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ABSTRACT

Sharpness-Aware Minimization (SAM) optimizer enhances the generalization abil-
ity of the machine learning model by exploring the flat minima landscape through
weight perturbations. Despite its empirical success, SAM introduces an additional
hyper-parameter, the perturbation radius, which causes the sensitivity of SAM to it.
Moreover, it has been proved that the perturbation radius and learning rate of SAM
are constrained by problem-dependent parameters to guarantee convergence. These
limitations indicate the requirement of parameter-tuning in practical applications.
In this paper, we propose the algorithm LightSAM which sets the perturbation
radius and learning rate of SAM adaptively, thus extending the application scope of
SAM. LightSAM employs three popular adaptive optimizers, including AdaGrad-
Norm, AdaGrad and Adam, to replace the SGD optimizer for weight perturbation
and model updating, reducing sensitivity to parameters. Theoretical results show
that under weak assumptions, LightSAM could converge ideally with any choices
of perturbation radius and learning rate, thus achieving parameter-agnostic. We
conduct preliminary experiments on several deep learning tasks, which together
with the theoretical findings validate the the effectiveness of Light SAM.

1 INTRODUCTION

Machine learning has achieved significant success across various application domains. As a critical
component of machine learning, many optimization approaches are explored to train the model
efficiently. However, most of the previous works only focus on minimizing the training loss, which
would face the dilemma of over-fitting since the popular models are over-parameterized. Recently,
there has been a raised attention on generalization ability since it represents the prediction ability on
unseen data, thus very crucial for a model. |[Keskar et al.[|(2016); Neyshabur et al.|(2017) study the
relationship between the flatness of loss landscape and generalization ability, which consequently
suggests finding flat minima that have low curvature in the neighbourhoods.

The above idea is formalized as a novel minimax problem, named Sharpness-Aware Minimization
(Foret et al., 2020). The main difference from the original loss function is that Sharpness-Aware
Minimization has a step that maximizes the loss function in the neighbourhood. This consideration
of worst-case guarantees the low loss value in a region, thus making the loss landscape of minima flat
and improving generalization ability, which results in the novel SAM optimizer: in each iteration,
a weight perturbation is performed along the gradient direction with radius p, then the stochastic
gradient on the perturbed weight is used in gradient descent with learning rate 7 to update the model.
SAM significantly improves the test performances of several deep networks (Foret et al., 2020).

The convergence rates of SAM and its variants have been extensively analyzed in existing works
(Andriushchenko & Flammarion, [2022; M1 et al., 2022 |Shin et al., 2023 [Sun et al., 2024). However,
these theoretical results require restrictions on two hyper-parameters of perturbation radius p and
learning rate 7, either upper bounded or unequal relationship between them. These restrictions usually
involve some problem-dependent constants, such as the Lipschitz constant, whose value could not be
obtained a prior and hard to be estimated. In addition, though it is proved that the normalization in
the perturbation step makes SAM less sensitive on p (Dai et al.,|2023)), the empirical studies in the
above works show that the sensitivity to the learning rate still exists and the adopted values are not
stable. These shortcomings make it necessary to do parameter-tuning in empirical studies, which
increases cost especially when training large-scale models. Thus, we raise a question that:
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Can we make SAM parameter—agnosti

In fact, parameter-agnostic algorithms are thoroughly studied in online learning to avoid parameter-
tuning (Orabona, |2014; |Cutkosky & Boahen, 2017} |Orabona & Tommasi, 2017). Recently, |Defazio
& Mishchenko) (2023)) suggest to use Adagrad-like step size to achieve learning-rate-agnostic. [Wang
et al.[ (2023b) and [Wang et al.| (2023a)) prove the ideal convergence rate for adaptive optimizers.
These motivate us to introduce adaptive learning rate into SAM to realize parameter-agnostic. Note
that directly introducing adaptivity for both the perturbation radius and learning rate is technically
non-trivial. This is due to that the terms need to be bounded would involve two gradients in one
iteration, and the relationship between them is hard to establish since the randomnesses in one term
could not be decoupled directly in the proof for adaptive methods.

In this paper, we study how to make the SAM optimizer parameter-agnostic. To achieve this goal,
we propose an algorithm LightSAM. We provide three options for LightSAM, and in each option,
we adopt one commonly used adaptive optimizer to perform weight perturbation and model update
instead of SGD in vanilla SAM. As a consequence, both the weight perturbation and model update
become adaptive during training. Specifically, we adopt the AdaGrad-Norm-type learning rate
for LightSAM, named LightSAM-I, which uses a scaler-type adaptive learning rate for both the
perturbation ascent step and gradient descent step (p, n). In addition, we also consider the AdaGrad-
type and Adam-type learning rate for LightSAM, named LightSAM-II and LightSAM-III respectively,
which use coordinate-wise learning rates for two hyper-parameters (p, ). Theoretically, we prove
the O(InT//T) convergence rate for LightSAM without any restrictions on perturbation radius and
learning rate, thus achieving parameter-agnostic optimizers. Additionally, we only require nearly the
weakest assumptions among related studies.

Our contributions can be summarized as follows:

* We propose an algorithm LightSAM for non-convex optimization. Compared to SAM,
our algorithm could adopt AdaGrad-Norm, AdaGrad or Adam to implement the weight
perturbation and model update steps. As a result, both the perturbation radius and learning
rate become adaptive adjusted without requiring problem-dependent unknown parameters.

* The theoretical analysis indicates that LightSAM achieves the O(In7'/v/T') convergence
rate without the gradient bounded assumption which is commonly used in adaptive optimizer
analysis. Our result holds under any choices of hyper-parameters (p,7), indicating that
LightSAM is a parameter-agnostic optimizer, thereby saving the cost of parameter-tuning.

* We conduct several experiments to show the effectiveness of LightSAM, whose performance
is stable under different parameter settings and coincides with our theoretical findings.

2 RELATED WORK

Sharpness-Aware Minimization. SAM optimizer (Foret et al., |2020)) enhances the model gener-
alization ability by minimizing the sharpness of loss landscape through an extra step of parameter
perturbation. However, SAM still has some shortcomings in practical use, e.g., double gradient calcu-
lation and double learning rate hyper-parameter tuning. To address the issues where SAM exhibits
insensitivity to parameter scaling, [Kwon et al.|(2021) propose ASAM. This method incorporates
a normalization operator into the perturbation step to ensure adaptive sharpness. Recognizing the
increased computational cost due to SAM’s double forward and backward steps, SSAM (M:i et al.|
2022) generates a mask to sparsify the perturbation while SAF (Du et al., 2022) replaces SAM’s
sharpness measure loss with a trajectory loss to achieve almost zero additional computation cost.
GSAM (Zhuang et al.| 2022) introduces an ascent step in the orthogonal direction to minimize the
surrogate gap. Un-normalized SAM (USAM) (Andriushchenko & Flammarion, [2022) removes the
normalization term in SAM and analyzes the convergence under standard assumptions. However, in
order to guarantee the O(1/+/T) convergence rate, the values of perturbation radius p and learning
rate 7 are required to be dependent on the smoothness constant. Furthermore, Sun et al.| (2024)

n this paper, we follow the definition "parameter-agnostic" in \Wang et al.|(2024); Hiibler et al.| (2024)
to describe an algorithm that could guarantee convergence with any parameter values. This implies that all
parameters are not contingent upon any problem-dependent constants.
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Table 1: Comparison between SAM-related works.

