runtime of all the experiments is of the order of a couple of hours (significant
speedup can be obtained by using parallel computing). We use the implementations of the respective
authors (all under the MIT license) for the ME, SCF, FSIC and FSSD tests of Jitkrittum et al. (2016,
2017a,b), for the LSD test of Grathwohl et al. (2020), for the L1 IMQ and Cauchy RFF tests of
Huggins and Mackey (2018), and for the OST PSI test of Kübler et al. (2020). The implementation
of our computationally efficient aggregated tests, as well as the code for reproducibility of the
experiments, are available here under the MIT license.

Kernels. For the two-sample and independence experiments, we use the Gaussian kernel8 with equal
bandwidths �1 = · · · = �d = �̃, which is defined as
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and similarly for the kernel `µ. As shown by Gorham and Mackey (2017), a more appropriate kernel
for goodness-of-fit testing is the IMQ (inverse multiquadric) kernel
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for some �k 2 (0, 1). In our goodness-of-fit experiments, we use the IMQ kernel with fixed parameter
�k = 0.5.

Two-sample and independence experiments. In our experiments, we consider perturbed uniform
densities, those can be shown to lie in Sobolev balls and are used to derive the minimax rates over
Sobolev balls for the two-sample and independence problems (Li and Yuan, 2019; Albert et al., 2022).
For the two-sample problem, we consider testing samples drawn from a uniform density against
samples drawn from a perturbed uniform density, as considered by Schrab et al. (2021, see Equation
17 for formal definition and Figure 2 for illustrations). We scale the perturbations so that the perturbed
density takes value in the whole interval [0, 2], we then consider some inverse scaling parameter S � 1

such that it takes value in the interval [1� 1/S, 1 + 1/S]. Intuitively, as S increases, the perturbation
is shrunk. In Figure 1 (a, d), we consider 2 perturbations with inverse scaling parameter S = 2 in
dimension d = 1 and vary the sample size N 2 {200, 400, 600, 800, 1000}. In Figure 1 (b), we vary
the dimension d 2 {1, 2, 3, 4} for 1 perturbation with S = 1 and N = 1000. In Figure 1 (c), we use 1
perturbation with d = 1 and N = 1000, we vary the inverse scaling parameter S 2 {1, 2, 3, 4, 5}. For
the independence problem, we draw samples from the joint perturbed uniform density in dimension
dx + dy, the marginals are simply uniform densities in dimensions dx and dy, respectively. We
fix dx = 1 and vary dy exactly as in the two-sample setting. The parameters for the independence
experiments in Figure 1 (e–h) are the same as those of the two-sample experiments in Figure 1 (a–d)
detailed above (with the only difference that for Figure 1 (f) we consider dy 2 {1, 2, 3}).

Goodness-of-fit experiments. In Figure 1 (i–l), we use a Gaussian-Bernoulli Restricted Boltzmann
Machine (GBRBM) with the same setting considered by Liu et al. (2016), Grathwohl et al. (2020) and
Schrab et al. (2022). This is a hidden variable model with a continuous observable variable in Rdx and
a hidden binary variable in {�1, 1}dh , the joint density is intractable but the score function admits a
closed form. The GBRBM has parameters b 2 Rdx and c 2 Rdh , which are drawn from Gaussian
standard distributions, and a matrix parameter B 2 Rdx⇥dh . For the model p, the elements of B are
sampled uniformly from {�1, 1} (i.i.d. Rademacher variables). The samples come from a GBRBM q
with the same parameters as the model p but where some Gaussian noise N (0,�) is injected into the
elements of B. In Figure 1 (i, l), we consider dimensions dx = 50 and dh = 40 with noise standard
deviation � = 0.02 and we vary the sample size N 2 {200, 400, 600, 800, 1000}. In Figure 1 (j),
we fix dx = 100, N = 1000, � = 0.03 and we vary the hidden dimension dh 2 {20, 40, 60, 80}.
For fixed observed dimension dx, as the hidden dimension dh increases the size of B 2 Rdx⇥dh

becomes larger, so there is more evidence of the noise being injected, which makes the problem
easier. Hence, the test power increases as dh increases for fixed dx. In Figure 1 (k), we consider

8In practice, we do not need to normalize the kernels to integrate to 1 since our tests are invariant to
multiplying the kernel by a scalar.
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dimensions dx = 50 and dh = 40 with sample size N = 1000, we vary the noise standard deviations
� 2 {0, 0.01, 0.02, 0.03, 0.04}.

AggInc tests. As in Schrab et al. (2021), for MMDAggInc, we use a collection of B = 10 bandwidths
defined as n

(4�max/�min)
(i�1)/(B�1)

: i = 1, . . . , B
o

which is a discretisation of the interval [�min/2, 2�max] where �min and �max are the minimal and
maximal inter-sample distances, respectively. If the minimal distance is smaller than 10

�1, we
consider the 5% smallest inter-sample positive distance instead, if it is still smaller than 10

�1 we set
�min = 10

�1.

Similarly to Schrab et al. (2022), for KSDAggInc, we use a collection of B = 10 bandwidths defined
as n
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We also consider collections of this form for MMDAggInc and KSDAggInc in Appendix D.2 but this
results in a small loss of power.

