
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LIGHTSAM: PARAMETER-AGNOSTIC SHARPNESS-
AWARE MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sharpness-Aware Minimization (SAM) optimizer enhances the generalization abil-
ity of the machine learning model by exploring the flat minima landscape through
weight perturbations. Despite its empirical success, SAM introduces an additional
hyper-parameter, the perturbation radius, which causes the sensitivity of SAM to it.
Moreover, it has been proved that the perturbation radius and learning rate of SAM
are constrained by problem-dependent parameters to guarantee convergence. These
limitations indicate the requirement of parameter-tuning in practical applications.
In this paper, we propose the algorithm LightSAM which sets the perturbation
radius and learning rate of SAM adaptively, thus extending the application scope of
SAM. LightSAM employs three popular adaptive optimizers, including AdaGrad-
Norm, AdaGrad and Adam, to replace the SGD optimizer for weight perturbation
and model updating, reducing sensitivity to parameters. Theoretical results show
that under weak assumptions, LightSAM could converge ideally with any choices
of perturbation radius and learning rate, thus achieving parameter-agnostic. We
conduct preliminary experiments on several deep learning tasks, which together
with the theoretical findings validate the the effectiveness of LightSAM.

1 INTRODUCTION

Machine learning has achieved significant success across various application domains. As a critical
component of machine learning, many optimization approaches are explored to train the model
efficiently. However, most of the previous works only focus on minimizing the training loss, which
would face the dilemma of over-fitting since the popular models are over-parameterized. Recently,
there has been a raised attention on generalization ability since it represents the prediction ability on
unseen data, thus very crucial for a model. Keskar et al. (2016); Neyshabur et al. (2017) study the
relationship between the flatness of loss landscape and generalization ability, which consequently
suggests finding flat minima that have low curvature in the neighbourhoods.

The above idea is formalized as a novel minimax problem, named Sharpness-Aware Minimization
(Foret et al., 2020). The main difference from the original loss function is that Sharpness-Aware
Minimization has a step that maximizes the loss function in the neighbourhood. This consideration
of worst-case guarantees the low loss value in a region, thus making the loss landscape of minima flat
and improving generalization ability, which results in the novel SAM optimizer: in each iteration,
a weight perturbation is performed along the gradient direction with radius ρ, then the stochastic
gradient on the perturbed weight is used in gradient descent with learning rate η to update the model.
SAM significantly improves the test performances of several deep networks (Foret et al., 2020).

The convergence rates of SAM and its variants have been extensively analyzed in existing works
(Andriushchenko & Flammarion, 2022; Mi et al., 2022; Shin et al., 2023; Sun et al., 2024). However,
these theoretical results require restrictions on two hyper-parameters of perturbation radius ρ and
learning rate η, either upper bounded or unequal relationship between them. These restrictions usually
involve some problem-dependent constants, such as the Lipschitz constant, whose value could not be
obtained a prior and hard to be estimated. In addition, though it is proved that the normalization in
the perturbation step makes SAM less sensitive on ρ (Dai et al., 2023), the empirical studies in the
above works show that the sensitivity to the learning rate still exists and the adopted values are not
stable. These shortcomings make it necessary to do parameter-tuning in empirical studies, which
increases cost especially when training large-scale models. Thus, we raise a question that:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Can we make SAM parameter-agnostic1?

In fact, parameter-agnostic algorithms are thoroughly studied in online learning to avoid parameter-
tuning (Orabona, 2014; Cutkosky & Boahen, 2017; Orabona & Tommasi, 2017). Recently, Defazio
& Mishchenko (2023) suggest to use Adagrad-like step size to achieve learning-rate-agnostic. Wang
et al. (2023b) and Wang et al. (2023a) prove the ideal convergence rate for adaptive optimizers.
These motivate us to introduce adaptive learning rate into SAM to realize parameter-agnostic. Note
that directly introducing adaptivity for both the perturbation radius and learning rate is technically
non-trivial. This is due to that the terms need to be bounded would involve two gradients in one
iteration, and the relationship between them is hard to establish since the randomnesses in one term
could not be decoupled directly in the proof for adaptive methods.

In this paper, we study how to make the SAM optimizer parameter-agnostic. To achieve this goal,
we propose an algorithm LightSAM. We provide three options for LightSAM, and in each option,
we adopt one commonly used adaptive optimizer to perform weight perturbation and model update
instead of SGD in vanilla SAM. As a consequence, both the weight perturbation and model update
become adaptive during training. Specifically, we adopt the AdaGrad-Norm-type learning rate
for LightSAM, named LightSAM-I, which uses a scaler-type adaptive learning rate for both the
perturbation ascent step and gradient descent step (ρ, η). In addition, we also consider the AdaGrad-
type and Adam-type learning rate for LightSAM, named LightSAM-II and LightSAM-III respectively,
which use coordinate-wise learning rates for two hyper-parameters (ρ, η). Theoretically, we prove
the O(lnT/

√
T) convergence rate for LightSAM without any restrictions on perturbation radius and

learning rate, thus achieving parameter-agnostic optimizers. Additionally, we only require nearly the
weakest assumptions among related studies.

Our contributions can be summarized as follows:

• We propose an algorithm LightSAM for non-convex optimization. Compared to SAM,
our algorithm could adopt AdaGrad-Norm, AdaGrad or Adam to implement the weight
perturbation and model update steps. As a result, both the perturbation radius and learning
rate become adaptive adjusted without requiring problem-dependent unknown parameters.

• The theoretical analysis indicates that LightSAM achieves the O(lnT/
√
T) convergence

rate without the gradient bounded assumption which is commonly used in adaptive optimizer
analysis. Our result holds under any choices of hyper-parameters (ρ, η), indicating that
LightSAM is a parameter-agnostic optimizer, thereby saving the cost of parameter-tuning.

• We conduct several experiments to show the effectiveness of LightSAM, whose performance
is stable under different parameter settings and coincides with our theoretical findings.

2 RELATED WORK

Sharpness-Aware Minimization. SAM optimizer (Foret et al., 2020) enhances the model gener-
alization ability by minimizing the sharpness of loss landscape through an extra step of parameter
perturbation. However, SAM still has some shortcomings in practical use, e.g., double gradient calcu-
lation and double learning rate hyper-parameter tuning. To address the issues where SAM exhibits
insensitivity to parameter scaling, Kwon et al. (2021) propose ASAM. This method incorporates
a normalization operator into the perturbation step to ensure adaptive sharpness. Recognizing the
increased computational cost due to SAM’s double forward and backward steps, SSAM (Mi et al.,
2022) generates a mask to sparsify the perturbation while SAF (Du et al., 2022) replaces SAM’s
sharpness measure loss with a trajectory loss to achieve almost zero additional computation cost.
GSAM (Zhuang et al., 2022) introduces an ascent step in the orthogonal direction to minimize the
surrogate gap. Un-normalized SAM (USAM) (Andriushchenko & Flammarion, 2022) removes the
normalization term in SAM and analyzes the convergence under standard assumptions. However, in
order to guarantee the O(1/

√
T) convergence rate, the values of perturbation radius ρ and learning

rate η are required to be dependent on the smoothness constant. Furthermore, Sun et al. (2024)

1In this paper, we follow the definition "parameter-agnostic" in Wang et al. (2024); Hübler et al. (2024)
to describe an algorithm that could guarantee convergence with any parameter values. This implies that all
parameters are not contingent upon any problem-dependent constants.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison between SAM-related works.

Algorithm Adaptive
perturbation radius

Adaptive
learning rate Convergence ratea Additional

requirements

SAM % % O(lnT/
√
T)b

Gradient bounded;
Dependent on
gradient bound

USAM % % O(1/
√
T)

Dependent on
Lipschitz constant

ASAM ! % - -

AdaSAM % ! O(1/
√
T)

Dependent on
Lipschitz constant;
Gradient bounded

LightSAM ! ! O(lnT/
√
T) None

a “-” represents the convergence rate is not given in the original work.
b This could be improved to O(1/

√
T) by adjusting some hyper-parameters. We maintain the result in Mi

et al. (2022).

propose the adaptive SAM by utilizing AMSGrad-type (Reddi et al., 2019) learning rate in SAM.
However, the learning rate for maximizing the perturbation variable still requires heavy tuning.

Adaptive Optimizer. Adaptive optimizers make the learning rate adjust adaptively during the
training process. Duchi et al. (2011) propose Adagrad, which accumulates the gradient second
raw moment, i.e. the square of historical gradients, and makes the learning rate of each element
inversely proportional to the square root of this sum. RMSProp (Tieleman, 2012) suggests adopting
an exponential moving average for the stochastic gradients to make adaptive optimizer work well in
deep learning. Adam (Kingma & Ba, 2014) further introduces the exponential moving average to the
gradient second raw moment and becomes the most commonly used adaptive method.

It is showed that Adagrad could converge in both convex and non-convex settings (Li & Orabona,
2019). Adam-type algorithms achieve the O(lnT/

√
T) convergence rate for non-convex optimization

problems (Chen et al., 2018). The convergence rate O(
√
d/T) for AMSGrad, and O(d/

√
T) for

Adagrad and RMSProp are theoretically proved (Zhou et al., 2018). Additionally, Défossez et al.
(2020); Shen et al. (2023) analyze Adagrad and Adam under a framework with momentum and
recover the O(lnT/

√
T) convergence rate. However, most of these theoretical results rely on a strong

assumption, i.e. the stochastic gradient is upper bounded. The analysis for RMSProp removes this
assumption and concludes the convergence to a bounded region (Shi & Li, 2021). With the hyper-
parameters commonly used in practice, Adam also converges to a region near critical points (Zhang
et al., 2022). Recently, Wang et al. (2023b;a) make breakthroughs that recover the O(lnT/

√
T)

convergence rate without gradient bounded assumption.

Parameter-Agnostic Optimization. Parameter-agnostic (also known as parameter-free) algorithms
are studied to achieve the optimal regret bound for the online optimization problem at first (Orabona,
2013; McMahan & Orabona, 2014; Orabona & Pál, 2016). Kernel-based SGD (Orabona, 2014)
performs model selection and optimization without prior knowledge of problem and parameter-tuning.
Orabona & Tommasi (2017) remove the learning rate from the gradient descent step to optimize the
objective function. Carmon & Hinder (2022) focus on stochastic optimization and select the learning
rate by a computable certificate. As a result, a nearly optimal convergence rate and parameter-agnostic
are both achieved. D-Adaptation (Defazio & Mishchenko, 2023) adopts Adagrad-like learning rate
to iteratively lower bound the distance between the initial and optimal point . Normalized SGDM
(Hübler et al., 2024) converges with a nearly optimal rate in the (L0, L1)-smoothness setting.

The above mentioned SAM-related works adopt SGD optimizer in weight perturbation or model
update or both, which makes the parameters lack of adaptivity, and adaptive optimizer-related works
seldom consider enhancing the generalization ability. Our work improves this by making both the
perturbation radius and learning rate adaptive, and further parameter-agnostic. The most related work
to this paper is Sun et al. (2024). However, it only employs the adaptive learning rate in the gradient
descent step. Furthermore, their analysis requires the gradient bound assumption, which is too strong
to be satisfied for practical applications (Nguyen et al., 2018). We also notice SA-SAM (Naganuma

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

et al.) which sets the learning rate by adaptively estimating the local smoothness constant, but it lacks
of convergence guarantee. We list the comparison between these works and our work in Table 1.

3 METHODOLOGY

In this section, we propose a class of parameter-agnostic variants of SAM optimizer, named LightSAM.
LightSAM could adopt the Adagrad-Norm-type learning rate (Levy, 2017; Ward et al., 2020),
AdaGrad-type learning rate (Duchi et al., 2011) and Adam-type learning rate (Kingma & Ba, 2014)
for estimating the double learning rate hyperparameters in SAM optimizer, denoted as LightSAM-I
(AdaGrad-Norm), LightSAM-II (AdaGrad) and LightSAM-III (Adam) respectively. Below, we first
introduce the problem setup for SAM and LightSAM.