Algorithm Adaptlve . Adgptlve Convergence rate® Addltlonal
perturbation radius | learning rate requirements
Gradient bounded;
SAM X X O(InT/VT)® Dependent on
gradient bound
Dependent on
USAM x al o/ \/T) Lipschitz constant
ASAM v X - -
Dependent on
AdaSAM X v O(1/VT) Lipschitz constant;
Gradient bounded
LightSAM v v O(InT/T) None

ERTIRD)

represents the convergence rate is not given in the original work.

® This could be improved to o/ VT ) by adjusting some hyper-parameters. We maintain the result inMi
et al.|(2022).

propose the adaptive SAM by utilizing AMSGrad-type (Reddi et al., [2019) learning rate in SAM.
However, the learning rate for maximizing the perturbation variable still requires heavy tuning.

Adaptive Optimizer. Adaptive optimizers make the learning rate adjust adaptively during the
training process. |Duchi et al| (2011) propose Adagrad, which accumulates the gradient second
raw moment, i.e. the square of historical gradients, and makes the learning rate of each element
inversely proportional to the square root of this sum. RMSProp (Tieleman) 2012) suggests adopting
an exponential moving average for the stochastic gradients to make adaptive optimizer work well in
deep learning. Adam (Kingma & Bal|2014) further introduces the exponential moving average to the
gradient second raw moment and becomes the most commonly used adaptive method.

It is showed that Adagrad could converge in both convex and non-convex settings (Li & Orabona,
2019). Adam-type algorithms achieve the O(In T'/+/T') convergence rate for non-convex optimization
problems (Chen et al., 2018). The convergence rate O(+/d/T) for AMSGrad, and O(d/+/T) for
Adagrad and RMSProp are theoretically proved (Zhou et al., |2018). Additionally, [Défossez et al.
(2020); |Shen et al.| (2023) analyze Adagrad and Adam under a framework with momentum and
recover the O(In T'/+/T') convergence rate. However, most of these theoretical results rely on a strong
assumption, i.e. the stochastic gradient is upper bounded. The analysis for RMSProp removes this
assumption and concludes the convergence to a bounded region (Shi & Li,[2021). With the hyper-
parameters commonly used in practice, Adam also converges to a region near critical points (Zhang
et al.l |2022). Recently, [Wang et al.[(2023bza) make breakthroughs that recover the O(InT'/ \/T)
convergence rate without gradient bounded assumption.

Parameter-Agnostic Optimization. Parameter-agnostic (also known as parameter-free) algorithms
are studied to achieve the optimal regret bound for the online optimization problem at first (Orabona,
2013; McMahan & Orabona, |2014; |Orabona & Pal, [2016). Kernel-based SGD (Orabonal 2014}
performs model selection and optimization without prior knowledge of problem and parameter-tuning.
Orabona & Tommasi| (2017 remove the learning rate from the gradient descent step to optimize the
objective function. (Carmon & Hinder|(2022) focus on stochastic optimization and select the learning
rate by a computable certificate. As a result, a nearly optimal convergence rate and parameter-agnostic
are both achieved. D-Adaptation (Defazio & Mishchenkol 2023)) adopts Adagrad-like learning rate
to iteratively lower bound the distance between the initial and optimal point . Normalized SGDM
(Hiibler et al., 2024) converges with a nearly optimal rate in the (Lg, L1)-smoothness setting.

The above mentioned SAM-related works adopt SGD optimizer in weight perturbation or model
update or both, which makes the parameters lack of adaptivity, and adaptive optimizer-related works
seldom consider enhancing the generalization ability. Our work improves this by making both the
perturbation radius and learning rate adaptive, and further parameter-agnostic. The most related work
to this paper is|Sun et al.[(2024). However, it only employs the adaptive learning rate in the gradient
descent step. Furthermore, their analysis requires the gradient bound assumption, which is too strong
to be satisfied for practical applications (Nguyen et al., 2018). We also notice SA-SAM (Naganuma
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et al.) which sets the learning rate by adaptively estimating the local smoothness constant, but it lacks
of convergence guarantee. We list the comparison between these works and our work in Table|[T}

3 METHODOLOGY

In this section, we propose a class of parameter-agnostic variants of SAM optimizer, named LightSAM.
LightSAM could adopt the Adagrad-Norm-type learning rate (Levy, [2017; [Ward et al.| [2020),
AdaGrad-type learning rate (Duchi et al.||2011) and Adam-type learning rate (Kingma & Bal[2014)
for estimating the double learning rate hyperparameters in SAM optimizer, denoted as LightSAM-I
(AdaGrad-Norm), LightSAM-II (AdaGrad) and LightSAM-III (Adam) respectively. Below, we first
introduce the problem setup for SAM and LightSAM.

3.1 PROBLEM SETUP

In this paper, we focus on the following stochastic non-convex optimization problem:

. 1<

min f(z) = ;f(:c, &),

where f(x, &) denotes the loss function about model weights = and data &;, n represents the number
of training data. We further assume that this optimization problem is well-defined.

Notations. We use the following notations in this paper: || - || denotes the [y norm of a vector. V f(z)
represents the gradient of function f(z), V f (x),; represents the I-th element of V f (x). For the vector
sequences {a;}, az,; denotes the [-th element of a;. © represents element-wise multiplication.

SAM Optimizer. Sharpness-Aware Minimization problem (Foret et al., |2020) focuses on minimax
saddle point optimization to seek a flat minimum by introducing the weight perturbation step

minmax fs(z + €).
z lell<p

By alternatively performing a dual ascent step for the perturbation and a gradient descent step for the
primal weight, SAM takes the following two-time scale update rule:

wy = ¢ + pV f (24, &) /IV (24, 6
Topr = — NV f(we, &)
According to this update rule, SAM faces the challenge that there exist two learning rate hyperpa-
rameters (p, ) that need to be carefully tuned. Dai et al.|(2023)) show that the learning rate p for
the perturbation step is crucial for the final performance of SAM. Classic trial-and-error learning
tuning techniques for p suffer from heavy tuning costs due to double gradient calculation in SAM. It
is urgent to design cheap, lightweight, and automatic learning rate tuning techniques for SAM.