In practice, depending on our computational budget, we can also consider multiple kernels, each with
various bandwidths, as considered in Schrab et al. (2021). All aggregated tests are run with uniform
weights defined as w� := 1/|⇤| for all � 2 ⇤. The design choice consists of R sub-diagonals of
the kernel matrix for R 2 {1, 100, 200}, it is formally defined in Section 8. We also consider the
quadratic-time case where the full design is considered (i.e. case R = N � 1), we refer to these tests
using complete U -statistics as AggCom for consistency. We note that MMDAggCom, HSICAggCom
and KSDAggCom simply correspond to the quadratic-time MMDAgg, HSICAgg and KSDAgg tests
proposed by Schrab et al. (2021), Albert et al. (2022) and Schrab et al. (2022), respectively, with the
only difference being their implementation: Agg tests run slightly faster than AggCom tests since
they can exploit the fact that the whole kernel matrix needs to be computed. We use B1 = 500 and
B2 = 500 wild bootstrapped statistics to estimate the quantiles and the probability under the null for
the correction in Equation (17), respectively. In practice, we recommend using either B1 = B2 = 500

for having fast tests, or B1 = B2 = 2000 for obtaining slightly higher power (with longer runtimes).
For that correction term, we use B3 = 50 steps of bisection method to approximate the supremum.

ME, SCF, FSIC and FSSD tests. Jitkrittum et al. (2016) use the two-sample tests ME and SCF
proposed by Chwialkowski et al. (2015) with features which are chosen to maximise a lower bound
on the test power. The ME test is based on analytic Mean Embeddings while the SCF test uses
the difference in Smooth Characteristic Functions. For the independence problem, Jitkrittum et al.
(2017a) construct a FSIC test which uses their proposed normalised Finite Set Independence Criterion.
Jitkrittum et al. (2017b) propose a goodness-of-fit test based on the Finite Set Stein Discrepancy
(FSSD). All those tests utilise test statistics which evaluate the witness function of either the MMD,
HSIC, or KSD, at some test locations (i.e. features) chosen on held-out data to maximise test power.
For the two-sample SCF test, the test locations are in the frequency domain rather than in the spatial
domain. All tests are used with 10 test locations which are chosen on half of the data, as done
in the experiments of Jitkrittum et al. (2016, 2017a,b). The ME and SCF tests use the quantiles
of their known chi-square asymptotic null distributions. The FSIC test uses 500 permutations to
simulate the null hypothesis and compute the test threshold to ensure a well-calibrated non-asymptotic
level. The FSSD test simulates 2000 samples from the asymptotic null distribution (weighted sum
of chi-squares) with the eigenvalues being computed from the covariance matrix with respect to
the observed samples. For the two-sample and independence tests, the bandwidths of the Gaussian
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kernels are selected during the optimization procedure. For the goodness-of-fit test, the bandwidth of
the IMQ (inverse multiquadric) kernel is set to some fixed value as done by Jitkrittum et al. (2017b),
following the recommendation of Gorham and Mackey (2017).

LSD test. The Kernelised Stein Discrepancy (KSD) is a Stein Discrepancy (Gorham and Mackey,
2017) where the class of functions is taken to be the unit ball of a reproducing kernel Hilbert space
(RKHS). Grathwohl et al. (2020) propose to instead consider some more expressive class of functions
consisting of neural networks, resulting in the Learned Stein Discrepancy (LSD). For goodness-of-fit
testing, they propose to split the data into training (80%), validation (10%) and testing (10%) sets.
They construct a test statistic which is asymptotically normal under both H0 and H1. Using the
training set, they train the parametrised neural network to maximise the test power by optimizing
a proxy for it which is derived following the reasonings of Gretton et al. (2012b), Sutherland et al.
(2017) and Jitkrittum et al. (2017b). They perform model selection on the validation set. Finally,
they run the test on the testing set using the quantile of the asymptotic normal distribution under the
null. As in the experiments of Grathwohl et al. (2020), a 2-layer MLP with 300 units per layer and
with Swish nonlinearity (Ramachandran et al., 2017) is used. Their model is trained using the Adam
optimizer (Kingma and Ba, 2014) for 1000 iterations, with dropout (Srivastava et al., 2014), with
weight decay of strength 0.0005, with learning rate 10

�3, and with L2 regularising strength 0.5.

Cauchy RFF and L1 IMQ tests. Huggins and Mackey (2018) introduce random feature Stein
discrepancies (R�SDs) which are computable in linear time. The FSSD of Jitkrittum et al. (2017b)
corresponds to a specific R�SD. Another special case of their general R�SDs is the random Fourier
feature (RFF; Rahimi and Recht, 2007) approximation of KSD. They consider in their experiments
both Gaussian and Cauchy RFF tests, they observe that Cauchy RFF significantly outperforms
its Gaussian counterpart (Huggins and Mackey, 2018, Figure 4). Using the inverse multiquadric
kernel (IMQ; Equation (18)), for which Gorham and Mackey (2017) showed that KSD dominates
weak convergence when �k 2 (0, 1), Huggins and Mackey (2018, Example 3.4) derive a Lr IMQ
R�SD, with some simple setting when r = 1. They show in their experiments that L1 IMQ has
superior performance compared to all other tests considered for experiments comparing Gaussian
and Laplace distributions, as well as Gaussian and multivariate t distributions. We use the parameters
recommended by the authors when running Cauchy RFF and L1 IMQ, except for the number of
samples drawn from the unnormalized density to estimate the covariance matrix to simulate the null
hypothesis. As explained in Appendix D.5, we tune that number in order for their tests to be more
computationally efficient while retaining their high test power.

OST PSI test. Kübler et al. (2020) construct an MMD adaptive two-sample test which exploits the
post-selection inference framework (PSI; Fithian et al., 2014; Lee et al., 2016) (with uncountable
candidate sets) to use the same data to both perform kernel selection and run the test while still
guaranteeing control of the probability of type I error. Their one-sided test (OST) runs in linear
time and does not rely on data splitting. For kernel selection, they use a proxy for asymptotic
power as a criterion. We use their implementation with the same collection of bandwidths as for our
MMDAggInc test as specified above.