3.1 PROBLEM SETUP

In this paper, we focus on the following stochastic non-convex optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

f(x, ξi),

where f(x, ξi) denotes the loss function about model weights x and data ξi, n represents the number
of training data. We further assume that this optimization problem is well-defined.

Notations. We use the following notations in this paper: ∥ · ∥ denotes the l2 norm of a vector. ∇f(x)
represents the gradient of function f(x), ∇f(x)l represents the l-th element of ∇f(x). For the vector
sequences {at}, at,l denotes the l-th element of at. ⊙ represents element-wise multiplication.

SAM Optimizer. Sharpness-Aware Minimization problem (Foret et al., 2020) focuses on minimax
saddle point optimization to seek a flat minimum by introducing the weight perturbation step

min
x

max
∥ϵ∥≤ρ

fS(x+ ϵ).

By alternatively performing a dual ascent step for the perturbation and a gradient descent step for the
primal weight, SAM takes the following two-time scale update rule:

wt = xt + ρ∇f(xt, ξt)/∥∇f(xt, ξt)∥,
xt+1 = xt − η∇f(wt, ξt).

According to this update rule, SAM faces the challenge that there exist two learning rate hyperpa-
rameters (ρ, η) that need to be carefully tuned. Dai et al. (2023) show that the learning rate ρ for
the perturbation step is crucial for the final performance of SAM. Classic trial-and-error learning
tuning techniques for ρ suffer from heavy tuning costs due to double gradient calculation in SAM. It
is urgent to design cheap, lightweight, and automatic learning rate tuning techniques for SAM.

3.2 LIGHTSAM-I (ADAGRAD-NORM)

Algorithm 1 LightSAM-I (AdaGrad-Norm)
Require: Initial values x0, u0 = v0 = ϵ2, perturba-

tion radius ρ, learning rate η.
1: for t = 1, ..., T do
2: Sample a minibatch ξt from the dataset;
3: Compute stochastic gradient st=∇f(xt, ξt);
4: ut = ut−1 + ∥st∥2;
5: wt = xt + ρ st√

ut
;

6: Compute stochastic gradient gt = ∇f(wt, ξt);
7: vt = vt−1 + ∥gt∥2;
8: Update weights xt+1 = xt − η gt√

vt
;

9: end for

In this section, we propose our first algo-
rithm LightSAM-I as described in Algorithm 1.
Adagrad-Norm (Levy, 2017; Ward et al., 2020)
only updates the scalar learning rate by historical
gradients rather than the element-wise learning
rate in AdaGrad. In the weight perturbation steps
(lines 3-5) of our algorithm, we use the Adagrad-
Norm to generate the perturbed weights wt in-
stead of SGD optimizer in SAM. Meanwhile, we
adopt the same strategy in the gradient descent
steps (lines 6-8) to update model weights.

Before giving the theoretical analysis for Algo-
rithm 1, we list some necessary assumptions. We
denote Ft = σ{s1, g1, ..., st, gt} as the sigma algebra generated by the observations of LightSAM
after observing the stochastic gradients in the first t iterations. E|Ft [◦] is equivalent to E[◦|Ft].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Assumption 1 (L-smoothness). f(x, ξ) is differentiable and satisfies the following inequality:
∥∇f(x, ξ)−∇f(y, ξ)∥ ≤ L∥x− y∥,∀x, y ∈ Rd.

Assumption 2 (Affine noise variance). There exist positive constants (D0, D1) such that the following
inequality holds:
E|Ft∥∇f(xt, ξt)∥2 ≤ D0 +D1∥∇f(xt)∥2, E|Ft∥∇f(wt, ξt)∥2 ≤ D0 +D1∥∇f(wt)∥2.

Straightforwardly, we could obtain the L-smoothness of f(x) based on Assumption 1. These two
assumptions are nearly the weakest requirements in stochastic optimization works, except that
Assumption 1 assumes the L-smoothness of f(x, ξ) instead of f(x) as Assumption 1 in Wang et al.
(2023b). This change is necessary in SAM-type works (Andriushchenko & Flammarion, 2022) since
we need to establish the relationship between two stochastic gradients (∇f(xt, ξt) and ∇f(wt, ξt))
in one iteration.

Technical Challenge. In order to prove the convergence, we need to bound the term E∥∇f(xt)∥2.
However, LightSAM involves two stochastic gradients in one iteration. Thus when we want to
bound the terms concerning E∥∇f(xt)∥2, the upper bound would contain the terms concerning
E∥∇f(wt)∥2. On the other hand, the numerator and denominator of one term in adaptive optimization
often share the same randomness which is hard to decouple. Thus, it is hard to analyze the inequality
relationship between terms concerning E∥∇f(xt)∥2 and E∥∇f(wt)∥2.

By the above assumptions, we have the following theorem.
Theorem 1. If f(x) in Algorithm 1 satisfies Assumptions 1 and 2, for any perturbation radius ρ and
learning rate η > 0, we have that

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ (2
√
2D0T + ϵ2 +A5)(A3 + 2A4 ln(2

√
2D0T + ϵ2 +A5))

T

Here, we denote constants D2, A1, A2, A3, A4 as following

D2 = max{1, D1,
8(1 +

√
D1)D1ρ

η
}, A1 =

∥∇f(w1)∥2

ϵ
+

4(1 + 2D2)L
2

ϵ
(η2 − 2ρ2 ln ϵ),

A2 = 2f(w1) + 2ρ∥∇f(x1)∥+ 4ρ2L+
D0

ϵ
η +

D0ρ

ϵ
√
D1

− (4L(1 + ρL)(η2 + 4ρ2) + 2ρ) ln ϵ,

A3 =

√
ρL

ϵ
+ 1[

4D0

ϵ
− (

8ρ2L2

ϵ
+ 4ηL) ln ϵ+

4A2

η
+ 8D1A1 + 8ηL(2 + ρL) ln(1 +

ρL

ϵ
)]

A4 =

√
ρL

ϵ
+ 1[32ρ2L(1 + ρL+

(1 + 2D2)D1ηL

ϵ
+

ηL

8ϵ
) + 4ρ+ 8η2L(2 + ρL)]/η,

A5 = 4D1A3 + 4D1A4 ln(4D1A4).

Corollary 1. From Theorem 1, we can obtain the following convergence rate for Algorithm 1

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ O

(
lnT√
T

)
.

Remark 1. Compared to previous works, the convergence rate of LightSAM recovers the result in
works about adaptive optimizers (Zou et al., 2019; Défossez et al., 2020; Ward et al., 2020; Shi & Li,
2021; Shen et al., 2023; Wang et al., 2023b;a). When T is sufficiently large, it converges with the
same rate as USAM (Andriushchenko & Flammarion, 2022).
Remark 2. LightSAM not only requires nearly the lowest requirements on the assumptions but also
has no restrictions on hyper-parameters, thus achieving parameter-agnostic.

Due to limited space, we list the proof sketch here. The details could be referred to the Appendix.

Proof Sketch. The first part of our proof follows the proof of Wang et al. (2023b), i.e. our target is to
bound

∑T
t=1 E∥∇f(xt)∥2/

√
vt−1. According to the smoothness of f(x), we could obtain that

f(xT+1) ≤ f(x1) + η

T∑
t=1

⟨∇f(xt),
−gt√
vt−1

⟩︸ ︷︷ ︸
T1

+ η

T∑
t=1

⟨∇f(xt),
gt√
vt−1

− gt√
vt
⟩︸ ︷︷ ︸

T2

+
η2L

2

T∑
t=1

∥ gt√
vt
∥2︸ ︷︷ ︸

T3

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Since T1 and T3 is easy to bound:

E[T1] ≤ −3η

4

T∑
t=1

E
∥∇f(xt)∥2√

vt−1
+

ρ2ηL2

ϵ
(E lnuT − 2 ln ϵ),

E[T3] ≤
η2L

2
(E ln vT − ln v0) =

η2L

2
(E ln vT − 2 ln ϵ),

we turn to focus on T2. Further, with appropriate scaling and Assumption 2, we obtain that

E[T2] ≤
η

4

T∑
t=1

E
∥∇f(xt)∥2√

vt−1
+

D0η

ϵ
+D1η

T∑
t=1

∥∇f(wt)∥2E(
1

√
vt−1

− 1
√
vt
) (1)

The last term in the similar proof step of Wang et al. (2023b) is
∑T

t=1 ∥∇f(xt)∥2E(1√
vt−1

− 1√
vt
)

which could be bounded by desired term
∑T

t=1 E∥∇f(xt)∥2/
√
vt−1. However, it does not apply to

our proof since SAM-type algorithms involve different weights xt and wt. Thus, it is non-trivial to
bound the last term in (1). We give the following two lemmas to fill this gap.

Lemma 1. If f(x) in Algorithm 1 satisfies Assumptions 1 and 2, we have that
T∑

t=1

∥∇f(wt)∥2E(
1

√
vt−1

− 1
√
vt
) ≤ A1 − E

∥∇f(wT)∥2√
vT

+
1

2D2

T∑
t=1

E
∥∇f(wt)∥2√

vt−1

+
4(1 + 2D2)ρ

2L2

ϵ
E lnuT

Lemma 2. If f(x) in Algorithm 1 satisfies Assumptions 1 and 2, we have that

η

T−1∑
t=1

∥∇f(wt)∥2√
vt−1

≤ 2ρ(1 +
√

D1)E
∥∇f(xT)∥2√

uT−1
+D1η

T−1∑
t=1

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
)

+A2 + 2η2L(1 + ρL)E ln vT−1 + (8ρ2L(1 + ρL) + ρ)E lnuT

Combining the above two lemmas and substituting the result into (1) helps us bound T2 successfully.
Then we establish the relationship between vt and ut as the following lemma:

Lemma 3. If f(x) in Algorithm 1 satisfies Assumption 1, we have that

∥∇f(wt, ξt)∥2 ≤ (
ρL

ϵ
+ 1)∥∇f(xt, ξt)∥2, vt ≤ (

ρL

ϵ
+ 1)ut

Up to this point, arranging the above results and substituting them into the first inequality yield that
T∑

t=1

E
∥∇f(xt)∥2√

ut
≤ A3 +A4E lnuT

Finally, we obtain that
E
√
uT ≤ 2

√
2D0T + ϵ2 +A5

and the final result in Theorem 1 in the same way as Wang et al. (2023b).

Discussion. ASAM (Kwon et al., 2021) is proposed to alleviate the insensitivity of SAM to weight
scaling . Though the element-wise operator is performed on the gradients to achieve sharpness
adaptivity, the perturbation radius does not consider historical gradients like adaptive optimizers
(Adagrad-Norm, Adagrad and Adam). AdaSAM (Sun et al., 2024) does not introduce adaptivity
to the perturbation radius like LightSAM. Additionally, its theoretical analysis relies on a strong
assumption, i.e. the stochastic gradient is upper bounded.

3.3 LIGHTSAM-II (ADAGRAD)

In LightSAM-II (see Algorithm 2), we adopt the AdaGrad-type learning rate to update the perturbation
weights. LightSAM-II adopts the coordinate-wise learning rates to scale the perturbation step and
gradient descent step, which can better utilize the historical gradients and achieve a stable convergence.
Thus, compared to Algorithm 1, the initialized u0 and v0 become vectors with each element equal to
ϵ2, and the multiplication and division become element-wise between vectors.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 LightSAM-II (AdaGrad)
Require: Initial values x0, u0 = v0 = ϵ2, perturba-

tion radius ρ, learning rate η.
1: for t = 1, ..., T do
2: Sample a minibatch ξt from the dataset;
3: Compute stochastic gradient st=∇f(xt, ξt);
4: ut = ut−1 + st ⊙ st;
5: wt = xt + ρ 1√

ut
⊙ st;

6: Compute stochastic gradient gt=∇f(wt, ξt);
7: vt = vt−1 + gt ⊙ gt;
8: Update weights xt+1 = xt − η 1√

vt
⊙ gt;

9: end for

To provide the convergence of LightSAM-II with
coordinate-wise learning rates, we require the
following coordinate-wise smoothness and affine
noise variance assumptions.
Assumption 3 (Coordinate-wise L-smoothness).
For ∀l ∈ [d], f(x) is differentiable and satisfies:

|∇f(x, ξ)l−∇f(y, ξ)l| ≤ L|xl−yl|,∀x, y ∈ Rd.