3.2 LIGHTSAM-I (ADAGRAD-NORM)

In this section, we propose our first algo-
rithm LightSAM-I as described in Algorithm ]

Algorithm 1 LightSAM-I (AdaGrad-Norm)

Adagrad-Norm (Levyl 2017; [Ward et al., 2020)
only updates the scalar learning rate by historical
gradients rather than the element-wise learning
rate in AdaGrad. In the weight perturbation steps
(lines 3-5) of our algorithm, we use the Adagrad-
Norm to generate the perturbed weights w; in-
stead of SGD optimizer in SAM. Meanwhile, we
adopt the same strategy in the gradient descent
steps (lines 6-8) to update model weights.

Before giving the theoretical analysis for Algo-
rithm[T] we list some necessary assumptions. We

Require: Initial values xo, uo = vo = €2, perturba-
tion radius p, learning rate 7.
1: fort=1,...,T do

2: Sample a minibatch &; from the dataset;

3 Compute stochastic gradient s; =V f(x¢, & );
4: Ut = Ut—1 + ||StH2§

50w =zt pss
6.
7
8
9

Compute stochastic gradient g; = V f (wy, &);

UVt = V¢—1 + HgtHZ;
gt .

NN

: Update weights x¢41 = x+ —
: end for

denote F; = o{s1,91, ..., St, g+ } as the sigma algebra generated by the observations of LightSAM
after observing the stochastic gradients in the first ¢ iterations. E!7*[o] is equivalent to E[o| F3].
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Assumption 1 (L-smoothness). f(z,£) is differentiable and satisfies the following inequality:

IV f(2,6) = Vf(y, Ol < Lz —yll, Yo,y € R
Assumption 2 (Affine noise variance). There exist positive constants (Dg, D1) such that the following
inequality holds:

EV [V f(ae, €0)|° < Do+ Dil[Vf(@)|®,  EVH|V f(ws, &)I* < Do + D[V f (w)||.

Straightforwardly, we could obtain the L-smoothness of f(z) based on Assumption These two
assumptions are nearly the weakest requirements in stochastic optimization works, except that
Assumption [I]assumes the L-smoothness of f(z, £) instead of f(z) as Assumption 1 in[Wang et al.
(2023b)). This change is necessary in SAM-type works (Andriushchenko & Flammarion, [2022)) since
we need to establish the relationship between two stochastic gradients (V f(x¢, &) and V f (wy, &)
in one iteration.

Technical Challenge. In order to prove the convergence, we need to bound the term E||V f(z;)||2.
However, LightSAM involves two stochastic gradients in one iteration. Thus when we want to
bound the terms concerning E||V f(x)||?, the upper bound would contain the terms concerning
E||V f(w;)]|?. On the other hand, the numerator and denominator of one term in adaptive optimization
often share the same randomness which is hard to decouple. Thus, it is hard to analyze the inequality

relationship between terms concerning E||V f () ||? and E||V f (w;)||*.

By the above assumptions, we have the following theorem.

Theorem 1. If f(x) in Algorithm satisﬁes Assumptions and |2} for any perturbation radius p and
learning rate 1 > 0, we have that

1 Z E|V £z < (2v2DoT + €2 + A5)(As + 244, In(2/2DT + €2 + A5))
T

Here, we denote constants Dy, A1, As, A3, A4 as following
8(1++/D1)D1p [V f (w1)]? n 4(142D,)L?
n

Dy = max{1, Dy, Y, A= (n* —2p*Ine),

€ €

D D
Ay = 2f(w1) + 20|V f (@)l +4p°L + =2+ —2= — (AL(1 + pL)(n* + 4p%) + 2p) Ine,
€ 6\/D1
L 4D,  8p*L> 44, L
=[Py, L)lne+T+8D1A1+8nL(2+pL)1n( =)
L 1+2D,)DinL  nL
Ay = '% +1[32p°L(1 4 pL + (3+2Dy)Dunk %6) +4p + 8°L(2 + pL)] /n,

A5 = 4D1A3 + 4D1A4 ln(4D1A4).
Corollary 1. From Theorem[I} we can obtain the following convergence rate for Algorithm|[I]

—Z]EHVf (z0)]]? < 0(%)

Remark 1. Compared to previous works, the convergence rate of LightSAM recovers the result in
works about adaptive optimizers (Zou et al.l 2019, |Défossez et al.l | 2020; \Ward et al.| 2020y |Shi & Li|
2021} |Shen et al.| 2023, \Wang et al.| 2023byal). When T is sufficiently large, it converges with the
same rate as USAM (Andriushchenko & Flammarion, |2022).

Remark 2. LightSAM not only requires nearly the lowest requirements on the assumptions but also
has no restrictions on hyper-parameters, thus achieving parameter-agnostic.

Due to limited space, we list the proof sketch here. The details could be referred to the Appendix.

Proof Sketch. The first part of our proof follows the proof of Wang et al.| (2023b), i.e. our target is to
bound 23:1 E||V f(x)]|?//vi—1. According to the smoothness of f(x), we could obtain that
T

f<mTH>gf<x1>+n;<Vf<xt>7 %+nEfot ﬁ gf Zn |

T T2 Ts
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Since T} and T} is easy to bound:

3 2 L?
B[] < 2" § L NZAC] (Elnur — 21ne),
=1 VUt-1 €
2L 2L
E[T5] < T]T(EIH’UT —Inwg) = TIT(EIDUT —2lne),

we turn to focus on Tg Further, with appropriate scaling and Assumption@], we obtain that

<1 |Vf($t)\|2 D077 2 1
Bn) < 13 E! 2D Y VPR = - ) O
The last term in the similar proof step of Wang et al.| (2023b) is 3°,_, HVf(xt)||2E( \/ﬁ \/11)7)

which could be bounded by desired term thl E||V f(x)||?//vi—1. However, it does not apply to
our proof since SAM-type algorithms involve different weights x; and w;. Thus, it is non-trivial to
bound the last term in (I). We give the following two lemmas to fill this gap.

Lemma 1. If f(z) in Algorithm satisﬁes Assumptions|l|and |2} we have that

- 1 1 IVF@o)l? | 1 = VS (w)]?
;va(wt)HQE( Ut71_ﬁ) < A —-E oz +2D2;E o

A1 +2D5)p°L?

ElnuT

€
Lemma 2. If f(x) in Algorithm|l|satisfies Assumptions[I|and 2} we have that
T-1

IIVfwt ol 194 @n)l? L
Z e < W VDB SR + D 3 BIVS )l o= - )

+As + 20 L(1 + pL)Elnvr_1 + (8p°L(1 + pL) + p)Elnur

Combining the above two lemmas and substituting the result into (1)) helps us bound 7% successfully.
Then we establish the relationship between v, and wu; as the following lemma:

Lemma 3. If f(x) in Algorithm![l|satisfies Assumption[I} we have that
pL pL
IV f (w, &0)]* < (? F DIV (€)% v < (* + 1)u
Up to this point, arranging the above results and substituting them into the first inequality yield that

T 2
ZEM < As + AEInur

Ut
t=1
Finally, we obtain that
Evur < 2+/2DoT + €2 4 As
and the final result in Theorem [I]in the same way asWang et al.| (2023b). O

Discussion. ASAM (Kwon et al.l 2021) is proposed to alleviate the insensitivity of SAM to weight
scaling . Though the element-wise operator is performed on the gradients to achieve sharpness
adaptivity, the perturbation radius does not consider historical gradients like adaptive optimizers
(Adagrad-Norm, Adagrad and Adam). AdaSAM (Sun et al., 2024) does not introduce adaptivity
to the perturbation radius like LightSAM. Additionally, its theoretical analysis relies on a strong
assumption, i.e. the stochastic gradient is upper bounded.