D Additional experiments

In this section, we present additional experiments. We consider more challenging experiments on the
high-dimensional MNIST dataset. We report results using different collections of bandwidths. We
empirically show that all the tests considered have well-calibrated levels. We present experiments
highlighting the strengths of the aggregation procedure. Finally, we discuss the choice of parameters
for the L1 IMQ and Cauchy RFF tests.

D.1 MNIST Experiments

In Figure 2, we run experiments on the real-world MNIST dataset (LeCun et al., 2010) consisting of
images of digits in dimension 784.

For the two-sample problem, the distribution P consists of images of all digits and the other distribu-
tion is Qi where Q1 consists of images of only the five odd digits, Q2 is Q1 with 0, Q3 is Q2 with 2,
Q4 is Q3 with 4, Q5 is Q4 with 6 (i.e. Q5 consists of images of all digits expect 8). This setting has
previously been considered by Schrab et al. (2021).
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Figure 2: Experiments using the MNIST dataset for the (a–b) two-sample, (c–d) independence, and
(e) goodness-of-fit problems. The power results are averaged over 100 repetitions.

For the independence problem, we pair each image of a digit with the value of the digit. To make the
problem more challenging, we corrupt some percentage of the data by pairing images with values of
random digits.

For the goodness-of-fit problem, the samples are drawn from the true MNIST dataset and the model
is a Normalizing Flow (generative model which admits a density; Dinh et al., 2017; Kingma and
Dhariwal, 2018) trained on the MNIST dataset. Since we have access only to pre-computed values of
the score function evaluated at some MNIST samples but do not have access to the score function
itself, we found that computing FSSD, L1 IMQ or Cauchy RFF to be very challenging; for this reason
the results for those tests are not reported.

Overall, we observe the same trends in Figure 2 for this high-dimensional real-world setting as we
did in Figure 1 in the lower-dimensional setting in which the Sobolev smoothness assumption is
satisfied for MMDAggInc and HSICAggInc. Indeed, the AggInc R = 200 tests clearly outperform
the tests we compare against and even match the power of AggCom in several experiments. ME and
SCF obtain significantly lower power than MMDAggInc R = 100 in various settings in Figure 2 (a,
b). We observe that HSICAggInc R = 100 significantly outperforms FSIC in both independence
experiments in Figure 2 (c, d). For the goodness-of-fit setting, the tests manage to detect that the
true MNIST samples are not drawn from the density of the trained Normalizing Flow. There is
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Figure 3: Two-sample (a–d) and independence (e–h) experiments using perturbed uniform densities.
Goodness-of-fit (i–l) experiment using a Gaussian-Bernoulli Restricted Boltzmann Machine. The
power results are averaged over 100 repetitions and the runtimes over 20 repetitions.

a significant power difference between each of the four tests: KSDAggInc R = 1, 100, 200 and
KSDAggCom.

D.2 Different collections for MMDAggInc and KSDAggInc

In Figure 3, we reproduce the experiments presented in Figure 1 using, for MMDAggInc and
KSDAggInc, the collection of 21 bandwidths

⇤ :=

n
2
i�med1d : i 2 {�10, . . . , 10}

o
where �med := median

n
kzi � zjk2 : (i, j) 2 iN

2

o
,

where 1d is a d-dimensional vector with all entries equal to 1. We observe that using this collection
leads to slightly lower power for MMDAggInc and KSDAggInc than in Figure 1 with different
collections. In Figure 3, KSDAggInc R = 200 obtains exactly the same power as Cauchy RFF. The
results for HSICAggInc in Figure 3 are the same as those of Figure 1, we simply report them for
consistency.

D.3 Well-calibrated levels

All tests are run with level ↵ = 0.05, it is verified in Tables 1 to 6 that all tests have well-calibrated
levels for the three testing frameworks, when varying either the sample size or the dimension. The
levels plotted are averages obtained across 200 repetitions, this explains the small fluctuations
observed from the desired test level ↵ = 0.05. The settings of those six experiments correspond to
the settings of the experiments presented in Figure 1 (a, b, e, f, i, j) detailed above, with the difference
that we are working under the null hypothesis (i.e. perturbed uniform densities are replaced with
uniform densities, and the noise standard deviation for the Gaussian-Bernoulli Restricted Boltzmann
Machine is set to � = 0).
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Table 1: Two-sample level experiment using uniform densities varying the sample size.

Sample
size ME SCF OST

PSI
MMDAggInc

R = 1
MMDAggInc
R = 100

MMDAggInc
R = 200 MMDAggCom

200 0.055 0.005 0.045 0.04 0.05 0.055 0.055
400 0.08 0.01 0.04 0.035 0.06 0.03 0.03
600 0.08 0.005 0.105 0.085 0.04 0.04 0.07
800 0.05 0.005 0.055 0.075 0.03 0.035 0.055

1000 0.075 0.005 0.045 0.045 0.015 0.02 0.05

Table 2: Two-sample level experiment using uniform densities varying the dimension.

Dimension ME SCF OST
PSI

MMDAggInc
R = 1

MMDAggInc
R = 100

MMDAggInc
R = 200 MMDAggCom

1 0.045 0 0.035 0.02 0.045 0.04 0.045
2 0.045 0.035 0.085 0.1 0.05 0.04 0.035
3 0.04 0.05 0.04 0.04 0.05 0.06 0.025
4 0.045 0.05 0.03 0.055 0.045 0.045 0.03

Table 3: Independence level experiment using uniform densities varying the sample size.