Assumption 4 (Coordinate-wise affine noise vari-
ance). There exist positive constants D0 and D1:

∇f(x, ξ)2l ≤ D0+D1∇f(x)2l ,∀x ∈ Rd,∀l ∈ [d].

Assumption 3 is adopted in Richtárik & Takáč
(2014); Das et al. (2024) and necessary here since the inequality relationship between ∇f(xt, ξt)
and ∇f(wt, ξt) is established coordinate-wisely. Assumption 4 is commonly used in adaptive
optimization works which do not need to assume the bounded gradient (Crawshaw et al., 2022; Wang
et al., 2023b;a).
Theorem 2. If f(x) in Algorithm 2 satisfies Assumptions 3 and 4, for any perturbation radius ρ and
learning rate η > 0, we have that

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ (2
√
2D0dT + ϵ2 +B5)(B3 + 2A4 ln(2

√
2D0dT + ϵ2 +B5))

T

Here, we denote constants B1, B2, B3, B5 as following

B1 =
∥∇f(w1)∥2

ϵ
+

4(1 + 2D2)dL
2

ϵ
(η2 − 2ρ2 ln ϵ),

B2 = 2f(w1) + d(2ρ∥∇f(x1)∥+ 4ρ2L+
D0η

ϵ
+

D0ρ

ϵ
√
D1

− (4L(1 + ρL)(η2 + 4ρ2) + 2ρ) ln ϵ)

B3 =

√
ρL

ϵ
+ 1[

4D0d

ϵ
− (

8ρ2L2

ϵ
+ 4ηL)d ln ϵ+ 8D1B1 +

4B2

η

+ηL(8(1 + ρL) + 2)d ln(1 +
ρL

ϵ
)], B5 = 4D1B3 + 4D1A4 ln(4D1A4),

and D2 and A4 are the same as Theorem 1.

Corollary 2. From Theorem 2, we can obtain the following convergence rate for Algorithm 2

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ O

(
lnT√
T

)
.

3.4 LIGHTSAM-III (ADAM)

Algorithm 3 LightSAM-III (Adam)
Require: Initial values x0, r0 = m0 = 0, u0 = v0 =

ϵ2, perturbation radius ρ, learning rate η, coeffi-
cients β1, β2.

1: for t = 1, ..., T do
2: Sample a minibatch ξt from the dataset;
3: Compute stochastic gradient st = ∇f(xt, ξt);
4: rt = β1rt−1 + (1− β1)st;
5: ut = β2ut−1 + (1− β2)st ⊙ st;
6: wt = xt + ρ 1√

ϵ2+ut

⊙ rt;

7: Compute stochastic gradient gt = ∇f(wt, ξt);
8: mt = β1mt−1 + (1− β1)gt;
9: vt = β2vt−1 + (1− β2)gt ⊙ gt;

10: Update weights xt+1 = xt − η 1√
vt

⊙mt;
11: end for

Adam (Kingma & Ba, 2014) is another popu-
lar optimizer for deep learning, especially in
Transformer-based models, which replaces the
gradient aggregation step for estimating adap-
tive learning rate in AdaGrad with an exponen-
tial moving average step by introducing two
additional momentum parameters (β1, β2) and
achieves a stable and fast convergence. In this
section, we also integrate the Adam-type learn-
ing rate to update the parameters (ρ, η) in SAM,
which yields LightSAM-III (Adam), as shown
in Algorithm 3. The convergence result for
LightSAM-III is as follows:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Best test accuracies (%) on MNIST dataset.
Method SGD SAM ASAM AdaSAM AdaGrad L-SAM-II Adam L-SAM-III
3-layer 98.21 98.29 98.24 98.57 98.26 98.33 98.57 98.59
LeNet 99.29 99.37 99.48 99.48 99.25 99.31 99.41 99.49

Table 3: Average best test accuracies (%) of LightSAM under different hyper-parameters.

Setting 3-layer NN LeNet

LightSAM-II LightSAM-III LightSAM-II LightSAM-III
98.29±0.03 98.56±0.03 99.25 ± 0.07 99.41 ± 0.07

Theorem 3. If f(x) in Algorithm 3 satisfies Assumptions 3 and 4, and 0 ≤ β1 ≤
√
β2 − 32D0(1−

β2)/β
2, β2 = 1−Θ(1/

√
T). Then, for any perturbation radius ρ = Θ(1/

√
T) and learning rate

η = Θ(1/
√
T), we have that

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ O

(
lnT√
T

)
.

4 EXPERIMENTS

In this section, we conduct several experiments to show the effectiveness of our proposed algorithm.
Experiments are conducted on MNIST and Imagenet datasets. The main goal of this paper is to
validate that parameter-agnostic SAM optimizers without parameter tuning can achieve comparable
performance with the carefully handcrafted learning rate schedule.

4.1 MNIST DATASET

Implementation detail. We first conduct the image classification task on the MNIST dataset. A
simple 3-layer neural network and LeNet (LeCun et al., 1998) are adopted as the training models.
We select SGD, AdaGrad, Adam, SAM, ASAM, AdaSAM, LightSAM-II and LightSAM-III as the
baselines. The initial learning rate η is set to 0.1 for SGD, SAM, and ASAM, 0.01 for AdaGrad and
LightSAM-II, 0.001 for AdaSAM and LightSAM-III. The perturbation radius ρ is set to 0.05 and
0.5 for SAM and ASAM respectively as suggested in Foret et al. (2020); Kwon et al. (2021), 0.1 for
AdaSAM, 0.001 for LightSAM-II and III. We run all methods for 30 epochs. The learning rate is
decayed two times by a factor of 0.2.

Results on MNIST. We summarize the best test accuracies of all baselines in the two experimental
settings in Table 2. For each model, LightSAM-II achieves higher accuracy than AdaGrad, meanwhile,
LightSAM-III achieves higher accuracy than Adam. This result indicates that parameter perturbation
could improve the test accuracies of adaptive optimizers, the same as the phenomenon in the
comparison between SAM and SGD. Additionally, LightSAM-II performs better than SAM in 3-layer
neural network and LightSAM-III performs better than SAM in two cases, which is consistent with
the advantage of Adam over SGD.

In the theoretical analysis, we prove that LightSAM could converge without tuning any hyper-
parameters. Thus, in each experimental case, we scale the adopted ρ and η respectively, as a
result obtaining four hyper-parameter settings (ρ, 2ρ) ∗ (η, 2η). We run LightSAM under these four
settings and list the average result in Table 3. We can find that the average best accuracies are still
higher than some baselines. The low standard deviations show the insensitivities of LightSAM to
hyper-parameters.

4.2 FINETUNING ON IMAGENET DATASET

Implementation detail. We conduct the finetuning task on transformer models. Specifically, we
finetune the ViT-Tiny and ViT-Small (Touvron et al., 2021) on the Imagenet-1k dataset for 10 epochs
from the checkpoints pre-trained on the Imagenet-21k dataset. The utilized checkpoints are open-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Best test accuracies (%) on Imagenet dataset after finetuning.
Algorithms SGD Adam SAM ASAM AdaSAM LightSAM
ViT-Tiny 45.59 60.82 60.10 59.95 64.43 64.58
ViT-Small 63.78 77.10 74.27 74.12 78.02 78.09

Table 5: Best test accuracies (%) of SAM-type algorithms under different parameter settings.
SAM (η, ρ)=(0.1,0.05) Avg.
75.68 75.81 76.02 73.89 74.27 74.11 71.58 71.56 71.86 73.86± 1.72
ASAM (η, ρ)=(0.1,0.5) Avg.
75.72 75.71 75.78 73.88 74.12 74.22 71.45 -a - 74.41± 1.44
AdaSAM (η, ρ)=(1e-4,0.01) Avg.
78.00 77.98 78.02 78.00 78.02 77.99 77.16 77.10 77.04 77.70± 0.43
LightSAM (η, ρ)=(1e-4,1e-4) Avg.
77.97 78.00 78.04 77.99 78.09 78.06 77.29 77.10 77.27 77.76 ± 0.38

a “-” represents the divergence of the algorithm.

sourced on Huggingface. We select SGD, Adam, SAM, ASAM, AdaSAM and LightSAM-III as
the baselines. Following Foret et al. (2020); Kwon et al. (2021) and common choices, we set the
learning rate as 0.1 for SGD, SAM and ASAM, 1e-4 for Adam, AdaSAM and LightSAM. And the
perturbation radius is set as 0.05 for SAM, 0.5 for ASAM, 0.01 for AdaSAM and 1e-4 for LightSAM.
Weight decay is not utilized for all optimizers. Momentum is set as 0.9 for all SGD optimizers.

Results on Imagenet. In Table 4, we list the best test accuracies of all baselines. Firstly, we could
observe that the optimizers which adopt adaptive learning rate in the model update step (Adam,
AdaSAM and LightSAM) perform better than those adopt constant learning rate (SGD, SAM and
ASAM). This is in line with the advantage of adaptive optimizers over SGD on transformer based
models (Zhang et al., 2020). Secondly, the optimizers utilize the weight perturbation step achieve
higher test accuracies than the corresponding base optimizers (SAM and ASAM over SGD, AdaSAM
and LightSAM over Adam), which presents the positive effect of weight perturbation in improving
test performance. Finally, AdaSAM and LightSAM achieve comparable accuracies while LightSAM
is still ahead of AdaSAM, thus the adaptive perturbation radius in LightSAM is comparable with the
carefully handcrafted constant radius. We also show the illustration of the results in the Appendix.

Sensitivity to hyper-parameters. For several SAM-type algorithms, we enrich the experiment on a
wide range of parameter values. For one baseline, denote the selected hyper-parameters in the above
subsection as η and ρ, we take nine combinations of parameters (0.5η, η, 2η) ∗ (0.5ρ, ρ, 2ρ) to show
its sensitivity to these parameters. The results are shown in Table 5. The first nine columns record the
best accuracy of one set of parameter values and the last column represents the mean and standard
deviation. We could observe that SAM which does not have any adaptive modules has the highest
deviation. ASAM does not converge in two settings with a large learning rate and performs worse
than AdaSAM which adopts the commonly used adaptive learning rate. Under various parameter
selections, our proposed algorithm achieves the highest mean accuracy and lowest deviation, which
is in line with the "parameter-agnostic" property of LightSAM and indicates its insensitivity to the
hyper-parameters.

4.3 FINETUNING ON GLUE TASK

Implementation detail. We also consider training the language models. We finetune the RoBERTa
model (Liu, 2019) for 8 downstream tasks in the GLUE benchmark. The learning rate is set to 1e-2
for SGD, SAM and ASAM, 1e-5 for Adam, AdaSAM and LightSAM. The perturbation radius is
set to 5e-3 for SAM and 1e-5 for LightSAM to maintain its ratio to learning rate same as the ViT
experiment, 1e-2 for AdaSAM as adopted in (Sun et al., 2024), 1e-2 for ASAM after tuning. The
batch size is set to 32 for all tasks except 16 for QNLI. We run all algorithms for 20 epochs.

Results and parameter sensitivity on GLUE. We list the experimental results in Table 6. We
report the Matthew’s correlation for CoLA, Pearson correlation for STS-B, F1 score for MRPC,
averaged accuracy for MNLI, and accuracy for other tasks. Similar to the experiment on Imagenet,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Experimental performances on GLUE benchmark after finetuning.
Algorithms CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg.