3.3 LIGHTSAM-II (ADAGRAD)

In LightSAM-II (see Algorithm[2)), we adopt the AdaGrad-type learning rate to update the perturbation

weights. LightSAM-II adopts the coordinate-wise learning rates to scale the perturbation step and

gradient descent step, which can better utilize the historical gradients and achieve a stable convergence.

Thus compared to Algorithm ] the initialized uy and vy become vectors with each element equal to
2 and the multiplication and division become element-wise between vectors.
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To provide the convergence of LightSAM-II with
coordinate-wise learning rates, we require the
following coordinate-wise smoothness and affine
noise variance assumptions.

Assumption 3 (Coordinate-wise L-smoothness).
ForVl € [d], f(z) is differentiable and satisfies:

|vf(x7€)l_vf(y;€)l| S L|xl_yl‘7vxay S Rd'

Assumption 4 (Coordinate-wise affine noise vari-
ance). There exist positive constants Dy and D :

Vf(x,€)? < Do+DVf(2)?, Vo € RV € [d].

Assumption [3]is adopted in [Richtarik & Taka¢

Algorithm 2 LightSAM-II (AdaGrad)

Require: Initial values zo, uo = vo = €2,
tion radius p, learning rate 7.

perturba-

1: fort=1,...,7 do

2: Sample a minibatch &; from the dataset;

3:  Compute stochastic gradient s; =V f(x¢, & );
4 up =us—1+ 8¢ O S¢;

5: wt:xt+p\/%7t®&;

6:  Compute stochastic gradient g: =V f (ws, £:);
7: Ve = Vi1 + gt © g¢;

8:  Update weights 2111 = ¢+ — 77\/177t © g¢;

9: end for

(2014); Das et al.|(2024) and necessary here since the inequality relationship between V f (x4, &)

and V f(wy, &) is established coordinate-wisely. Assumption E]

is commonly used in adaptive

optimization works which do not need to assume the bounded gradient (Crawshaw et al.| [2022}; [Wang

et al., [2023bal).

Theorem 2. If f(x) in Algorithm|2|satisfies Assumptions|3|and |4} for any perturbation radius p and

learning rate n > 0, we have that

(2/2DodT + €2 + Bs)(Bs + 2A4 In(2/2DodT + €2 + Bs))

1 T
7 2 EIVi)? <
t=1

T

Here, we denote constants By, Bo, Bs, Bs as following

+

Dyp

/Dy — (4L(1 + pL)(n* + 4p*) + 2p) Ine)

4By

2 4(1+42Dy)dL?
B1 — va(é‘ul)” + ( + ; 2) (,'72_2p21n€)7
2 Don
By = 2f(w1) + d(2p||V f(z1)|| + 4p°L + —
L 4Dod 8p*L2
By =22 4122 - (2
€ € €

+nL(8(1 + pL) + 2)dIn(1 + %)],

and Dy and A, are the same as Theoreml|l]

+4nL)dlne+8D1B; + —=
n

B5 = 4D133 + 4D1A4 111(4D1A4),

Corollary 2. From Theorem[2] we can obtain the following convergence rate for Algorithm[2]

*ZEIIW sl <0(22)

3.4 LIGHTSAM-III (ADAM)

Adam (Kingma & Ba, |2014) is another popu-
lar optimizer for deep learning, especially in
Transformer-based models, which replaces the
gradient aggregation step for estimating adap-
tive learning rate in AdaGrad with an exponen-
tial moving average step by introducing two
additional momentum parameters (31, 32) and
achieves a stable and fast convergence. In this
section, we also integrate the Adam-type learn-
ing rate to update the parameters (p,7) in SAM,
which yields LightSAM-III (Adam), as shown
in Algorithm [3] The convergence result for
LightSAM-III is as follows:

Algorithm 3 LightSAM-III (Adam)

Require: Initial values zo, 70 =

mo = 0, Ug = Vg =
€2, perturbation radius p, learning rate 7, coeffi-
cients (1, Bg

1: fort =1,...,T do

2:  Sample a mlmbatch & from the dataset;

3:  Compute stochastic gradient sy = V f(x+,&:);
4 re=Bire—1 + (1 — B1)se;

S: = Bour—1 + (11 — B2)st @ S¢;

6:  wr=uw+ pifﬂt (ORI

7:  Compute stochastic gradient g+ = V f(w, & );
8: me = Bimi—1 + (1 — B1)ge;

9: v = P01+ (1 —P2)g9: © gs;

10:  Update weights z;11 = z¢ — 77\/%7 ® my;

11: end for
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Table 2: Best test accuracies (%) on MNIST dataset.
Method SGD SAM ASAM AdaSAM AdaGrad L-SAM-II Adam L-SAM-III
3-layer 9821 98.29 98.24 98.57 98.26 98.33 98.57 98.59
LeNet 99.29 99.37 99.48 99.48 99.25 99.31 99.41 99.49

Table 3: Average best test accuracies (%) of LightSAM under different hyper-parameters.
3-layer NN LeNet

LightSAM-II LightSAM-III  LightSAM-II  LightSAM-III
98.2940.03 98.56+0.03  99.25+0.07 99.41 +0.07

Setting

Theorem 3. If f(x) in Algorithmsatisﬁes AssumptionsE]and and 0 < 31 < /B2 — 32Dy(1 —
B2)/B% B =1 — ©(1//T). Then, for any perturbation radius p = ©(1/\/T) and learning rate
n = O(1/V/T), we have that

1 & 9 InT
F 2BVl <0 )

4 EXPERIMENTS

In this section, we conduct several experiments to show the effectiveness of our proposed algorithm.
Experiments are conducted on MNIST and Imagenet datasets. The main goal of this paper is to
validate that parameter-agnostic SAM optimizers without parameter tuning can achieve comparable
performance with the carefully handcrafted learning rate schedule.

4.1 MNIST DATASET

Implementation detail. We first conduct the image classification task on the MNIST dataset. A
simple 3-layer neural network and LeNet (LeCun et al.,|{1998) are adopted as the training models.
We select SGD, AdaGrad, Adam, SAM, ASAM, AdaSAM, LightSAM-II and LightSAM-III as the
baselines. The initial learning rate 7 is set to 0.1 for SGD, SAM, and ASAM, 0.01 for AdaGrad and
LightSAM-II, 0.001 for AdaSAM and LightSAM-III. The perturbation radius p is set to 0.05 and
0.5 for SAM and ASAM respectively as suggested in |Foret et al.[(2020); [Kwon et al.[(2021), 0.1 for
AdaSAM, 0.001 for LightSAM-II and III. We run all methods for 30 epochs. The learning rate is
decayed two times by a factor of 0.2.