Sample
size FSIC HSICAggInc

R = 1
HSICAggInc
R = 100

HSICAggInc
R = 200 HSICAggCom

200 0.04 0.055 0.035 0.035 0.035
400 0.045 0.05 0.04 0.05 0.05
600 0.05 0.035 0.05 0.06 0.05
800 0.03 0.07 0.02 0.035 0.04

1000 0.07 0.02 0.085 0.035 0.04

Table 4: Independence level experiment using uniform densities varying the dimension.

Dimension FSIC HSICAggInc
R = 1

HSICAggInc
R = 100

HSICAggInc
R = 200 HSICAggCom

2 0.035 0.065 0.08 0.055 0.07
3 0.065 0.055 0.035 0.02 0.025
4 0.04 0.035 0.045 0.055 0.055

Table 5: Goodness-of-fit level experiment using a Gaussian-Bernoulli Restricted Boltzmann Machine
varying the sample size.

Sample
size FSSD LSD KSDAggInc

R = 1
KSDAggInc
R = 100

KSDAggInc
R = 200 KSDAggCom

200 0.02 0.07 0.05 0.045 0.06 0.06
400 0.03 0.04 0.06 0.04 0.065 0.055
600 0.04 0.075 0.03 0.03 0.04 0.07
800 0.03 0.06 0.055 0.06 0.045 0.07

1000 0.025 0.05 0.045 0.035 0.045 0.065

Table 6: Goodness-of-fit level experiment using a Gaussian-Bernoulli Restricted Boltzmann Machine
varying the dimension.

Dimension FSSD LSD KSDAggInc
R = 1

KSDAggInc
R = 100

KSDAggInc
R = 200 KSDAggCom

20 0.02 0.055 0.045 0.06 0.065 0.05
40 0.04 0.055 0.07 0.055 0.065 0.07
60 0.04 0.055 0.06 0.04 0.05 0.06
80 0.015 0.04 0.045 0.04 0.035 0.05

24



D.4 Aggregation experiments

We illustrate in Figure 4 the benefits of the aggregation procedure by starting from a ‘collection’
consisting of only the median bandwidth and increasing the size of the collection by adding more
bandwidths. In all three settings, we observe that the power for the test with only the median
bandwidth is low. As we increase the number of bandwidths, the power first increases as the test has
access to ‘better-suited’ bandwidths.

For MMDAggInc and KSDAggInc, once the optimal bandwidth is included in the collection, the
power reaches a plateau. We do not pay a price in power for considering more bandwidths (or kernels),
and so the user is encouraged to consider many kernels with various bandwidths. For the unscaled
Gaussian kernel, we are essentially aggregating over kernel matrices which interpolate between the
identity matrix (as the bandwidth goes to 0) and the matrix of ones (as the bandwidth goes to 1).

The HSICAggInc case is more challenging: since there are pairs of kernels, the total number of
bandwidth combinations grows rapidly (e.g. b bandwidths for each kernel corresponds to b2 pairs of
kernels). In this case, we observe a significant decay in test power once more than 49 bandwidths are
considered.
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Figure 4: Increasing the collection of bandwidths in the experimental setting of Figure 1 for the
(a) two-sample , (b) independence, and (c) goodness-of-fit problems. The power results are averaged
over 100 repetitions.

D.5 Parameter choice for L1 IMQ and Cauchy RFF tests of Huggins and Mackey (2018)

As in the experiments section of Huggins and Mackey (2018) (and as for FSSD), 10 features are used
when running Cauchy RFF and L1 IMQ. In their implementation for their experiments, they draw
5000 samples from the unnormalized density for covariance matrix estimation to simulate the null
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hypothesis (code: RFDH0SimCovDrawV(n_draw=5000)). This procedure causes long runtimes of
roughly 16 seconds; this is much more computationally expensive than simulating the null using a
wild bootstrap as KSDAggInc does.

We tried different values for n_draw and found that using n_draw = 500 has almost no effect on
the test power and reduces the runtimes from 16 seconds for n_draw = 5000, to 2 seconds (as
reported in Figure 1 (l)) for n_draw = 500. We tried smaller values than 500 for n_draw but this
drastically decreased test power. We also verified that the test still has well-calibrated level when
using n_draw = 500. We have used this tuned parameter n_draw = 500 in our experiments in
Figure 1 (i–l). In Figure 5, we show the power and runtime differences when using 500 or 5000 for
n_draw for L1 IMQ and Cauchy RFF in the setting considered in Figure 1 (i–l), we also plot the test
power and runtimes achieved by KSDAggInc R = 200.
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Figure 5: Goodness-of-fit experiment using a Gaussian-Bernoulli Restricted Boltzmann Machine.
We consider L1 IMQ and Cauchy RFF tests of Huggins and Mackey (2018) drawing either ns =

n_draw = 5000 or ns = n_draw = 500 samples to simulate the null hypothesis. The power results
are averaged over 100 repetitions and the runtimes over 20 repetitions.

E Discussions

In this section, we provide detailed discussions on several subjects. We present the motivation behind
the definitions of the MMD and HSIC estimators of Equations (8) and (9). We also explain how
to define a different incomplete MMD U -statistic which is better-suited to the case of unbalanced
sample sizes, we point out the challenges arising from working with this estimator. Finally, we
provide details on comparison with related work, and on future research directions.

E.1 Motivation behind expressions (8) and (9)

For the two-sample problem, Equation (26) of Kim et al. (2022, Section 6.1) gives an expression of
the MMD U -statistic as

U1 =
1��im

2

����in
2

��
X

(i,i0)2im2

X

(j,j0)2in2

hMMD

k (Xi, Xi0 ;Yj , Yj0).