SGD 59.39 87.85 91.65 76.53 93.69 86.33 89.27 91.49 84.53
Adam 62.08 90.77 92.50 78.70 94.84 87.42 92.82 91.90 86.38
SAM 61.71 89.25 92.01 79.42 94.27 86.42 89.53 91.38 85.50

ASAM 63.51 89.14 92.48 78.70 93.81 86.44 90.17 91.57 85.73
AdaSAM 62.11 90.55 93.12 80.14 95.30 87.57 93.10 92.01 86.74

LightSAM 63.77 90.77 93.33 81.95 95.41 87.63 92.92 92.04 87.23

Table 7: Performances of SAM-type algorithms under different parameter settings for STS-B.
SAM (η, ρ)=(0.01,5e-3) Avg.

- 89.53 87.87 89.31 89.25 89.19 - - - 88.97± 0.79
ASAM (η, ρ)=(0.01,0.01) Avg.
85.74 83.26 - 88.99 89.14 88.58 - - - 87.14± 2.57
AdaSAM (η, ρ)=(1e-5,0.01) Avg.
90.20 90.29 90.27 90.54 90.55 90.48 90.86 91.01 90.92 90.57± 0.30
LightSAM (η, ρ)=(1e-5,1e-5) Avg.
90.42 90.31 90.39 90.79 90.77 90.69 90.97 91.09 91.05 90.72 ± 0.29

the algorithms that use the adaptive learning rate in the gradient descent step achieve the highest three
scores, and each algorithm that adopts the perturbation step is ahead of its version that does not. Our
proposed algorithm LightSAM performs best in seven tasks except the QNLI dataset, which again
verifies its excellence in the practical application.

Samely, we conduct the experiments under nine sets of parameters (0.5η, η, 2η) ∗ (0.5ρ, ρ, 2ρ) on
the STS-B task to test the sensitivity to the hyper-parameters for SAM-type optimizers, where η and
ρ are the parameters set above. The results in Table 7 show the strong sensitivity of SAM and ASAM
in this task as they fail to converge under four hyper-parameter settings. AdaSAM and LightSAM
could converge to great solutions, which demonstrates the efficacy of the adaptive learning rate in the
high stability. Between them, our proposed method has an advantage over AdaSAM, again indicating
its insensitivity to the perturbation radius.

5 CONCLUSION

In this paper, we propose an algorithm LightSAM for non-convex optimization. LightSAM sets
the perturbation radius and learning rate adaptively through adopting Adagrad-Norm, Adagrad, and
Adam, respectively. We make a solid theoretical analysis for our proposed algorithm and observe
that it converges with the O(lnT/

√
T) rate without requiring the gradient bounded assumption.

Particularly, our result does not require perturbation radius and learning rate satisfying any conditions,
realizing parameter-agnostic optimizers. Finally, we conduct experiments in several computer vision
tasks. The superiority of LightSAM to other baselines and the insensitivity to hyper-parameters are
verified. Thus, we prove the potential of our work in reducing the necessity of parameter tuning from
both theory and experiments.

REFERENCES

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International Conference on Machine Learning, pp. 639–668. PMLR, 2022.

Yair Carmon and Oliver Hinder. Making sgd parameter-free. In Conference on Learning Theory, pp.
2360–2389. PMLR, 2022.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. arXiv preprint arXiv:1808.02941, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in Neural Information Processing
Systems, 35:9955–9968, 2022.

Ashok Cutkosky and Kwabena Boahen. Online learning without prior information. In Conference on
learning theory, pp. 643–677. PMLR, 2017.

Yan Dai, Kwangjun Ahn, and Suvrit Sra. The crucial role of normalization in sharpness-aware
minimization. arXiv preprint arXiv:2305.15287, 2023.

Rudrajit Das, Naman Agarwal, Sujay Sanghavi, and Inderjit S Dhillon. Towards quantifying the
preconditioning effect of adam. arXiv preprint arXiv:2402.07114, 2024.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. arXiv
preprint arXiv:2301.07733, 2023.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. Advances in Neural Information Processing Systems, 35:23439–23451, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2020.

Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In International Conference on Artificial Intelligence and Statistics, pp. 4861–4869.
PMLR, 2024.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on
Machine Learning, pp. 5905–5914. PMLR, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. Advances in
Neural Information Processing Systems, 30, 2017.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983–992.
PMLR, 2019.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert
spaces: Minimax algorithms and normal approximations. In Conference on Learning Theory, pp.
1020–1039. PMLR, 2014.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
sharpness-aware minimization stronger: A sparsified perturbation approach. Advances in Neural
Information Processing Systems, 35:30950–30962, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hiroki Naganuma, Junhyung Lyle Kim, Anastasios Kyrillidis, and Ioannis Mitliagkas. Smoothness-
adaptive sharpness-aware minimization for finding flatter minima. In 5th Workshop on practical
ML for limited/low resource settings.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. Advances in neural information processing systems, 30, 2017.

Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtárik, Katya Scheinberg, and Martin
Takác. Sgd and hogwild! convergence without the bounded gradients assumption. In International
Conference on Machine Learning, pp. 3750–3758. PMLR, 2018.

Francesco Orabona. Dimension-free exponentiated gradient. Advances in Neural Information
Processing Systems, 26, 2013.

Francesco Orabona. Simultaneous model selection and optimization through parameter-free stochastic
learning. Advances in Neural Information Processing Systems, 27, 2014.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. Advances in Neural Information Processing Systems, 30, 2017.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38, 2014.

Li Shen, Congliang Chen, Fangyu Zou, Zequn Jie, Ju Sun, and Wei Liu. A unified analysis of adagrad
with weighted aggregation and momentum acceleration. IEEE Transactions on Neural Networks
and Learning Systems, 2023.

Naichen Shi and Dawei Li. Rmsprop converges with proper hyperparameter. In International
conference on learning representation, 2021.

Sungbin Shin, Dongyeop Lee, Maksym Andriushchenko, and Namhoon Lee. The effects of overpa-
rameterization on sharpness-aware minimization: An empirical and theoretical analysis. arXiv
preprint arXiv:2311.17539, 2023.

Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong
Sun, and Dacheng Tao. Adasam: Boosting sharpness-aware minimization with adaptive learning
rate and momentum for training deep neural networks. Neural Networks, 169:506–519, 2024.

Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, 4(2):26, 2012.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap between
the upper bound and lower bound of adam’s iteration complexity. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023a.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 161–190. PMLR, 2023b.

Bohan Wang, Huishuai Zhang, Qi Meng, Ruoyu Sun, Zhi-Ming Ma, and Wei Chen. On the
convergence of adam under non-uniform smoothness: Separability from sgdm and beyond. arXiv
preprint arXiv:2403.15146, 2024.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. The Journal of Machine Learning Research, 21(1):9047–9076, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. Advances in Neural Information Processing Systems, 35:
28386–28399, 2022.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the conver-
gence of adaptive gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671,
2018.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training. arXiv preprint arXiv:2203.08065, 2022.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for conver-
gences of adam and rmsprop. In Proceedings of the IEEE/CVF Conference on computer vision
and pattern recognition, pp. 11127–11135, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF DETAILS

In this part, we show the proof details of theorems in the main body.

A.1 USEFUL INEQUALITIES

We show some inequalities which are useful for our analysis.
Lemma 4. (Lemma 10 in Wang et al. (2023b)) Consider sequence {at}Tt=0 with a0 > 0, ai ≥ 0 for
i > 0, then we have

T∑
t=1

at∑t
τ=0 aτ

≤ ln

T∑
t=0

at − ln a0,

T∑
t=1

at

(
∑t

τ=0 aτ)
3/2

≤ 2
√
a0

,

T∑
t=1

at

(
∑t

τ=0 aτ)
1/2((

∑t−1
τ=0 aτ)

1/2 + (
∑t

τ=0 aτ)
1/2)2

≤ 1
√
a0

.

Lemma 5. (Lemmas 4 and 5 in Wang et al. (2023a)) Assume the constants 0 < β2
1 < β2 < 1.

Consider sequences {at}Tt=1, bn = β2bn−1 + (1− β2)a
2
n with b0 > 0, cn = β2cn−1 + (1− β2)an

with cn = 0, then we have
T∑

t=1

a2n
bn

≤ 1

1− β2
(ln

bT
b0

− T lnβ2), (2)

T∑
t=1

c2n
bn

≤ (1− β1)2

(1− β1√
β2
)2(1− β2)

(ln
bT
b0

− T lnβ2). (3)

A.2 PROOF OF THEOREMS 1 AND 2

Lemma 6. (Restatement of Lemma 1) If f(x) in Algorithm 1 satisfies Assumptions 1 and 2, we have
that

T∑
t=1

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
) ≤ A1 − E

∥∇f(wT)∥2√
vT

+
1

2D2

T∑
t=1

E
∥∇f(wt)∥2√

vt−1

+
4(1 + 2D2)ρ

2L2

ϵ
E lnuT (4)

where D2 = max{1, D1,
8(1+

√
D1)D1ρ
η }, A1 = ∥∇f(w1)∥2

ϵ + 4(1+2D2)L
2

ϵ (η2 − 2ρ2 ln ϵ).

Proof. For two vectors x and y, consider that ⟨x − y, y⟩ ≤ ⟨x − y, x⟩, we could further infer that
⟨x− y, y⟩ ≤ ∥x− y∥∥x∥. And further 2⟨x, y⟩ − 2∥y∥2 ≤ 2∥x− y∥∥x∥. Finally we obtain

∥x∥2 − ∥y∥2 ≤ 2∥x− y∥∥x∥+ ∥x∥2 + ∥y∥2 − 2⟨x, y⟩ = 2∥x− y∥∥x∥+ ∥x− y∥2

Based on this and Assumption 1, we have that

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
)

≤ E[
∥∇f(wt−1)∥2√

vt−1
− ∥∇f(wt)∥2√

vt
] +

2L∥wt − wt−1∥∥∇f(wt)∥+ L2∥wt − wt−1∥2√
vt−1

(5)

Consider

∥wt − wt−1∥ ≤ η
∥∇f(wt−1, ξt−1)∥√

vt−1
+ ρ∥∇f(xt, ξt)√

ut
− ∇f(xt−1, ξt−1)√

ut−1
∥ (6)

∥wt − wt−1∥2 ≤ 2η2
∥∇f(wt−1, ξt−1)∥2

vt−1
+ 2ρ2∥∇f(xt, ξt)√

ut
− ∇f(xt−1, ξt−1)√

ut−1
∥2 (7)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Substituting (6) and (7) into (5) and summing the result over t ∈ {2, ..., T} yields that

T∑
t=2

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
)

≤ E[
∥∇f(w1)∥2√

v1
− ∥∇f(wT)∥2√

vT
] + 2ηL

T∑
t=2

E
∥∇f(wt−1, ξt−1)∥∥∇f(wt)∥

vt−1

+2ρL

T∑
t=2

E
∥∇f(xt,ξt)√

ut
− ∇f(xt−1,ξt−1)√

ut−1
∥∥∇f(wt)∥

√
vt−1

+2η2L2
T∑

t=2

E
∥∇f(wt−1, ξt−1)∥2

v
3/2
t−1

+ 2ρ2L2
T∑

t=2

E
∥∇f(xt,ξt)√

ut
− ∇f(xt−1,ξt−1)√

ut−1
∥2

√
vt−1

(8)

In the RHS of (8)

2ηL

T∑
t=2

E
∥∇f(wt−1, ξt−1)∥∥∇f(wt)∥

vt−1

≤ 4D2η
2L2

T∑
t=2

E
∥∇f(wt−1, ξt−1)∥2

v
3/2
t−1

+
1

4D2

T∑
t=2

E
∥∇f(wt)∥2√

vt−1

2ρL

T∑
t=2

∥∇f(xt,ξt)√
ut

− ∇f(xt−1,ξt−1)√
ut−1

∥∥∇f(wt)∥
√
vt−1

≤ 4D2ρ
2L2

T∑
t=2

E
∥∇f(xt,ξt)√

ut
− ∇f(xt−1,ξt−1)√

ut−1
∥2

√
vt−1

+
1

4D2

T∑
t=2

E
∥∇f(wt)∥2√

vt−1

Thus, we have

T∑
t=2

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
)