Results on MNIST. We summarize the best test accuracies of all baselines in the two experimental
settings in Table[2] For each model, LightSAM-II achieves higher accuracy than AdaGrad, meanwhile,
LightSAM-III achieves higher accuracy than Adam. This result indicates that parameter perturbation
could improve the test accuracies of adaptive optimizers, the same as the phenomenon in the
comparison between SAM and SGD. Additionally, LightSAM-II performs better than SAM in 3-layer
neural network and LightSAM-III performs better than SAM in two cases, which is consistent with
the advantage of Adam over SGD.

In the theoretical analysis, we prove that LightSAM could converge without tuning any hyper-
parameters. Thus, in each experimental case, we scale the adopted p and 7 respectively, as a
result obtaining four hyper-parameter settings (p, 2p) * (1, 2n). We run LightSAM under these four
settings and list the average result in Table[3] We can find that the average best accuracies are still
higher than some baselines. The low standard deviations show the insensitivities of LightSAM to
hyper-parameters.

4.2 FINETUNING ON IMAGENET DATASET

Implementation detail. We conduct the finetuning task on transformer models. Specifically, we
finetune the ViT-Tiny and ViT-Small (Touvron et al.,|2021)) on the Imagenet-1k dataset for 10 epochs
from the checkpoints pre-trained on the Imagenet-21k dataset. The utilized checkpoints are open-
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Table 4: Best test accuracies (%) on Imagenet dataset after finetuning.
Algorithms SGD Adam SAM ASAM AdaSAM LightSAM

ViT-Tiny 4559 60.82 60.10 59.95 64.43 64.58

ViT-Small 63.78 77.10 7427 74.12 78.02 78.09

Table 5: Best test accuracies (%) of SAM-type algorithms under different parameter settings.

SAM (17, p)=(0.1,0.05) Avg.
75.68 7581 76.02 7389 7427 7411 7158 7156 71.86 73.86+1.72
ASAM (1, p)=(0.1,0.5) Avg.
75.72 75771 75.778  73.88 74.12 7422 7145 -4 - 7441 £1.44
AdaSAM (7, p)=(1e-4,0.01) Avg.
78.00 7798 78.02 78.00 78.02 7799 77.16 77.10 77.04 77.70+0.43
LightSAM (7, p)=(le-4,1e-4) Avg.

7797 78.00 78.04 7799 78.09 78.06 7729 77.10 7727 77776 £ 0.38

ERTIRL)

represents the divergence of the algorithm.

sourced on Huggingface. We select SGD, Adam, SAM, ASAM, AdaSAM and LightSAM-III as
the baselines. Following [Foret et al.| (2020); [Kwon et al.|(2021)) and common choices, we set the
learning rate as 0.1 for SGD, SAM and ASAM, le-4 for Adam, AdaSAM and LightSAM. And the
perturbation radius is set as 0.05 for SAM, 0.5 for ASAM, 0.01 for AdaSAM and 1e-4 for LightSAM.
Weight decay is not utilized for all optimizers. Momentum is set as 0.9 for all SGD optimizers.

Results on Imagenet. In Table we list the best test accuracies of all baselines. Firstly, we could
observe that the optimizers which adopt adaptive learning rate in the model update step (Adam,
AdaSAM and LightSAM) perform better than those adopt constant learning rate (SGD, SAM and
ASAM). This is in line with the advantage of adaptive optimizers over SGD on transformer based
models (Zhang et al., 2020). Secondly, the optimizers utilize the weight perturbation step achieve
higher test accuracies than the corresponding base optimizers (SAM and ASAM over SGD, AdaSAM
and LightSAM over Adam), which presents the positive effect of weight perturbation in improving
test performance. Finally, AdaSAM and LightSAM achieve comparable accuracies while LightSAM
is still ahead of AdaSAM, thus the adaptive perturbation radius in LightSAM is comparable with the
carefully handcrafted constant radius. We also show the illustration of the results in the Appendix.

Sensitivity to hyper-parameters. For several SAM-type algorithms, we enrich the experiment on a
wide range of parameter values. For one baseline, denote the selected hyper-parameters in the above
subsection as 7 and p, we take nine combinations of parameters (0.57,7, 2n) * (0.5p, p, 2p) to show
its sensitivity to these parameters. The results are shown in Table[5] The first nine columns record the
best accuracy of one set of parameter values and the last column represents the mean and standard
deviation. We could observe that SAM which does not have any adaptive modules has the highest
deviation. ASAM does not converge in two settings with a large learning rate and performs worse
than AdaSAM which adopts the commonly used adaptive learning rate. Under various parameter
selections, our proposed algorithm achieves the highest mean accuracy and lowest deviation, which
is in line with the "parameter-agnostic" property of LightSAM and indicates its insensitivity to the
hyper-parameters.

4.3 FINETUNING ON GLUE TASK

Implementation detail. We also consider training the language models. We finetune the RoOBERTa
model (Liu,2019) for 8 downstream tasks in the GLUE benchmark. The learning rate is set to le-2
for SGD, SAM and ASAM, le-5 for Adam, AdaSAM and LightSAM. The perturbation radius is
set to 5e-3 for SAM and le-5 for LightSAM to maintain its ratio to learning rate same as the ViT
experiment, le-2 for AdaSAM as adopted in (Sun et al.,[2024), 1e-2 for ASAM after tuning. The
batch size is set to 32 for all tasks except 16 for QNLI. We run all algorithms for 20 epochs.

Results and parameter sensitivity on GLUE. We list the experimental results in Table [ We
report the Matthew’s correlation for CoLA, Pearson correlation for STS-B, F1 score for MRPC,
averaged accuracy for MNLI, and accuracy for other tasks. Similar to the experiment on Imagenet,
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Table 6: Experimental performances on GLUE benchmark after finetuning.
Algorithms | CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP | Avg.
SGD 59.39  87.85 91.65 7653 93.69 8633 89.27 9149 | 84.53
Adam 62.08 90.77 9250 78.70 94.84 8742 92.82 9190 | 86.38
SAM 61.71 89.25 92.01 7942 9427 8642 89.53 91.38 | 85.50
ASAM 63.51 89.14 9248 7870 93.81 86.44 90.17 91.57 | 85.73
AdaSAM | 62.11 90.55 93.12 80.14 9530 87.57 9310 92.01 | 86.74
LightSAM | 63.77 90.77 9333 8195 9541 87.63 9292 92.04 | 87.23

Table 7: Performances of SAM-type algorithms under different parameter settings for STS-B.

SAM (17, p)=(0.01,5¢-3) Avg.