Now, one way to construct an incomplete MMD U -statistic would be to replace those two complete
sums above with two incomplete sums (see Appendix E.2), but we do not want to take this approach
in order to keep a unified framework across the three testing frameworks. We instead take the
summation over (i, i0) 2 iN

2
and obtain an estimator

U2 =
1��iN
2

��
X

(i,i0)2iN2

hMMD

k (Xi, Xi0 ;Yi, Yi0),

where N = min(m,n). By assuming N = m, we denote by {L1, . . . , Ln} a random permutation of
{1, . . . , n}. As noted by Kim et al. (2022, Section 6.1), the expectation of

1��iN
2

��
X

(i,i0)2iN2

hMMD

k (Xi, Xi0 ;YLi , YLi0
)

over {L1, . . . , Ln} is equal to U1. This motivates our choice of incomplete MMD estimator in
Equation (8) of our paper, which can be regarded as a generalization of U2 above. Similarly, as
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discussed in Kim et al. (2022, Section 6.2), the complete HSIC U -statistic in Equation (3) can
be viewed as the average of incomplete U -statistics. More specifically, let {L1, . . . , LbN/2c} be a
bN/2c-tuple uniformly sampled without replacement from {1, . . . , N}, and let {L̃1, . . . , L̃bN/2c} be
another bN/2c-tuple uniformly sampled without replacement from {1, . . . , N} \ {L1, . . . , LbN/2c}.
Then, the U -statistic in Equation (3) is the expectation of

1
��ibN/2c
2

��
X

(i1,i2)2ibN/2c
2

hHSIC

k,` (ZLi1
, ZLi2

;ZL̃i1
, ZL̃i2

),

over {L1, . . . , LbN/2c, L̃1, . . . , L̃bN/2c}. This motivates the definition of our incomplete HSIC
estimator in Equation (9).

E.2 Incomplete MMD U -statistic with unbalanced sample sizes

Our incomplete U -statistic of Equation (8) for the two-sample problem is constructed using the
minimum between m and n. If the sample sizes are of the same order of magnitude, then this is
not restrictive since we are interested in using only a subset of entries of the kernel matrix in the
first place. However, in the setting in which the difference between m and n is of several orders of
magnitude, our estimator in Equation (8) does not effectively incorporate the unbalanced sample sizes.
When the sample sizes are highly unbalanced, one could instead consider an alternative incomplete
U -statistic given as

Uimb =
1

|Dm||Dn|
X

(i,j)2Dm

X

(r,s)2Dn

hMMD

k (Xi, Xj ;Yr, Ys)

=
1

|Dm||Dn|
X

(i,j)2Dm

X

(r,s)2Dn

⇣
k(Xi, Xj)� k(Xi, Ys)� k(Xj , Yr) + k(Yr, Ys)

⌘
.

This expression, for example, results in a linear-time test for the choices |Dm| = c
p
m and |Dn| =

c0
p
n for positive constants c and c0 since |Dm||Dn| = cc0

p
m
p
n  cc0max(m,n). Other choices

of design sizes are also possible to obtain linear-time tests. While this estimator is natural for the
unbalanced scenario, the form of the test statistic does not allow us to use a wild bootstrap. Instead,
one may need to rely on the permutation procedure to calibrate the test statistic, which leads to several
theoretical and practical challenges explained below.

Theory. From a theoretical side, it is possible to derive a variance bound (corresponding to Lemma 1)
for the alternative estimator Uimb. However, deriving a quantile bound (corresponding to Lemma 2)
for a permuted version of Uimb is highly non-trivial: the extension of the result of Kim et al. (2022,
Theorem 6.3) to the case of the permuted version of Uimb is ongoing work.

Practice. Theoretically, the cost of computing B permuted estimates is O(B|Dm||Dn|) which would
be the same as if we could use a wild bootstrap. However, in practice, the computational time will
be much higher because for each permuted estimate, we need to evaluate the kernel matrix at new
permuted pairs (possibly outside of the original design), while for the wild bootstrap we do not need
to compute any extra kernel values: this changes the computation times drastically. In order to avoid
this, we would need to restrict ourselves to permutations for which we have already computed kernel
values using the fact that hMMD

k (Xi, Ys;Yr, Xj) = �hMMD

k (Xi, Xj ;Yr, Ys). It remains as future
work to study conditions under which the set of such permutations is larger than the set consisting of
the identity only, and is also large enough to construct accurate quantiles.

E.3 Comparison with Li and Yuan (2019)

Li and Yuan (2019) also consider the three testing problems and study minimax optimality/adaptivity
of their procedures over Sobolev balls. We now discuss and differentiate the approach by Li and
Yuan (2019) from ours. First of all, their tests run in quadratic time and control the probability of type
I error only asymptotically, while our proposed tests have well-calibrated non-asymptotic levels over
a broader class of null distributions and are computationally efficient. Their theoretical guarantees
hold only for the Gaussian kernel and with the smoothness restriction that s > d/4 while ours hold
for a wide range of kernels (see Equation (13)) and for any s > 0 (see Theorem 2). We also point out
that while they assume that both densities p and q lie in a Sobolev ball, we only require that their
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difference p� q belongs to the Sobolev ball. Note that, they tackle the goodness-of-fit problem in a
different way. They do not use the KSD and instead use a one-sample MMD with some expectations
of the Gaussian kernel under the model. For a generic model density, one cannot compute such an
expectation explicitly and hence cannot use their proposed test. In contrast, the KSD that we consider
does not suffer from the same issue and it is more broadly applicable.

E.4 Potential future research directions

This subsection discusses potential directions for future work.