≤ E[
∥∇f(w1)∥2√

v1
− ∥∇f(wT)∥2√

vT
] + 2(1 + 2D2)η

2L2
T∑

t=2

E
∥∇f(wt−1, ξt−1)∥2

v
3/2
t−1

+
1

2D2

T∑
t=2

E
∥∇f(wt)∥2√

vt−1
+ 2(1 + 2D2)ρ

2L2
T∑

t=2

E
∥∇f(xt,ξt)√

ut
− ∇f(xt−1,ξt−1)√

ut−1
∥2

√
vt−1

(a)

≤ E[
∥∇f(w1)∥2√

v1
− ∥∇f(wT)∥2√

vT
] +

1

2D2

T∑
t=2

E
∥∇f(wt)∥2√

vt−1
+ 4(1 + 2D2)η

2L2 1

ϵ

+
4(1 + 2D2)ρ

2L2

ϵ

T∑
t=1

E
∥∇f(xt, ξT)∥2

ut

(b)

≤ E[
∥∇f(w1)∥2√

v1
− ∥∇f(wT)∥2√

vT
] +

1

2D2

T∑
t=1

E
∥∇f(wt)∥2√

vt−1
+ 4(1 + 2D2)η

2L2 1

ϵ

+
4(1 + 2D2)ρ

2L2

ϵ
(E lnuT − lnu0)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where (a) and (b) come from Lemma 4. Finally, we have

T∑
t=1

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
)

≤ E[
∥∇f(w1)∥2√

v0
− ∥∇f(wT)∥2√

vT
] +

1

2D2

T∑
t=1

E
∥∇f(wt)∥2√

vt−1
+ 4(1 + 2D2)η

2L2 1

ϵ

+
4(1 + 2D2)ρ

2L2

ϵ
(E lnuT − lnu0)

≤ ∥∇f(w1)∥2

ϵ
+

4(1 + 2D2)L
2

ϵ
(η2 − 2ρ2 ln ϵ)− E

∥∇f(wT)∥2√
vT

+
1

2D2

T∑
t=1

E
∥∇f(wt)∥2√

vt−1
+

4(1 + 2D2)ρ
2L2

ϵ
E lnuT

Lemma 7. (Restatement of Lemma 2) If f(x) in Algorithm 1 satisfies Assumptions 1 and 2, we have
that

η

T−1∑
t=1

E
∥∇f(wt)∥2√

vt−1
≤ D1η

T−1∑
t=1

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
) + 2ρ(1 +

√
D1)E

∥∇f(xT)∥2√
uT−1

+A2 + 2η2L(1 + ρL)E ln vT−1 + (8ρ2L(1 + ρL) + ρ)E lnuT

where A2 = 2f(w1) + 2ρ∥∇f(x1)∥+ 4ρ2L+ D0

ϵ (η+ ρ√
D1

)− (4L(1 + ρL)(η2 + 4ρ2) + 2ρ) ln ϵ.

Proof. According to the L-smoothness of f(x), we have

E|Ft [f(wt+1)] ≤ f(wt) + E|Ft⟨∇f(wt), wt+1 − wt⟩+
L

2
E|Ft∥wt+1 − wt∥2

= f(wt) + ηE|Ft⟨∇f(wt),−
∇f(wt, ξt)√

vt
⟩

+E|Ft⟨∇f(wt), ρ(
∇f(xt+1, ξt+1)√

ut+1
− ∇f(xt, ξt)√

ut
)⟩+ L

2
E|Ft∥wt+1 − wt∥2

(9)

Since

E|Ft⟨∇f(wt),−
∇f(wt, ξt)√

vt
⟩

= −E|Ft⟨∇f(wt),
∇f(wt, ξt)√

vt−1
⟩+ E|Ft⟨∇f(wt),∇f(wt, ξt)(

1
√
vt−1

− 1
√
vt
)⟩

= −∥∇f(wt)∥2√
vt−1

+ E|Ft⟨∇f(wt),∇f(wt, ξt)(
1

√
vt−1

− 1
√
vt
)⟩ (10)

Substituting (10) into (9), we have

η
∥∇f(wt)∥2√

vt−1
≤ f(wt)− E|Ftf(wt+1) + ηE|Ft⟨∇f(wt),∇f(wt, ξt)(

1
√
vt−1

− 1
√
vt
)⟩

+E|Ft⟨∇f(wt), ρ(
∇f(xt+1, ξt+1)√

ut+1
− ∇f(xt, ξt)√

ut
)⟩

+
L

2
E|Ft∥wt+1 − wt∥2 (11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For the terms on the RHS of (11), first we have

E|Ft∥wt+1 − wt∥2

≤ 2η2E|Ft
∥∇f(wt, ξt)∥2

vt
+ 2ρ2E|Ft∥∇f(xt+1, ξt+1)√

ut+1
− ∇f(xt, ξt)√

ut
∥2

≤ 2η2E|Ft
∥∇f(wt, ξt)∥2

vt
+ 4ρ2E|Ft(

∥∇f(xt+1, ξt+1)∥2

ut+1
+

∥∇f(xt, ξt)∥2

ut
). (12)

Taking the expectation over Ft and summing up over t ∈ {1, 2, ..., T − 1} yields that

T−1∑
t=1

E∥wt+1 − wt∥2 ≤ 2η2(E ln vT−1 − ln v0) + 8ρ2(E lnuT − lnu0). (13)

Then, we have

E|Ft⟨∇f(wt),∇f(wt, ξt)(
1

√
vt−1

− 1
√
vt
)

(a)

≤ E|Ft
∥∇f(wt)∥∥∇f(wt, ξt)∥3√
vt−1

√
vt(

√
vt−1 +

√
vt)

(b)

≤ E|Ft
∥∇f(wt)∥∥∇f(wt, ξt)∥2√

vt−1(
√
vt−1 +

√
vt)

≤ 1

2
E|Ft

∥∇f(wt)∥2√
vt−1

+
1

2
(E|Ft

∥∇f(wt, ξt)∥2

v
1/4
t−1(

√
vt−1 +

√
vt)

)2

(c)

≤ 1

2
E|Ft

∥∇f(wt)∥2√
vt−1

+
1

2

1
√
vt−1

(E|Ft∥∇f(wt, ξt)∥2)(E|Ft
∥∇f(wt, ξt)∥2

(
√
vt−1 +

√
vt)2

)

(d)

≤ 1

2
E|Ft

∥∇f(wt)∥2√
vt−1

+
1

2

T−1∑
t=1

1
√
vt−1

(D0 +D1∥∇f(wt)∥2)(E|Ft
∥∇f(wt, ξt)∥2

(
√
vt−1 +

√
vt)2

)

(e)

≤ 1

2
E|Ft

∥∇f(wt)∥2√
vt−1

+
D0

2
E|Ft

∥∇f(wt, ξt)∥2√
vt−1(

√
vt−1 +

√
vt)2

+
D1

2
∥∇f(wt)∥2E|Ft(

1
√
vt−1

− 1
√
vt
)

(14)

where (a) holds because of ⟨x, y⟩ ≤ ∥x∥∥y∥; (b) holds because ∥∇f(wt, ξt)∥ ≤ √
vt; (c) comes

from Cauchy’s Inequality; (d) comes from Assumption 2; (e) holds because

∥∇f(wt, ξt)∥2√
vt−1(

√
vt−1 +

√
vt)2

≤ ∥∇f(wt, ξt)∥2√
vt−1

√
vt(

√
vt−1 +

√
vt)

=
1

√
vt−1

− 1
√
vt
, (15)

Taking the expectation on (14) over Ft and summing up over t ∈ {1, 2, ..., T − 1} yields that

T−1∑
t=1

E⟨∇f(wt),∇f(wt, ξt)(
1

√
vt−1

− 1
√
vt
)⟩

(f)

≤ 1

2

T−1∑
t=1

E
∥∇f(wt)∥2√

vt−1
+

D0

2ϵ
+

D1

2

T−1∑
t=1

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
) (16)

where (f) comes from Lemma 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Finally, we have

T−1∑
t=1

E|Ft⟨∇f(wt), ρ(
∇f(xt+1, ξt+1)√

ut+1
− ∇f(xt, ξt)√

ut
)⟩

= ρ

T−1∑
t=1

E|Ft⟨∇f(wt+1),
∇f(xt+1, ξt+1)√

ut+1
⟩ − E|Ft⟨∇f(wt),

∇f(xt, ξt)√
ut

⟩

+E|Ft⟨∇f(wt)−∇f(wt+1),
∇f(xt+1, ξt+1)√

ut+1
⟩

= E|FT ⟨∇f(wT), ρ
∇f(xT , ξT)√

uT
⟩ − E|F1⟨∇f(w1), ρ

∇f(x1, ξ1)√
u1

⟩

+ρ

T−1∑
t=1

E|Ft⟨∇f(wt)−∇f(wt+1),
∇f(xt+1, ξt+1)√

ut+1
⟩ (17)

For the first term on the RHS of (17)

E|FT ⟨∇f(wT), ρ
∇f(xT , ξT)√

uT
⟩

= E|FT ⟨∇f(xT + ρ
∇f(xT , ξT)√

uT
)−∇f(xT), ρ

∇f(xT , ξT)√
uT

⟩+ ρE|FT ⟨∇f(xT),
∇f(xT , ξT)√

uT
⟩

(g)

≤ ρ2L+ ρE|FT ⟨∇f(xT),
∇f(xT , ξT)√

uT−1
⟩+ ρE|FT ⟨∇f(xT),∇f(xT , ξT)(

1
√
uT

− 1
√
uT−1

)⟩

(h)

≤ ρ2L+ ρ
∥∇f(xT)∥2√

uT−1
+ ρE|FT

∥∇f(xT)∥∥∇f(xT , ξT)∥3√
uT−1

√
uT (

√
uT−1 +

√
uT)

(i)

≤ ρ2L+ ρE|FT
∥∇f(xT)∥2√

uT−1
+ ρ

∥∇f(xT)∥∥∇f(xT , ξT)∥2√
uT−1(

√
uT−1 +

√
uT)

(18)

where (g) holds because ⟨a, b⟩ ≤ ∥a∥∥b∥ and Assumption 1; (h) and (i) hold in the same way as (14).
For the last term on the RHS of (18)

E|FT
∥∇f(xT)∥∥∇f(xT , ξT)∥2√

uT−1(
√
uT−1 +

√
uT)

≤
√
D1

2

∥∇f(xT)∥2√
uT−1

+
1

2
√
D1

√
uT−1

(E|FT
∥∇f(xT , ξT)∥2√
uT−1 +

√
uT

)2

≤
√
D1

2

∥∇f(xT)∥2√
uT−1

+
1

2
√
D1

√
uT−1

(E|FT ∥∇f(xT , ξT)∥2)(E|FT
∥∇f(xT , ξT)∥2

(
√
uT−1 +

√
uT)2

)

≤
√
D1

2

∥∇f(xT)∥2√
uT−1

+
1

2
√
D1

√
uT−1

(D0 +D1∥∇f(xT)∥2)(E|FT
∥∇f(xT , ξT)∥2

(
√
uT−1 +

√
uT)2

)

(j)

≤
√
D1

∥∇f(xT)∥2√
uT−1

+
D0

2ϵ
√
D1

(19)

where (j) holds because ∥∇f(xT ,ξT)∥2

(
√
uT−1+

√
uT)2 ≤ 1 and

√
uT−1 ≥ ϵ. Combining (18) and (19) yields

E|FT ⟨∇f(wT), ρ
∇f(xT , ξT)√

uT
⟩ ≤ ρ2L+

ρD0

2ϵ
√
D1

+ (1 +
√

D1)ρ
∥∇f(xT)∥2√

uT−1
(20)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

For the second term on the RHS of (17)