- 89.53 87.87 89.31 89.25 §9.19 - - - 88.97 £ 0.79
ASAM (17, p)=(0.01,0.01) Avg.
85.74 83.26 - 88.99 89.14 88.58 - - - 87.14 + 2.57
AdaSAM (17, p)=(1¢-5,0.01) Avg.
90.20 90.29 90.27 90.54 90.55 90.48 90.86 91.01 90.92 90.57+£0.30
LightSAM (7, p)=(1e-5,1e-5) Avg.

90.42 90.31 90.39 90.79 90.77 90.69 90.97 91.09 91.05 90.72 £ 0.29

the algorithms that use the adaptive learning rate in the gradient descent step achieve the highest three
scores, and each algorithm that adopts the perturbation step is ahead of its version that does not. Our
proposed algorithm LightSAM performs best in seven tasks except the QNLI dataset, which again
verifies its excellence in the practical application.

Samely, we conduct the experiments under nine sets of parameters (0.57, 7, 2n) * (0.5p, p, 2p) on
the STS-B task to test the sensitivity to the hyper-parameters for SAM-type optimizers, where 7 and
p are the parameters set above. The results in Table[7|show the strong sensitivity of SAM and ASAM
in this task as they fail to converge under four hyper-parameter settings. AdaSAM and LightSAM
could converge to great solutions, which demonstrates the efficacy of the adaptive learning rate in the
high stability. Between them, our proposed method has an advantage over AdaSAM, again indicating
its insensitivity to the perturbation radius.

5 CONCLUSION

In this paper, we propose an algorithm LightSAM for non-convex optimization. LightSAM sets
the perturbation radius and learning rate adaptively through adopting Adagrad-Norm, Adagrad, and
Adam, respectively. We make a solid theoretical analysis for our proposed algorithm and observe
that it converges with the O(InT/+/T) rate without requiring the gradient bounded assumption.
Particularly, our result does not require perturbation radius and learning rate satisfying any conditions,
realizing parameter-agnostic optimizers. Finally, we conduct experiments in several computer vision
tasks. The superiority of LightSAM to other baselines and the insensitivity to hyper-parameters are
verified. Thus, we prove the potential of our work in reducing the necessity of parameter tuning from
both theory and experiments.
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A PROOF DETAILS
In this part, we show the proof details of theorems in the main body.

A.1 USEFUL INEQUALITIES

We show some inequalities which are useful for our analysis.

Lemma 4. (Lemma 10 in|\Wang et al.|(2023bl)) Consider sequence {at};f:O with ag > 0,a; > 0 for
i > 0, then we have

T

a¢ 1
< )
; (Xrmpan) 2(T g ar) V2 + (Xrsgar)t/?)? ~ Vao
Lemma 5. (Lemmas 4 and 5 in Wang et al.| (2023a)) Assume the constants 0 < B3 < By < 1.

Consider sequences {a;}L_1, b, = Baby_1 + (1 — B2)a with by > 0, ¢, = Bacn_1 + (1 — B2)a,
with ¢,, = 0, then we have

T a2 1 b
Yoo g, (n g, Tln), @
t=1 "
2 _
S ag UZP2 g0 gy 3)

t=1 " (1- ﬁ)2(1*52) bo
A.2 PROOF OF THEOREMS[I]AND[]

Lemma 6. (Restatement of Lemmall)) If f(x) in Algorithm|l|satisfies Assumptions|Il|and|2| we have
that

1 V)P 1 IV f(w)
memmufg, D) < By

4(1 4 2D9)p*L?
LA +2D5)p" L7

Elnur @
€

where Dy = max{1, D1, @}7 A = I\Vf(;vl)l\2 N 4(1+2ED2)L2 (0% — 2p%Ine).

Proof. For two vectors z and y, consider that (z — y,y) < (z — y, x), we could further infer that
(x —y,y) < |lz —y|l||z|. And further 2{x,y) — 2||y||* < 2||x — y||||||. Finally we obtain
l)1* = llyl* < 20|z = ylllzll + 2l + Iyll* = 2(z, y) = 2]z = ylllll + |z - y]*

Based on this and Assumption|l} we have that

1 1

B[V f (w)]? (\/7 \/7)
< E[va( DI* ||Vf(wt)||2] n 2L[Jwy — wy |||V f(wy)|| + L2 ||lwy — w1 )
- VVi—1 NGB VVi—1

Consider
IV f(we—1,& 1)l Vi@, &) Vi(we1,8-1)
we —wi—1] < N +pll N | (6)
2 S IV fwi—1,&-1)]12 oV (@, &) Vf(wi—1,&-1) 2

o = v < 2 SIS gy PTG 8] S fo) g
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Substituting (6) and (7) into (5) and summing the result over ¢ € {2, ..., T’} yields that

S EIV A — )
—2 Viuier o o
2 2 T
N\ N 7S AP o /(OB 234 0]
an VT —~ Vi1
B LiE|Vf\(/ﬂﬂu%£t) _ Vf(xt;:fnfl)””Vf(wt)”
g t=2 VU1
T T Vi(xe,&)  Vi(@i—1,6-1) 2
A N N T S
+20°L* Y E +20°L*) E
t=2 U?ﬁ =2 v/ Vt—1
In the RHS of (8)
on, 3~ I (o G|V w0
—2 Vt—1
VA G )P T s IV (w)]?
< 4D’L?Y E 37 +-—> E
t—2 Uiy 4Dz = VVt-1
T VSf(ze,&)  V(xe—1,&-1)
53 = T IV (wd)
t=2 v Vi-1
T va(tht) _ Vf(zt—laﬁt—1)||2 T 5
S 4D2P2L22E \/Tt VUt—1 ZEHVf(wt)H
t=2 V-1 4Dy &= (o
Thus, we have
T
1 1
E||V f (wy)]|(———e — ——
> BNVl s~ )
2 2 T 2
< E[”Vf(wl)” _ [V f(wr)ll ]+2(1+2D2)n2L2 ZEHVf(wt—B};&fl)“
VU1 VT t—2 Ve q
T T Vf(x,6t) Vi(xi—1,6e-1) 12
1 [V f (wy)]? 22 = — = |
+ E +2(1+2D L E
2D, ; VUt—1 ( 2)p ; oy
() 2 2 1 T 2 1
9 VI [Vl | 1SSV !
\/E \/ VT 2D2 —2 A/ Ut—1 €
AQ+2D5)0” L S~ [V f ()P
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(b) 2 2 1 T 2 1
N1\ (U3GO 7 (U5 RO 170 GRS
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where (a) and (b) come from Lemmaf] Finally, we have

1

ZEHVf wy)|? (\F - f)

< IVl [Pim, 1 éEIIV\%tﬂfIQ a0+ 2Dy
+M(Elnw —Inug)

. ||Vf<:n>62 AL 2o,V
+21172 iﬂa”ngnz LA 2?2)p2L2ElnuT

O

Lemma 7. (Restatement of Lemma|2)) If f(x) in Algorithm|l|satisfies Assumptions|l|and|2| we have
that

[V f (w)|]? -1 RS f—
ZE o < Dm;ﬂ:‘l”vf(wt)” (\/7 \F )+ 2p(1+\/D1)E N

+As + 20 L(1 + pL)Elnvr_y + (8p°L(1 + pL) + p)Elnur

where Ay = 2f(w1) + 2p||V f(z1) ]| +4p*L + 22 (n+ =) — (4L(1 + pL)(n* + 4p®) +2p) Ine.

