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A Appendix

A.1 Implementation Details

Textual sequence processing. For consistent word numbers per input under word substitution attacks,
we seperate word-level tokens by space and punctuations, and then follow the original tokenizer
of BERT/RoBERTa to tokenize the input sequence. The byte-level RoBERTa tokenizer is further
modified to output one token per word to fit the setting of word substitution attacks. The maximum
number of tokens including special tokens per input is set as 300 for IMDB, and 80 for SNLI.

Hyper-parameters and optimization details. We set α as 0.1 for IMDB and 0.7 for SNLI. τ is set
as 0.2 for both IMDB and SNLI. Other hyper-parameters are set as the same among all compared
methods for fair comparisons. For both standard fine-tuning and adversarial fine-tuning, we run for
20 epochs with batch size 32 for IMDB, and run for 20 epochs with batch size 120 for SNLI. Early
stopping is used for all compared methods according to best robust accuracy. AdamW optimizer is
employed with learning rate of 0.00002. We do not apply weight decay on an objective model, and
set weight decay rate as 0.0002 for task-specific layers.

Model architectures. For both BERT and RoBERTa, the representation with respect to the sequence
classification token of the last layer is employed as the output feature, which is later taken as the
input of the task-specific layers for predictions. The task-specific layer is a MLP that has two linear
layers with relu activation after the first layer and softmax after the second one.

A.2 The Proof of Lemma 1

The loss Linfo is the categorical cross-entropy loss of identifying ti among {tj}
N
j=1, given si and

y. Thus, the optimial efy(s,t) that minimizes Linfo is proportional to p(t∣s,y)
p(t∣y) (refer to [6] for more
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Table 5: Vanilla Accuracy(%) of different fine-tuning methods on IMDB.
Method Model Vanilla Accuracy
Standard BERT 93.1
Adv-Base BERT 74.6
Adv-PTWD BERT 76.6
Adv-Mixout BERT 77.8
RIFT BERT 78.3

(a) Accuracy (%) based on BERT-base-uncased.

Method Model Vanilla Accuracy
Standard RoBERTa 94.9
Adv-Base RoBERTa 80.1
Adv-PTWD RoBERTa 80.7
Adv-Mixout RoBERTa 79.0
RIFT RoBERTa 84.2

(b) Accuracy (%) based on RoBERTa-base.

Table 6: Vanilla Accuracy(%) of different fine-tuning methods on SNLI.
Method Model Vanilla Accuracy
Standard BERT 89.2
Adv-Base BERT 79.4
Adv-PTWD BERT 78.4
Adv-Mixout BERT 79.3
RIFT BERT 80.5

(a) Accuracy (%) based on BERT-base-uncased.

Method Model Vanilla Accuracy
Standard RoBERTa 91.3
Adv-Base RoBERTa 87.1
Adv-PTWD RoBERTa 85.9
Adv-Mixout RoBERTa 87.1
RIFT RoBERTa 87.9

(b) Accuracy (%) based on RoBERTa-base.

details). We then insert p(t∣s,y)
p(t∣y) into Linfo and get what follows:
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Eq. 16 to Eq. 17 is by Jensen’s inequality. As such, −Linfo is a lower bound on I(S;T ∣ Y ) and a
larger N makes the bound tighter. The specific design of the score function fy does not impact the
correctness of Lemma 1: when −Linfo is maximized, −Linfo is still a lower bound on the mutual
information term. However, if the capacity of fy is limited, the bound might be loose.

A.3 Runtime Analysis

All models are trained using the Nvidia A100 GPU and our implementation is based on PyTorch. As
for IMDB, it takes about 10 GPU hours to train a BERT or RoBERTa based model using RIFT. As
for SNLI, it takes about 40 GPU hours to train a BERT or RoBERTa based model using RIFT.

2



A.4 Vanilla Accuracy

we here show the vanilla accuracy of each methods in Tabs. 5 and 6 as a supplement. As we can
see, RIFT surpasses all other adversarial fine-tuning method in terms of vanilla accuracy. It again
validates that RIFT does help retain the generalizable information learned before.

A.5 License of Used Assets

The assets and the corresponding licenses are as follows. IMDB dataset [5]: Non-Commercial
Licensing. SNLI dataset [2]: Creative Commons Attribution-ShareAlike 4.0 International License.
Genetic attack [1]: MIT License. PWWS attack [7]: MIT License. Certified robustness [4]: MIT
License. ASCC-defense [3]: MIT License.
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