−E|F1⟨∇f(w1), ρ
∇f(x1, ξ1)√

u1
⟩

= −E|F1⟨∇f(x1 + ρ
∇f(x1, ξ1)√

u1
)− f(x1), ρ

∇f(x1, ξ1)√
u1

⟩ − E|F1⟨∇f(x1), ρ
∇f(x1, ξ1)√

u1
⟩

≤ ρ2L+ E|F1∥∇f(x1)∥∥ρ
∇f(x1, ξ1)√

u1
∥

≤ ρ2L+ ρ∥∇f(x1)∥ (21)

For the last term on the RHS of (17)
T−1∑
t=1

E|Ft⟨∇f(wt)− f(wt+1),
∇f(xt+1, ξt+1)√

ut+1
⟩

(k)

≤ L2

2

T−1∑
t=1

E|Ft∥wt+1 − wt∥2 +
1

2

T−1∑
t=1

E|Ft
∥∇f(xt+1, ξt+1)∥2

ut+1

(l)

≤ η2L2(E|FT−1 ln vT−1 − ln v0) + 4ρ2L2(E|FT lnuT − lnu0) +
1

2
(E|FT lnuT − lnu0)

(22)

where (k) comes from Assumption 1; the (l) comes from Lemma 4. Substituting (20), (21) and (22)
into (17) and taking the expectation over Ft yield that

T−1∑
t=1

E⟨∇f(wt), ρ(
∇f(xt+1, ξt+1)√

ut+1
− ∇f(xt, ξt)√

ut
)⟩

≤ 2ρ2L+
ρD0

2ϵ
√
D1

+ ρ∥∇f(x1)∥ − (ρη2L2 + 4ρ3L2 +
ρ

2
) lnu0

+(1 +
√
D1)ρE

∥∇f(xT)∥2√
uT−1

+ ρη2L2E ln vT−1 + (4ρ3L2 +
ρ

2
)E lnuT . (23)

Substituting (13), (16) and (23) into (11) yields that

η

T−1∑
t=1

∥∇f(wt)∥2√
vt−1

≤ f(w1) + ρ∥∇f(x1)∥+ 2ρ2L+
D0

2ϵ
(η +

ρ√
D1

) +
η

2

T−1∑
t=1

∥∇f(wt)∥2√
vt−1

+
D1η

2

T−1∑
t=1

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
)− ((1 + ρL)(η2 + 4ρ2)L+

ρ

2
) lnu0

+η2L(1 + ρL)E ln vT−1 + (4ρ3L2 + 4ρ2L+
ρ

2
)E lnuT + (1 +

√
D1)ρE

∥∇f(xT)∥2√
uT−1

.

Rearranging the result and considering that lnu0 = 2 ln ϵ yields the result.

Lemma 8. (Restatement of Lemma 3) If f(x) in Algorithm 1 satisfies Assumptions 1, we have that

∥∇f(wt, ξt)∥2 ≤ (
ρL

ϵ
+ 1)∥∇f(xt, ξt)∥2, vt ≤ (

ρL

ϵ
+ 1)ut

Proof.

∥∇f(wt, ξt)∥2

= ∥∇f(wt, ξt)−∇f(xt, ξt)∥2 + 2⟨∇f(wt, ξt)−∇f(xt, ξt),∇f(xt, ξt)⟩+ ∥∇f(xt, ξt)∥2

≤ L2∥wt − xt∥2 + 2L∥wt − xt∥∥∇f(xt, ξt)∥+ ∥∇f(xt, ξt)∥2

= ρ2L2 ∥∇f(xt, ξt)∥2

ut
+ 2ρL

∥∇f(xt, ξt)∥√
ut

∥∇f(xt, ξt)∥+ ∥∇f(xt, ξt)∥2

= (
ρL
√
ut

+ 1)2∥∇f(xt, ξt)∥2 ≤ (
ρL

ϵ
+ 1)2∥∇f(xt, ξt)∥2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where the last inequality holds because ut ≥ u0 = ϵ2. Further, we can obtain vt ≤ (ρLϵ + 1)ut.

Theorem 4. (Restatement of Theorem 1) If f(x) in Algorithm 1 satisfies Assumptions 1 and 2, for
any perturbation radius ρ and learning rate eta > 0, we have that

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ (2
√
2D0T + ϵ2 +A5)(A3 + 2A4 ln(2

√
2D0T + ϵ2 +A5))

T

where

A3 =

√
ρL

ϵ
+ 1[

4D0

ϵ
+ 8D1A1 +

4A2

η
− (

8ρ2L2

ϵ
+ 4ηL) ln ϵ+ 8ηL(2 + ρL) ln(1 +

ρL

ϵ
)],

A4 =

√
ρL

ϵ
+ 1[32ρ2L(1 + ρL+

(1 + 2D2)D1ηL

ϵ
+

ηL

8ϵ
) + 4ρ+ 8η2L(2 + ρL)]/η,

A5 = 4D1A3 + 4D1A4 ln(4D1A4).

Proof. According to the L-smoothness of f(x), we have

E|Ft [f(xt+1)] ≤ f(xt) + E|Ft⟨∇f(xt), xt+1 − xt⟩+
L

2
E|Ft∥xt+1 − xt∥2

= f(xt)− ηE|Ft⟨∇f(xt),
gt√
vt
⟩+ η2L

2
E|Ft∥ gt√

vt
∥2

= f(xt) + ηE|Ft⟨∇f(xt),
−gt√
vt−1

⟩︸ ︷︷ ︸
T1

+ ηE|Ft⟨∇f(xt), gt(
1

√
vt−1

− 1
√
vt
)⟩︸ ︷︷ ︸

T2

+
η2L

2
E|Ft∥ gt√

vt
∥2︸ ︷︷ ︸

T3

For T1,

T1 = ηE|Ft⟨∇f(xt),
−∇f(wt)√

vt−1
⟩ = ηE|Ft⟨∇f(xt),

−∇f(xt + ρ∇f(xt,ξt)√
ut

)
√
vt−1

⟩

=
η

√
vt−1

E|Ft

(
⟨∇f(xt),∇f(xt)−∇f(xt + ρ

∇f(xt, ξt)√
ut

)⟩ − ⟨∇f(xt),∇f(xt)⟩
)

≤ η

4
E|Ft

∥∇f(xt)∥2√
vt−1

+
η

√
vt−1

E|Ft∥∇f(xt)−∇f(xt + ρ
∇f(xt, ξt)√

ut
)∥2

−ηE|Ft
∥∇f(xt)∥2√

vt−1

(a)

≤ −3η

4
E|Ft

∥∇f(xt)∥2√
vt−1

+
η

√
vt−1

E|Ft
ρ2L2∥∇f(xt, ξt)∥2

ut

≤ −3η

4
E|Ft

∥∇f(xt)∥2√
vt−1

+
ρ2ηL2

√
v0

E|Ft
∥∇f(xt, ξt)∥2

ut

where (a) comes from Assumption 1. Taking the expectation on the above inequality over Ft and
summing up over t ∈ {1, 2, ..., T} yields that

T∑
t=1

ηE⟨∇f(xt),
−gt√
vt−1

⟩
(b)

≤ −3η

4
E
∥∇f(xt)∥2√

vt−1
+

ρ2ηL2

ϵ
(E lnuT − 2 ln ϵ), (24)

where (b) comes from Lemma 4.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For T2

T2 = ηE|Ft⟨∇f(xt),
∇f(wt, ξt)∥∇f(wt, ξt)∥2√
vt−1

√
vt(

√
vt−1 +

√
vt)

⟩ ≤ ηE|Ft
∥∇f(xt)∥∥∇f(wt, ξt)∥3√
vt−1

√
vt(

√
vt−1 +

√
vt)

≤ ηE|Ft
∥∇f(xt)∥∥∇f(wt, ξt)∥2√

vt−1(
√
vt−1 +

√
vt)

≤ η

4
E|Ft

∥∇f(xt)∥2√
vt−1

+
η

√
vt−1

(
E|Ft

∥∇f(wt, ξt)∥2√
vt−1 +

√
vt

)2

≤ η

4
E|Ft

∥∇f(xt)∥2√
vt−1

+ η(E|Ft∥∇f(wt, ξt)∥2)
(
E|Ft

∥∇f(wt, ξt)∥2√
vt−1(

√
vt−1 +

√
vt)2

)

≤ η

4
E|Ft

∥∇f(xt)∥2√
vt−1

+D0η

T∑
t=1

E|Ft
∥∇f(wt, ξt)∥2√

vt−1(
√
vt−1 +

√
vt)2

+D1η∥∇f(wt)∥2E|Ft(
1

√
vt−1

− 1
√
vt
)

Taking the expectation on the above inequality over Ft and summing up over t ∈ {1, 2, ..., T} yields
that

T∑
t=1

ηE⟨∇f(xt), gt(
1

√
vt−1

− 1
√
vt
)⟩

≤ η

4

T∑
t=1

E
∥∇f(xt)∥2√

vt−1
+

D0η

ϵ
+D1η

T∑
t=1

∥∇f(wt)∥2E(
1

√
vt−1

− 1
√
vt
) (25)

the proof of (25) follows the same way as (14). From Lemma 6, we can obtain that

D1η

T∑
t=1

∥∇f(wt)∥2E(
1

√
vt−1

− 1
√
vt
) ≤ 4(1 + 2D2)D1ρ

2ηL2

ϵ
E lnuT −D1ηE

∥∇f(wT)∥2√
vT

+D1ηA1 +
D1

2D2
η

T∑
t=1

E
∥∇f(wt)∥2√

vt−1
(26)

By Lemma 7, we can further obtain that

−D1ηE
∥∇f(wT)∥2√

vT
+

D1

2D2
η

T∑
t=1

E
∥∇f(wt)∥2√

vt−1

≤ − D1

2D2
ηE

∥∇f(wT)∥2√
vT

+
D1

2D2
η(

T−1∑
t=1

E
∥∇f(wt)∥2√

vt−1
+

∥∇f(wT)∥2√
vT−1

)

≤ D2
1

2D2
η

T−1∑
t=1

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
) +

D1

2D2
ηE∥∇f(wT)∥2(

1
√
vT−1

− 1
√
vT

)

+
A2

2
+

η

8
E
∥∇f(xT)∥2√

uT−1
+ η2L(1 + ρL)E ln vT−1 + (4ρ2L(1 + ρL) +

ρ

2
)E lnuT

≤ D1

2
η

T∑
t=1

E∥∇f(wt)∥2(
1

√
vt−1

− 1
√
vt
) +

A2

2
+

η

8
E
∥∇f(xT)∥2√

uT−1

+η2L(1 + ρL)E ln vT−1 + (4ρ2L(1 + ρL) +
ρ

2
)E lnuT (27)

Substituting (27) into (26) yields that

D1η

T∑
t=1

∥∇f(wt)∥2E(
1

√
vt−1

− 1
√
vt
) ≤ 2D1ηA1 +A2 +

η

4
E
∥∇f(xT)∥2√

uT−1

+2η2L(1 + ρL)E ln vT−1 + (8ρ2L(1 + ρL+
(1 + 2D2)D1ηL

ϵ
) + ρ)E lnuT (28)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Substituting (28) into (25) yields that
T∑

t=1

EηE|Ft⟨∇f(xt), gt(
1

√
vt−1

− 1
√
vt
)⟩ ≤ η

4

T∑
t=1

E
∥∇f(xt)∥2√

vt−1
+

D0η

ϵ
+ 2D1ηA1 +A2

+
η

4
E
∥∇f(xT)∥2√

uT−1
+ 2η2L(1 + ρL)E ln vT−1 + (8ρ2L(1 + ρL+

(1 + 2D2)D1ηL

ϵ
) + ρ)E lnuT

(29)