Proof. According to the L-smoothness of f(x), we have

EV [fwipr)] < fwe) +EPH(VF(we), wepr — we) + gElE |wig1 — wel?

— f(we) +nET(V f(w), W%%
HEI V), p T Se1) T \(fuift)» + 2B g — wil?
)
Since
7 ~ Vf(we, &)
V f(wy, &
= B (w), J;("L“> +EPT S, V0 )= )
— _M | Fe L _ L
= \/m +E <Vf(wt)7vf(wtaft)(\/m \/@» (10)
Substituting (T0) into (9), we have
[V f (wy)]? |F |Fe 1 1
Uﬁ < flwy) = EV f(wegr) + nEF (VY f(wy), V f (we, &) ( o \/117»
+EW <Vf(wt),p(vf(xt%ft“) - Vf\(;u%’&)»
+§E‘ft|\wt+1 — wy? (11)

16



Under review as a conference paper at ICLR 2025

For the terms on the RHS of (TT)), first we have

EF* Jwiy — we)?
2PEI IV f (w, &)1 +2p2E|ft||Vf(fEt+1a5t+1) Vi@ &) E

IN

v VL Vi
< QnQEIFtM _|_4p2E|]-'t(||Vf(l't+17£t+1)||2 N ||Vf(xt,§t)”2) 1)

Taking the expectation over F; and summing up over ¢t € {1,2,...,T — 1} yields that

T—1
Ellwi 1 — we|* < 202 (Elnvr_1 —Invg) + 8p*(Elnup — Inwg). (13)
t=1

Then, we have

B9 ). 9 1, 60— = =)
@ im IVF @IV S e )P @ oz [V w1V (we, &)1
T VEa B V) T i )
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(14)

where (a) holds because of (x,y) < ||z||||y[/; (b) holds because ||V f(w;, & )|| < /v (¢) comes
from Cauchy’s Inequality; (d) comes from Assumption 2} (e) holds because

IVf e )I2  _ IViwe&)? 11 )
e O e Y RV WY OV R R SV

Taking the expectation on (14) over F; and summing up over t € {1,2,...,T — 1} yields that

— 1 1
V t v ty Gt
Z; Fw), V f(w MF )
f) T7 |Vf wt ||2 DO D1 — 1 1
< G By +7;Euw<wt>n2<ﬁ— = as

where (f) comes from Lemma[4]
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Finally, we have

T-1

7 w Vi@, 641) V(@ &)
DBV ), p(S )
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For the first term on the RHS of

Vf(xr,&r)

EV (Y f(wr), p (r )
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—
INE
S

p’L + pEVT (18)

where (g) holds because (a,b) < ||a||||b]| and Assumption|[T} (h) and (i) hold in the same way as (14).
For the last term on the RHS of (18)

EIFr IVf @)V f(zr, &)

Vi1 (i1 + ur)
< VD1 |V f(zr)|? n 1 (E\ITHVf(HJT,ﬁT)HQ)z
S 2w wDijura o i+ ur
VD1 |V f(zr)|? 1 \Fr oy mlFe IVF (@, &)
< 5 N MW UT—I(E IV f(zr,&r)|?)(E (WJF\/E)Q)
m||vf($T)\\2 1 o mlFe IV (@, &)l
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s VDS taun: (19)

where (j) holds because % < 1and ,/ur_7 > €. Combining and lD yields

| Fr Vf(@r,ér) 2 PDo IV f(r)l® )||2
BV (Y f(wr), p== 7o) < p°Lot 5 o= (L VDi)p — (20)
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For the second term on the RHS of (17)

_ElF Vi(z1,&)
vf(xl’gl) Vf(‘rlvgl) Vf(xl,fl)
— _wlA YIS ARSI VANE Va1 A ATV
= -“EV(Vf(zi+p Vi ) = f(x1),p N ) —EF YV f(z1),p N )
< LRVl
< PPL+p|Vf(z)l 1)
For the last term on the RHS of (I7)
T-1
7 _ V@1, €er)

tz; EX(V f(we) — f(wes), \/m
(k) L2 v 7
< ; EV lwer — we||? + Z ElFt I f(mz;ift‘*‘l)”
(lg) LA (EVT1 Invp_ — Inwg) + 4p>L2(EVT Inup — Inug) + %(EIIT Inup — Inwyg)

(22)
where (k) comes from Assumption [T} the (I) comes from Lemmaf] Substituting (20), (1) and 22))
into and taking the expectation over F; yield that

T-1 Vf(@er1, &) V(&)
> (VS o var )

< 2Lt r + ol VF ()| = (pn*L? + 4p°L% + £) nug
+(14++/D \/T)” o L*Elnvr_y + (4p°L7 + g)ElnuT. (23)

Substituting (13), (I6) and (23) into (TI) yields that

IIVf w;) ||2 2, Do PN IV
Z < fw) + VS @) + 26 L+ T+ )+ 53 = e

D
. ZEHW we)|*(

—=) = (L +pL)(1* +4p*)L + 2)an0

F \/7
2
+n*L(1 + pL)Elnvy_q + (4p°L* + 4p* L + )ElnuT +(1++vD fr)l .
ur—1
Rearranging the result and considering that In ug = 2 In € yields the result. O
Lemma 8. (Restatement of Lemma E) 3) If f(x) in Algorithm satisfies Assumptions|l| we have that

pL L
||Vf(wta§t)‘|2 ( + 1)||Vf(l't7£t)” ) V¢ S (p? —+ l)ut

Proof.

IV f (w, &)
IV f(we, &) = Vf(ze, &) |17 + 2V fwe, &) — Vf(@0, &), VI (2, &)) + IV f (e, &)1
LP|Jwy — m4||* + 2L{|lwy — 2o ||V f (e, €|+ 1V f (0, &) |

IN

_ 2 2 [V (e, &) IV f (2, &) 2
= p°L w + QPLTHVf(xtaft)” + IV F (e, &)l
= (G DIV I < (O DRV S )
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where the last inequality holds because u; > ug = €2. Further, we can obtain v; < (% + Du. O

Theorem 4. (Restatement of Theorem/|l)) If f(x) in Algorithm|l|satisfies Assumptions|l|and |2} for
any perturbation radius p and learning rate eta > 0, we have that