Interpretable tests. When the aggregated test rejects the null hypothesis, the test returns all kernels
whose associated single test with adjusted level has rejected the null. We stress that this is done
using all of the samples, without resorting to data splitting. Those kernels returned by the test are the
ones which are well-suited to detect the difference in densities. They can therefore be analysed and
interpreted to obtain some information which can help the user understand how the densities differ
from each other. For example, we could observe that the densities differ at some specific lengthscales,
from which we can infer whether the distribution shift is local, global, or both. If the kernels use
different features, we can get a better understanding of the type of features which capture best the
difference in densities. This interpretability of the results of our AggInc tests could be very useful,
we will further explore it in upcoming work.

Beyond linear time tests. Potential directions for future work include studying the regime with
L . N , which corresponds to ‘faster than linear’ tests. For this sub-linear case, our results do not
give a definite answer to the question as to whether the separation rate converges to zero. Future work
would focus on either deriving tighter bounds that converge to zero in this regime, or proving that the
uniform separation rate is bounded below in this setting.

Computational and statistical trade-off. As shown in Theorem 1, the quadratic-time MMD and
HSIC tests are minimax rate optimal over Sobolev balls. To the best of our knowledge, it is unknown
whether there exists a sub-quadratic time test that achieves the same rate optimality. Indeed, the current
literature is mostly silent on optimising the power under computational constraints. Theorem 1 (ii)
demonstrates a trade-off between the computational budget and the separation rate focusing on
incomplete U -statistics, but our result does not tell us whether this trade-off is (universally) tight. We
think this is one of the limitations of our work and hope that a follow-up study can make progress on
this topic.

Continuously optimising a kernel without data splitting. In order to achieve a competitive power
performance over a large class of alternatives, we combine finitely many kernels and construct an
aggregated test. There is another line of work that considers a continuous collection of kernels
(for example, indexed by the bandwidth parameter on the positive line) and chooses the kernel that
maximises the (empirical) power. As far as we are aware, the current approach to continuously
optimizing a kernel relies on data splitting, which often negatively affects the power performance.
While our aggregated tests do not require data splitting and can retain high power even for large
collections of kernels, in certain scenarios there might exist some important range of kernels not
included in our finite collection which would lead to more powerful tests. It is therefore interesting
to further extend our approach to the case of a continuous collection of kernels and investigate its
statistical properties. We note that, for MMDAggInc and KSDAggInc, as also observed by Schrab
et al. (2021, 2022), we find empirically that increasing the number of bandwidths does not result
in a loss of power, and corresponds to using a finer discretisation of the intervals considered. The
continuous case is the limit of the discretisation.

Improving conditions. Lastly, it would be interesting to see if the polynomial factor of � in our
power guaranteeing conditions of Theorems 1 and 2 can be improved using a sharper concentration
bound. Also, future work can be dedicated to figuring out whether the dependence of ln(ln(N)) in
the adaptive rate can be improved. We leave these important and interesting questions to future work.
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F Proofs

F.1 Proof of Proposition 1

The asymptotic level of the goodness-of-fit test using a wild bootstrap follows from the results of
Shao (2010), Leucht and Neumann (2013), Chwialkowski et al. (2014, 2016). As pointed out by
Schrab et al. (2022) for the complete U -statistics, the KSD test statistic and the wild bootstrapped
KSD statistics are not exchangeable under the null, and hence non-asymptotic level cannot be proved
using the result of Romano and Wolf (2005, Lemma 1).

The non-asymptotic level for the two-sample test follows exactly from the reasoning of Schrab et al.
(2021, Propositon 1). The fact that we work with incomplete U -statistics rather than with their
complete counterparts does not affect the proof of exchangeability of U1

� , . . . , U
B1+1

� .

For the independence problem, Albert et al. (2022, Proposition 1) prove that the quadratic-time HSIC
estimator and the permuted test statistics are exchangeable under the null hypothesis, it remains
to be shown that this also holds in our incomplete setting using a wild bootstrap. Assuming that
exchangeability under the null holds, the desired non-asymptotic level ↵ can then be guaranteed
using the result of Romano and Wolf (2005, Lemma 1), exactly as done by Albert et al. (2022,
Proposition 1).

We now prove that U1

� , . . . , U
B1+1

� for the independence problem are exchangeable under the null.
Since U1

� , . . . , U
B1
� are i.i.d. given the data, they are exchangeable under the null. So, we need to

prove that X

(i,j)2DbN/2c

hHSIC

k,`

�
Zi, Zj , Zi+bN/2c, Zj+bN/2c

�
(19)

is, under the null, distributed like
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(i,j)2DbN/2c

✏i✏jh
HSIC

k,`

�
Zi, Zj , Zi+bN/2c, Zj+bN/2c

�
(20)

where ✏1, . . . , ✏N are i.i.d. Rademacher random variables. Using the result of Schrab et al. (2021,
Appendix B, Proposition 11), considering the identity s1(i) = i for i = 1, . . . , 2bN/2c, and the swap
function s�1(i) = i+ bN/2c and s�1(i+ bN/2c) = i for i = 1, . . . , 2bN/2c, we have
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2 {Yi, Yi+bN/2c} for i = 1, . . . , bN/2c and

Ys✏i(i)
2 {Yi, Yi�bN/2c} for i = bN/2c + 1, . . . , 2bN/2c. Now, under the null, the variables

(Xi)1iN and (Yi)1iN are independent, so Z✏
N is distributed like ZN . We deduce that

HSICk,`
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ZN ;DbN/2c

�
and HSICk,`

�
Z✏
N ;DbN/2c

�
have the same distribution under the null, and

hence, that the terms in Equations (19) and (20) also have the same distribution under the null. We
deduce that U1

� , . . . , U
B1+1

� for the independence problem are exchangeable under the null, which
completes the proof.