For T3, taking expectation over Ft and summing up over t ∈ {1, 2, ..., T} yields that

η2L

2

T∑
t=1

E∥ gt√
vt
∥2 ≤ η2L

2
(E ln vT − ln v0) =

η2L

2
(E ln vT − 2 ln ϵ) (30)

Combining (24), (29) and (30) yields that

η

2

T∑
t=1

E
∥∇f(xt)∥2√

vt−1

≤ D0η

ϵ
+ 2D1ηA1 +A2 − (

2ρ2ηL2

ϵ
+ η2L) ln ϵ+ η2L(2(1 + ρL) +

1

2
)E ln vT

+(8ρ2L(1 + ρL+
(1 + 2D2)D1ηL

ϵ
+

ηL

8ϵ
) + ρ)E lnuT +

η

4
E
∥∇f(xT)∥2√

uT−1

≤ D0η

ϵ
+ 2D1ηA1 +A2 − (

2ρ2ηL2

ϵ
+ η2L) ln ϵ+ η2L(2(1 + ρL) +

1

2
) ln(1 +

ρL

ϵ
)

+(8ρ2L(1 + ρL+
(1 + 2D2)D1ηL

ϵ
+

ηL

8ϵ
) + ρ+ η2L(2(1 + ρL) +

1

2
))E lnuT

+
η

4

T∑
t=1

E
∥∇f(xT)∥2√

uT−1
(31)

Rearranging the result and considering that ∥∇f(xt)∥2

√
vt−1

≥
√

ϵ
ρL+ϵ

∥∇f(xt)∥2

√
ut−1

(which comes from

Lemma 8) yields that
T∑

t=1

E
∥∇f(xt)∥2√

ut
≤ A3 +A4E lnuT

Finally, we adopt the same derivation as "Stage II" in the proof of Lemma 4 in Wang et al. (2023b) to
obtain that

E[
√
uT] ≤ 2

√
2D0T + ϵ2 +A5 (32)

as well as the final result.

The proof of Theorem 2 is similar to the above proof. The difference is the scalars are replaced with
vectors, and for vectors a and b, we turn to bound ∥a⊙ b∥2 =

∑d
l=1 a

2
l b

2
l and ∥ 1

b ⊙ a∥2 =
∑d

l=1
a2
l

b2l
.

We do not repeat the whole progress here.

A.3 PROOF OF THEOREM 3

Before the proof, we define

pt =
wt − β1√

β2
wt−1

1− β1√
β2

,

ũt = β2ut−1 + (1− β2)D01d,

qt =
xt − β1√

β2
xt−1

1− β1√
β2

,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

ṽt = β2vt−1 + (1− β2)D01d.

The idea of proof of Theorem 3 is identical to that of Theorem 1. We provide the main intermediate
results and omit some details.
Lemma 9. If f(x) in Algorithm 3 satisfies Assumptions 3 and 4, we have that

3

4

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l
≤ C0

T∑
t=1

d∑
l=1

E(
∇f(wt−1)

2
l√

β2ṽt,l
− ∇f(wt)

2
l√

vt,l
) + C1

d∑
l=1

E ln r2t,l

+C2

d∑
l=1

E lnm2
t,l + C3

Proof. From the definition, we have that

pt+1,i − pt,i

= − (1− β1)η

1− β1√
β2

gt,i√
ṽt,i

− η

1− β1√
β2

(
1

√
vt,i

− 1√
ṽt,i

)mt,i +
β1η

1− β1√
β2

(
1√

β2vt−1,i

− 1√
ṽt,i

)mt−1,i

− (1− β1)ρ

1− β1√
β2

st,i√
ũt,i

− ρ

1− β1√
β2

(
1

√
ut,i

− 1√
ũt,i

)rt,i +
β1ρ

1− β1√
β2

(
1√

β2ut−1,i

− 1√
ũt,i

)rt−1,i

− (1− β1)ρ

1− β1√
β2

st−1,i√
ũt−1,i

− ρ

1− β1√
β2

(
1

√
ut−1,i

− 1√
ũt−1,i

)rt−1,i

+
β1ρ

1− β1√
β2

(
1√

β2ut−2,i

− 1√
ũt−1,i

)rt−2,i

According to the L-smoothness, we have that

f(pt+1) ≤ f(pt)+ ⟨∇f(wt), pt+1 − pt⟩+ ⟨∇f(pt)−∇f(wt), pt+1 − pt⟩+
L

2
∥pt+1 − pt∥2 (33)

Summing up the above inequality over {1, ..., T} and take the expectation yields that

E[f(pT+1)] ≤ f(p1) +

T∑
t=1

E⟨∇f(wt), pt+1 − pt⟩+
T∑

t=1

E⟨∇f(pt)−∇f(wt), pt+1 − pt⟩

+
L

2
E∥pt+1 − pt∥2 (34)

For the term
∑T

t=1 E⟨∇f(wt), pt+1 − pt⟩, we follow Wang et al. (2023a) and the analysis in Lemma
7, bound each term as

−
T∑

t=1

d∑
l=1

gt,l√
ṽt,l

∇f(wt)l ≤ −3

4

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l
+ ρ2L2

T∑
t=1

d∑
l=1

E
g2
t,l

vt,l√
ũt,l

(35)

−
T∑

t=1

d∑
l=1

st,l√
ũt,l

∇f(wt)l ≤ −3

4

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l√

ũt,l

+ ρ2L2
T∑

t=1

d∑
l=1

E
r2t,l
ut,l√
ũt,l

(36)

−
T∑

t=1

d∑
l=1

st−1,l√
ũt−1,l

∇f(wt)l ≤ −3

4

T∑
t=1

d∑
l=1

E
∇f(xt−1)

2
l√

ũt−1,l

+ ρ2L2
T∑

t=1

d∑
l=1

E
r2t,l
ut,l√
ũt−1,l

(37)

T∑
t=1

d∑
l=1

(
1√

β2vt−1,l

− 1√
ṽt,l

)mt−1,l∇f(wt)l

≤ 1

16

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l
+

4β1

√
(1− β2)D0

(1− β1)β2

T∑
t=1

d∑
l=1

E
m2

t−1,l

vt,l
(38)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

T∑
t=1

d∑
l=1

(
1√

β2ut−1,l

− 1√
ũt,l

)rt−1,l∇f(wt)l

≤ 1

16

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ũt,l

+
4β1

√
(1− β2)D0

(1− β1)β2

T∑
t=1

d∑
l=1

E
r2t−1,l

ut,l
(39)

T∑
t=1

d∑
l=1

(
1√

β2ut−2,l

− 1√
ũt−1,l

)rt−2,l∇f(wt)l

≤ 1

16

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ũt−1,l

+
4β1

√
(1− β2)D0

(1− β1)β2

T∑
t=1

d∑
l=1

E
r2t−2,l

ut−1,l
(40)

T∑
t=1

d∑
l=1

(
1√
ṽt,l

− 1
√
vt,l

)mt,l∇f(wt)l

≤ (1− β1)η

2(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l
+

2η
√
(1− β2)D0

(1− β2
1

β2
)2

T∑
t=1

d∑
l=1

E
g2t,l
vt,l

+
4(1− β1)ηD1

(1− β1√
β2
)2

T∑
t=1

d∑
l=1

E(
∇f(wt−1)

2
l√

β2ṽt,l
− ∇f(wt)

2
l√

vt,l
)

+
64(1− β1)D1(1 +D1)ηL

2

(1− β1)β2
2(1−

β1√
β2
)3
√
(1− β2)D0

T∑
t=1

d∑
l=1

E(2η2
m2

t,l

vt
+ 8ρ2

r2t,l
ut,l

)

+
(1− β1)η

8(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l
+

2η
√
(1− β2)D0

(1− β1)(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
m2

t,l

v2t,l
(41)

T∑
t=1

d∑
l=1

(
1√
ũt,l

− 1
√
ut,l

)rt,l∇f(wt)l

≤ (1− β1)η

2(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ũt,l

+
2η

√
(1− β2)D0

(1− β2
1

β2
)2

T∑
t=1

d∑
l=1

E
r2t,l
ut,l

+
4(1− β1)ηD1

(1− β1√
β2
)2

T∑
t=1

d∑
l=1

E(
∇f(wt−1)

2
l√

β2ũt,l

− ∇f(wt)
2
l√

ut,l
)

+
64(1− β1)D1(1 +D1)ηL

2

(1− β1)β2
2(1−

β1√
β2
)3
√
(1− β2)D0

T∑
t=1

d∑
l=1

E(2η2
m2

t,l

vt
+ 8ρ2

r2t,l
ut,l

)

+
(1− β1)η

8(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ũt,l

+
2η

√
(1− β2)D0

(1− β1)(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
r2t,l
u2
t,l

(42)

For the other two terms, we have
T∑

t=1

E⟨∇f(pt)−∇f(wt), pt+1 − pt⟩+
L

2
E∥pt+1 − pt∥2

≤ η2L

(
2

(β1√
β2

1− β1√
β2

)2

E∥ 1
√
vt−1

⊙mt−1∥2 + 2

(
1

1− β1√
β2

)2

E∥ 1
√
vt

⊙mt∥2
)

+ρ2L

(
4

(β1√
β2

1− β1√
β2

)2

E∥ 1
√
ut−1

⊙ rt−1∥2 + 3

(
1

1− β1√
β2

)2

E∥ 1
√
ut

⊙ rt∥2
)

(43)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Summing up the above results yields that

3

4

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l
≤ C0

T∑
t=1

d∑
l=1

E(
∇f(wt−1)

2
l√

β2ṽt,l
− ∇f(wt)

2
l√

vt,l
)

+C1

d∑
l=1

E ln r2t,l + C2

d∑
l=1

E lnm2
t,l + C3 (44)

where C0, C1, C2 and C3 are constants with respect to η, ρ, β1, β2, D0 and D1.

Lemma 10. If f(x) in Algorithm 3 satisfies Assumptions 3, we have that
ṽt,l ≤ Cũt,l, (45)

where the constant C = max{1, 2(1− β2)[1 +
(1−β1)

2ρ2L2

(1−βa
1)(1−βb

2)ϵ
2]}.

Proof.

g2t,l = (∇f(xt + ρ
rt√

ut + ϵ2
, ξt)l −∇f(xt, ξt)l +∇f(xt, ξt)l)

2

≤ 2ρ2L2

ϵ2
r2t,l + 2s2t,l

=
2(1− β1)

2ρ2L2

ϵ2

t∑
τ=1

(βt−τ
1 sτ,l)

2 + 2s2t,l. (46)

Thus, we have that

vt,l = (1− β2)

t∑
k=1

βt−k
2 g2k,l + βt

2ϵ
2

≤ 2(1− β1)
2(1− β2)ρ

2L2

ϵ2

t∑
k=1

βt−k
2

k∑
τ=1

(βk−τ
1 sτ,l)

2 + 2(1− β2)

t∑
k=1

βt−k
2 s2k,l + βt

2ϵ
2.

(47)
Since β1 <

√
β2, there exists constants 0 < a, b < 2 satisfy that β2−a

1 ≤ β1+b
2 . Then, we have that

t∑
k=1

βt−k
2

k∑
τ=1

(βk−τ
1 sτ,l)

2 ≤
t∑

k=1

βt−k
2 (

k∑
τ=1

β
a(k−τ)
1)(

k∑
τ=1

β
(2−a)(k−τ)
1 s2τ,l)

≤ 1

1− βa
1

t∑
k=1

βt−k
2

k∑
τ=1

β
(2−a)(k−τ)
1 s2τ,l

=
1

1− βa
1

t∑
k=1

(
t−k∑
j=0

β
(2−a)j
1 βt−k−j

2)s2k,l

≤ 1

1− βa
1

t∑
k=1

βt−k
2 (

t−k∑
j=0

βbj
2)s2k,l

≤ 1

(1− βa
1)(1− βb

2)

t∑
k=1

βt−k
2 s2k,l. (48)

Substituting (48) into (47) yields that

vt,l ≤ 2(1− β2)[1 +
(1− β1)

2ρ2L2

(1− βa
1)(1− βb

2)ϵ
2
]

t∑
k=1

βt−k
2 s2k,l + βt

2ϵ
2

≤ Cut,l. (49)
Finally, considering the definition of ṽt,l, we have that

ṽt,l ≤ Cut,l. (50)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Theorem 5. (Restatement of Theorem 3) If f(x) in Algorithm 3 satisfies Assumptions 3 and 4, and
0 ≤ β1 ≤

√
β2 − 32D0(1 − β2)/β

2, β2 = 1 − Θ(1/
√
T). Then, for any perturbation radius

ρ = Θ(1/
√
T) and learning rate η = Θ(1/

√
T), we have that

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ O

(
lnT√
T

)
.