F.2 Proof of Lemma 1

Consider the case of fixed design. Using the variance expression of Lee (1990, Theorem 2, p. 190),
we have

var
�
U
�
=

f1�2

1
+ f2�2

2

|D|2
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where fi is the number of pairs of sets in the design D that have i elements in common. The pairs
of sets in D with 2 elements in common are {({i, j}, {i, j}) : (i, j) 2 D}, so f2 = |D|. We now
calculate the number of pairs of sets in D with 1 element in common. We start with a pair (i, j) 2 D
(there are |D| such pairs). The number of pairs in D which have one element in common with (i, j)
is upper bounded by the number of pairs in iN

2
which have one element in common with (i, j), those

are {{i, r} : 1  r  N, r 6= i} [ {{j, r} : 1  r  N, r 6= j} of size smaller than 2N . We deduce
that f1  2N |D|. Combining those results, we obtain

var
�
U
�
 f1�2

1
+ f2�2

2

|D|2
 2N

|D|�
2

1
+

1

|D|�
2

2

as desired.

Let us now consider the random design case. Recall that using the variance expression of the complete
U -statistic of Lee (1990, Theorem 3 p. 12), which we denote U , we can obtain that

var(U) . �2

1

N
+

�2

2

N2

as done by Kim et al. (2022, Appendix E) and Albert et al. (2022, Lemma 10). Using the result of
Lee (1990, Theorem 4 p. 193), the variance of the incomplete U -statistic U can be expressed in terms
of the variance of the complete U -statistic U . For random design with replacement, we have

var
�
U
�
=

�2

2

|D| +
✓
1� 1

|D|

◆
var(U)
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2
.

Letting S := N(N � 1)/2, for random design without replacement, we have

var
�
U
�
=

S � |D|
|D|(S � 1)

�2

2
+

S

S � 1

✓
1� 1
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◆
var(U)
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2
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1

N
+

1

|D|�
2

2
.

We have used the fact that 1

N2  1

|D|
since |D|  N2.

F.3 Proof of Lemma 2

We rely on the concentration bound for i.i.d. Rademacher chaos of de la Peña and Giné (1999,
Corollary 3.2.6) which as presented in Kim et al. (2022, Equation (39)) takes the form

P✏
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@
����

X

(i,j)2iN2

✏i✏jai,j

���� � t

1

A  2 exp

0
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0

@
X

(i,j)2iN2

a2i,j

1

A
�1
1

CA

for some constant C > 0 and for every t � 0, where ✏1, . . . , ✏N are i.i.d. Rademacher random
variables taking values in {�1, 1}. Letting

ai,j :=
h(Zi, Zj)

|D| 1
h
(i, j) 2 D

i
for (i, j) 2 iN

2
,
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where 1 denotes the indicator function, we obtain
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2
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which concludes the proof.

F.4 Proof of Theorem 1

We start by reviewing the steps of the proofs of Albert et al. (2022) and Schrab et al. (2021, 2022)
who prove that, for each of the three respective testing frameworks, a sufficient condition to ensure
control of the probability of type II error for the quadratic-time test is the existence of a constant
C > 0 such that

kp� qk2
2
� k(p� q)� T�(p� q)k2

2
+ C

1

N

ln(1/↵)

�
�2,�. (21)

Those quadratic-time tests use the complete U -statistics defined in Equations (1), (3) and (5), which
we denote as U�. The key results for their proofs rely on deriving variance and quantile bounds.

The variance bound is of the form

var(U�) .
1

N
�2

1
+

1

N2
�2

2
(22)

where they show that, for h� 2
�
hMMD

k�
, hHSIC

k�,`µ
, hKSD

k�,p

 
defined in Equations (2), (4) and (6), we

have
�2

1,� := var
�
E
⇥
h�(Z,Z

0
)
��Z 0
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.
��T�(p� q)

��2
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and
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2,� := var(h�(Z,Z
0
)) = E

⇥
h�(Z,Z
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)
2
⇤
. 1

�1 · · ·�d
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where the last inequality holds only for h� 2
�
hMMD

k�
, hHSIC

k�,`µ

 
.

The quantile bound (Schrab et al., 2021, Proposition 4) is of the form

P
✓
bq �,U,B1
1�↵ . 1

N

1p
�
ln

✓
1

↵

◆
�2,�
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� 1� �

for � 2 (0, 1), where bq �,U,B1
1�↵ is the quantile obtained using B1 wild bootstrapped similarly to the one

defined in Equation (14) but using the complete U -statistic. Relying on Dvoretzky–Kiefer–Wolfowitz
inequality (Dvoretzky et al., 1956; Massart, 1990), Schrab et al. (2021, Proposition 4) show that it
suffices to prove the bound

P
✓
bq �,U,1
1�↵ . 1

N

1p
�
ln

✓
1

↵

◆
�2,�

◆
� 1� � (24)

for the true wild bootstrap quantile bq �,U,1
1�↵ without finite approximation.

Combining those variance and quantile bounds using Chebyshev’s inequality (Chebyshev, 1899),
they obtain a condition guaranteeing power in terms of the MMD, HSIC and KSD. By expressing
these three measures as an RHKS inner product

⌦
p� q, T�(p� q)

↵
=

1

2

⇣
kp� qk2

2
+ kT�(p� q)k2

2
� k(p� q)� T�(p� q)k2

2

⌘
,

they obtain the condition in Equation (21) which guarantees high power in terms of kp� qk2
2
. Albert

et al. (2022) and Schrab et al. (2021) then derive the minimax rate N�2s/(4s+d) over the Sobolev
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ball Ss
d(R) for the independence and two-sample tests using the bandwidths �⇤

i := N�2/(4s+d) for
i = 1, . . . , d.

For Theorem 1, we need to obtain the condition in Equation (21) with N replaced by L/N . Hence,
following their reasoning, in order to prove Theorem 1 (i) & (ii), it suffices to derive variance and
quantiles bounds for incomplete U -statistics which have the form of Equations (22) and (24) with N
replaced by L/N , which we now do.

Using the variance bound for incomplete U -statistics U� of Lemma 1, together with the fact that the
design size L := |D| is smaller than N2 so that 1/L = L/L2  N2/L2, we obtain for fixed design
that

var
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U�

�
. N

L
�2

1,� +
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2,� . N

L
�2

1,� +

✓
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We get the same bound for random design since
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as desired.

For the quantile bound, we use Lemma 2 which, for A2

� := L�2
P

(i,j)2iN2
h�(Zi, Zj)

2, gives that
there exists some9 C > 0 such that
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Setting ↵ := 2 exp(�t/CA�), we obtain

bq �,U,1
1�↵ = t = CA� ln(2/↵) .

For � 2 (0, 1), using Markov’s inequality, we obtain
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using Equation (23). We deduce that
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where we absorbed the constant C in the notation ‘.’, and where we used the fact that ln(2/↵) .
ln(1/↵) since ↵ 2 (0, e�1

). This concludes the proof.

F.5 Proof of Theorem 3

F.5.1 Proof of Theorem 3 (i)

In this setting, we consider as proposed by Kim et al. (2022, Equation 32) the permuted HSIC
complete U -statistic

U⇡
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1��iN
4

��
X

(i,j,r,s)2iN4
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k,`

�
(Xi, Y⇡i), (Xj , Y⇡j ), (Xr, Y⇡r ), (Xs, Y⇡s)

�

9For simplicity of notation, we work with C�1 > 0 rather than with C > 0.
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for a permutation ⇡ of the indices {1, . . . , N}, and for hHSIC

k,` as defined in Equation (4).

Applying the exponential concentration bound of Kim et al. (2022, Theorem 6.3), which uses the
result of de la Peña and Giné (1999, Theorem 4.1.12), we obtain that there exist constants C1, C2 > 0

such that

P⇡(U
⇡
N � t | ZN )  C1 exp
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where
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. 1

�1 . . .�dxµ1 . . . µdy

=
1

�1 · · ·�d

since the functions K1, . . . ,Kdx and L1, . . . , Ldy are bounded, and where we recall our notational
convention that d := dx + dy and �dx+i := µi for i = 1, . . . , dy .

Using the reasoning of Schrab et al. (2021, Proposition 3), we see that the results of Albert et al.
(2022, Equations C.17, C.18 & C.19) hold not only for the Gaussian kernel but more generally for
any kernels of the form of Equation (13). Those results give us that

E
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the constant in the notation ‘.’ depends only on d and M , where we recall that by assumption we
have max (kpxyk1, kpxk1, kpyk1)  M . We deduce that

E
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⇤
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⇤
. 1

�1 · · ·�d
.

As explained in Appendix F.4, by relying on Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky
et al., 1956; Massart, 1990) as done by Schrab et al. (2021, Proposition 4), it is sufficient to prove upper
bounds for the true permutation quantile bq �,1

1�↵ without finite approximation. From Equation (25), we
obtain that this quantile satisfies
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Using Markov’s inequality and bounds obtained above, we get that
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holds with probability at least 1� � where � 2 (0, 1).

Now, recall that by assumption 4s > d and �⇤

i = N�2/(4s+d) for i = 1, . . . , d, so that
1
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1
· · ·�⇤

d
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which gives
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holding with probability at least 1 � �, since ↵ 2
�
0, e�1

�
. By combining this result with the

reasoning of Albert et al. (2022) as explained in Appendix F.4, we obtain that the probability of type
II error of the test is controlled by � 2 (0, 1) when
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We have recovered the correct dependency with respect to N and � with an improved ↵-dependency
of ln(1/↵)3/2 compared to the ↵�1/2 dependency obtained by Kim et al. (2022, Proposition 8.7).
The proof of minimax optimality of the quadratic-time test with fixed bandwidth �⇤ does not depend
on the ↵-dependency and can be derived in both our setting and the one of Kim et al. (2022) using
quantiles obtained from permutations by following the reasoning of Albert et al. (2022, Corollary
2). We obtain that the uniform separation rate over the Sobolev ball Ss

d(R) is, up to a constant,
N�2s/(4s+d). The improved ↵-dependency is crucial for deriving the rate of the aggregated quadratic-
time test over Sobolev balls because the weights appear in the ↵-term (i.e. ↵ is replaced by ↵w�

which depends on the sample size N ).

F.5.2 Proof of Theorem 3 (ii)

Similarly to the proofs of Albert et al. (2022, Corollary 3) and Schrab et al. (2021, Corollary 10),
consider
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By Equation (26), we get that
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holds with probability at least 1� � for � 2 (0, 1). If the largest term in Equation (27) is the first one,
then we get
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where the constant in ‘.’ also depends on ↵. The result then follows exactly as in the proofs of
Albert et al. (2022, Corollary 3) and Schrab et al. (2021, Corollary 10). So, we consider the case
where the second term in Equation (27) is the largest one, so that
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We have recovered the same dependency as in Equation (28) when considering the first term as the
largest one, and the proof then follows exactly the ones of Albert et al. (2022, Corollary 3) and Schrab
et al. (2021, Corollary 10). We have treated both cases in Equation (27), we conclude that the uniform
separation rate over the Sobolev balls

�
Ss
d(R) : R > 0, s > d/4

 
of the quadratic-time aggregated

test using a quantile obtained with permutations is (up to a constant)
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