Proof. From the definition, we have that

qt+1,i − qt,i = −η
1− β1

1− β1√
β2

gt,i√
ṽt,i

− η
1

1− β1√
β2

(
1

√
vt,i

− 1√
ṽt,i

)mt,i

+η
β1

1− β1√
β2

(
1√

β2vt−1,i

− 1√
ṽt
)mt−1,i (51)

E[f(qt+1)]

≤ f(qt) + E⟨∇f(qt), qt+1 − qt⟩+
L

2
E∥qt+1 − qt∥2

= f(qt)− η
1− β1

1− β1√
β2

E⟨∇f(xt),
1√
ṽt

⊙∇f(wt)⟩ − η
1

1− β1√
β2

⟨∇f(xt), (
1

√
vt

− 1√
ṽt
)⊙mt⟩

+η
β1

1− β1√
β2

⟨∇f(xt), (
1√

β2vt−1

− 1√
ṽt
)⊙mt−1⟩+ E⟨∇f(qt)−∇f(xt), qt+1 − qt⟩

+
L

2
E∥qt+1 − qt∥2

Summing up the above inequality over {1, ..., T} yields that

E[f(qT+1)]− f(q1)

≤ −η(1− β1)

1− β1√
β2

T∑
t=1

d∑
l=1

E
∇f(xt)l∇f(wt)l√

ṽt,l
− η

1− β1√
β2

T∑
t=1

d∑
l=1

E∇f(xt)lmt,l(
1

√
vt,l

− 1√
ṽt,l

)

+
ηβ1

1− β1√
β2

T∑
t=1

d∑
l=1

E∇f(xt)lmt−1,l(
1√

β2vt−1,l

− 1√
ṽt,l

) +
L

2

T∑
t=1

E∥qt+1 − qt∥2

+

T∑
t=1

E⟨∇f(qt)−∇f(xt), qt+1 − qt⟩ (52)

Firstly, similar to (24), we obtain that

−
T∑

t=1

d∑
l=1

E
∇f(xt)l∇f(wt)l√

ṽt,l

≤ −3

4

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l√

ṽt,l
+ ρ2L2

T∑
t=1

d∑
l=1

E
r2t,l
ut,l√
ṽt,l

≤ −3

4

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l√

ṽt,l
+

(1− β1)
2ρ2L2

(1− β1√
β2
)2(1− β2)3/2

√
D0

T∑
t=1

d∑
l=1

E(ln
rT,i

ϵ
− T lnβ2)

(53)

Secondly, following the derivation in Wang et al. (2023a), we have
T∑

t=1

d∑
l=1

E∇f(xt)lmt,l(
1√
ṽt,l

− 1
√
vt,l

) ≤
T∑

t=1

d∑
l=1

E|∇f(xt)l||mt,l|
(1− β2)(g

2
t,l +D0)

√
vt,l

√
ṽt,l(

√
vt,l +

√
ṽt,l)

(54)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

For the above inequality

T∑
t=1

d∑
l=1

E|∇f(xt)l||mt,l|
(1− β2)g

2
t,l

√
vt,l

√
ṽt,l(

√
vt,l +

√
ṽt,l)

≤ (1− β1)η

4(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l√

ṽt,l

2η
√
(1− β2)D0

(1− β2
1

β2
)2

T∑
t=1

d∑
l=1

E
g2t,l
vt,l

+
4(1− β1)ηD1

(1− β1√
β2
)2
√
β2

T∑
t=1

d∑
l=1

E(
1√
β2ṽt,l

− 1
√
vt,l

)∇f(wt)
2
l

(55)

Further, we have

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

β2ṽt,l

≤
T∑

t=1

d∑
l=1

E
∇f(wt−1)

2
l√

β2ṽt−1,l

+
(1− β1√

β2
)(1− β1)

√
β2

16D1

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l

+
16(1 +D1)L

2

β
3/2
2 (1− β1√

β2
)(1− β1)

√
(1− β2)D0

T∑
t=1

E∥wt − wt−1∥2

≤
T∑

t=1

d∑
l=1

E
∇f(wt−1)

2
l√

β2ṽt−1,l

+
(1− β1√

β2
)(1− β1)

√
β2

16D1

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l

+
16(1 +D1)L

2

β
3/2
2 (1− β1√

β2
)(1− β1)

√
(1− β2)D0

T∑
t=1

d∑
l=1

E(2η2
m2

t,l

vt
+ 8ρ2

r2t,l
ut,l

) (56)

Thus, we have

T∑
t=1

d∑
l=1

E(
1√
β2ṽt,l

− 1
√
vt,l

)∇f(wt)
2
l ≤

T∑
t=1

d∑
l=1

E(
∇f(wt−1)

2
l√

β2ṽt,l
− ∇f(wt)

2
l√

vt,l
)

+
(1− β1√

β2
)(1− β1)

√
β2

16D1

T∑
t=1

d∑
l=1

E
∇f(wt)

2
l√

ṽt,l

+
16(1 +D1)L

2

β
3/2
2 (1− β1√

β2
)(1− β1)

√
(1− β2)D0

T∑
t=1

d∑
l=1

E(2η2
m2

t,l

vt
+ 8ρ2

r2t,l
ut,l

) (57)

Substituting Lemma 9 into (57) yields that

T∑
t=1

d∑
l=1

E(
1√
β2ṽt,l

− 1
√
vt,l

)∇f(wt)
2
l ≤

T∑
t=1

d∑
l=1

E(
∇f(wt−1)

2
l√

β2ṽt,l
− ∇f(wt)

2
l√

vt,l
)

C4

d∑
l=1

E ln r2t,l + C5

d∑
l=1

E lnm2
t,l + C6 (58)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Substituting (58) into (55) yields that

T∑
t=1

d∑
l=1

E|∇f(xt)l||mt,l|
(1− β2)g

2
t,l

√
vt,l

√
ṽt,l(

√
vt,l +

√
ṽt,l)

≤ (1− β1)η

4(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l +∇f(wt)

2
l√

ṽt,l
+

2η
√
(1− β2)D0

(1− β2
1

β2
)2

T∑
t=1

d∑
l=1

E
g2t,l
vt,l

+
4(1− β1)ηD1

(1− β1√
β2
)2

T∑
t=1

d∑
l=1

E(
∇f(wt−1)

2
l√

β2ṽt,l
− ∇f(wt)

2
l√

vt,l
)

+C4

d∑
l=1

E ln r2t,l + C5

d∑
l=1

E lnm2
t,l + C6 (59)

Then, we have

T∑
t=1

d∑
l=1

E|∇f(xt)l||mt,l|
(1− β2)D0

√
vt,l

√
ṽt,l(

√
vt,l +

√
ṽt,l)

≤ (1− β1)η

8(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l√

ṽt,l
+

2η
√

(1− β2)D0

(1− β1)(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
m2

t,l

vt,l
(60)

Substituting (59) and (60) into (54) yields that

T∑
t=1

d∑
l=1

E∇f(xt)lmt,l(
1√
ṽt,l

− 1
√
vt,l

)

≤ 3(1− β1)η

8(1− β1√
β2
)

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l +∇f(wt)

2
l√

ṽt,l
+

2η
√
(1− β2)D0

(1− β2
1

β2
)2

T∑
t=1

d∑
l=1

E
g2t,l
vt,l

+
4(1− β1)ηD1

(1− β1√
β2
)2

T∑
t=1

d∑
l=1

E(
∇f(wt−1)

2
l√

β2ṽt,l
− ∇f(wt)

2
l√

vt,l
)

+C4

d∑
l=1

E ln r2t,l + C5

d∑
l=1

E lnm2
t,l + C6 (61)

Thirdly, similar to Wang et al. (2023a), we have

T∑
t=1

d∑
l=1

E∇f(xt)lmt−1,l(
1√

β2vt−1,l

− 1√
ṽt,l

)

≤ 1

16

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l√

ṽt,l
+

4β1

√
1− β2

√
D0

(1− β1)β2

T∑
t=1

d∑
l=1

E
m2

t−1,l

vt,l
(62)

and

T∑
t=1

E⟨∇f(qt)−∇f(xt), qt+1 − qt⟩+
L

2
E∥qt+1 − qt∥2

≤
T∑

t=1

η2L

(
4

(β1√
β2

1− β1√
β2

)2

E∥ 1
√
vt−1

⊙mt−1∥2 + 3

(
1

1− β1√
β2

)2

E∥ 1
√
vt

⊙mt∥2
)

(63)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Epochs

20

30

40

50

60

Te
st

 A
cc

ur
ac

y(
%

)

(a) Test Accuracy for ViT-Tiny

0 2 4 6 8
Epochs

4

5

6

Tr
ai

n
Lo

ss

(b) Train Loss for ViT-Tiny

0 2 4 6 8
Epochs

45

55

65

75

Te
st

 A
cc

ur
ac

y(
\%

)

(c) Test Accuracy for ViT-Small

0 2 4 6 8
Epochs

3

4

5

6

Tr
ai

n
Lo

ss

(d) Train Loss for ViT-Small

SGD Adam SAM ASAM AdaSAM LightSAM

Figure 1: Experimental results of fine-tuning ViT models on Imagenet. (a): Test accuracy w.r.t.
epochs for ViT-Tiny; (b): Train loss w.r.t. epochs for ViT-Tiny; (c): Test accuracy w.r.t. epochs for
ViT-Small; (d) Train loss w.r.t. epochs for ViT-Small.

Next, substituting (53), (61), (62) and (63) into (52) and bounding the term
∑T

t=1

∑d
l=1

g2
t,l

vt,l
,∑T

t=1

∑d
l=1

m2
t,l

vt,l
,
∑T

t=1

∑d
l=1

r2t,l
ut,l

with Lemma 5,10 yields that

T∑
t=1

d∑
l=1

E
∇f(xt)

2
l√

ṽt,l
≤ C7 + C8

d∑
l=1

E lnut,l, (64)

where C7 and C8 are constants with respect to η, ρ, β1, β2, D0 and D1. Finally, following Wang
et al. (2023a) to bound E

√
ṽt,l and the final steps in proof of Theorem 1, we obtain the O(lnT/

√
T)

convergence rate.

B EXPERIMENT ILLUSTRATION

We plot the curves of training loss and test accuracy of fine-tuning ViT models in Figure 1. From
the figure, we could observe that regardless of the test accuracy and training loss, AdaSAM and our
proposed algorithm LightSAM are ahead of other baselines obviously throughout the whole process,
and LightSAM has a little advantage over AdaSAM. Though this performance is partly due to the
power of Adam in Transformer-based model, it still illustrates the capability of adopting adaptive
hyper-parameters in the SAM optimizer.

29

	Introduction
	Related Work
	Methodology
	Problem Setup
	LightSAM-I (AdaGrad-Norm)
	LightSAM-II (AdaGrad)
	LightSAM-III (Adam)

	Experiments
	MNIST dataset
	Finetuning on Imagenet dataset
	Finetuning on GLUE task

	Conclusion
	Proof Details
	Useful Inequalities
	Proof of Theorems 1 and 2
	Proof of Theorem 3

	Experiment Illustration