1 & s (2v2DoT + € + A5)(As + 24, n(2v2D,T + € + As))
7 2 EIVI)? < T
t=1

L 4D 1Ay 8p2L2 L
Agzw/%H[T‘)%DlAﬁTQ% pe +4nL)1ne+8nL(2+pL)1n(1+%)],

L 1+2D,)DipL 1L
Ay = ﬂ/p? 2Ll 4 L LF2PIDIML Ly s 4 oL,

€ 8e
A5 = 4D1A3 —+ 4D1A4 111(4D1A4)
Proof. According to the L-smoothness of f(x), we have
L
EVe[f(zis1)] < flo) + BF AV (@), 201 — 20) + EEIE o1 — 42

2
L
= flx) — BTV f(ay), Ty + LE‘EH%HQ

N I W
= f(we) + nEF (T (), J‘L_> +E <Vf(wt>,gt<\/1% - j@”

T T
UQL]E\E gt 2
+ 2B 2
VUt

—_—
T3

For T},

—Vf(z + Pvf\(/%&) )>

T, = BV f(), ‘ZL“"“> — P (Y (z),

Vt—1 Vt—1

V(e &)\ . .
) — (9 1(e). 910 t>>)

Vt—1

— LEU‘} (<Vf(33t)7 Vf(ajt) - Vf(.%’t +p

Nyl F [V f(z4)]? n | Fi V(@8 e
< gz + BVt ||V £ (20) — Vf (e + p~oSt)
= Ao R VA
2
R\ 708
V-1
(i) _?17]Epft||Vf(95t)||2+ n E|]—'tp2L2||vf($t7£t)”2
- 4 Vp—1 VVt—1 ut
< _3piF [V f(zo)]? n p277L2]E\]-} IV f (4, &)1
- 4 VUi—1 NG Ut

where (a) comes from Assumption[I] Taking the expectation on the above inequality over F; and
summing up over ¢ € {1,2,..., T} yields that

T
> —g O 3y V@) | pnl?
— VUt—1 vV Vt—1 €

where (b) comes from Lemmald]

Elnur —21Ine), (24)
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For T5
I Vf (we, &) |V f (we, &) 7 IV IV F (w01
< e V@IV e )P
- VU1 (/U1 + /%)
e\ {C GO (Emwwt,gt)w)Q
4 VU1 U VU1 + /i
n |ftw | Fe w 2 < |7 [V f(we, &) )
Nl 7, ||Vf(fft)||2 F IV ws E)1P
= En ZE N W= e
DIV (wo)|PE \/L })

Taking the expectation on the above inequality over F; and summing up over ¢ € {1,2, ..., T} yields
that

1
;nE \Z $t) gt(\/— \F»

o Ny plVIE)) Don Dy  f(wr)|2E 1 s
< Z V= n;\lfw)Il <—F = @

the proof of (23) follows the same way as @) From Lemmal6] we can obtain that
T 1 4(1 + 2Dy) D p*nL? |V f(wr)|?

1 \
D Vi (w)|PE(—— — —) < Elnur — DinE
177;:1 [V f(wy)| (\/Utj \/1/7) < ; T 1 NG

Dy IV f (wi)|?
+D1nA1+2D ;Z]E N (26)

t=1

By Lemma[7] we can further obtain that

T
pyglTHnE | Dy 5 VS

VT = Vt—1

T—1

(RS P O 7T
2D2 VT —~ V-1 N
Dt S 1w ) ) P ) [ — —
2D, Wz~ 7 Ve Ve
Ay ng VSl
2 '8 Jura

L), A gV

ZEHW w)|? (F NS T

+n?L(1+ pL)Elnvr_; + (4p*L(1 + pL) + 5)Em ur (27)
Substituting @) into (26) yields that

IN

IN

)

+—= + 10 L(1 + pL)Elnvp_q + (4p*L(1 + pL) + g)ElnuT

IN

1 VYV f(z 2
sz IV £ (wr) ||2E(i L TN ) AP A0l

P NG V0t 4 ur_1

€

+20°L(1 + pL)Elnvr_1 + (8p°L(1 + pL + )+ p)Elnur (28)
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Substituting (28) into (23)) yields that

T T
1 T IIVf ||2 Doy
EnEF(V - 2D1nA; + A
t=Z1 n ( f(fﬂt);gt(m 4; + . +2D1nA; + Az
N IVE@ED)I® o 2 (1+2D5) Dyl
—E——— 4+ 2°L(1 + pL)Elnvy_ L(l+pL+ —F"-—— El
S (14 pL)Emvr_y + (8p"L(1 + pL + . )+ p)Enur
(29)
For T3, taking expectation over F; and summing up over ¢ € {1,2, ..., T} yields that
n?L ’L
X:MfW<4;@mw—mw ”2@mw—mM) (30)
Combining @) (29) and (30) yields that
n Z \Vf )|?
VVt—1
L? 1
< 2o 2D1nA; + Ag — (——— 201 +n?L) Ine+n?L(2(1 + pL) + 5)]Elan
1+w1)L L v 2
€ TR \/E
L? 1 L
< 4—ﬂ+2DmA1+A2—(pn -+ﬁLﬂne+ﬁL(U%wm)+2ﬂM1+%;)
14 2Dy)DinL L 1
+@fLﬂ+pL+L———Q—ﬁ*+%ﬁ+ﬁ+n%(ﬂ+pD + ) Elnur
T
t=1 v
Rearranging the result and considering that Iv. \;@”2 eV TTe ‘lv\/f@” (which comes from

Lemma|g) yields that
2
ZEWf W < 4y + AEInur

Finally, we adopt the same derlvatlon as ”Stage IT" in the proof of Lemma 4 in Wang et al.|(2023b) to

obtain that
E[\/UT S 2\/ 2DOT + 62 + A5 (32)

as well as the final result.
O

The proof of Theorem [2]is similar to the above proof. The difference is the scalars are replaced w1th
vectors, and for vectors a and b, we turn to bound [|a © b||2 = 37, a?b? and || FOal®* = PO b2 .
We do not repeat the whole progress here.

A.3 PROOF OF THEOREM[3]

Before the proof, we define

Wy — f[%wt—l
bt=—"3

1ﬂ@
Uy = Poug—1 + (1 — f2)Doly,
Tp— i
qt = 1_7517
VB2
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U = Bavy—1 + (1 — B2)Dola.
The idea of proof of Theorem [3]is identical to that of Theorem[I] We provide the main intermediate
results and omit some details.

Lemma 9. If f(z) in Algorithm satisﬁes Assumptions|3|and {4} we have that

T d T d d
3 v 2 \Y 1)V 2
9D BALT LU g g L A D Y
Rt Vel =1 1=1 B2t Ut =1
d
-‘r-Cg Z Eln mil + Cg
=1
Proof. From the definition, we have that
Pt41,i — Pt,i
1-p i 1 153 1
_ ﬁll)n i s+ - ul g L s,
VB Vt,i Vg 2Vt—1,i Ut,i
CA=B)p s p ( 1 e 51P 1 Jreo1a
\/Bé? 7-~’4t,i 1-—- \/65172 vV Ut,i vV ut K - 61 \/ BQut 1,0 vV ut )
(1 - BI)P St—1,i 14 ( 1 )7" 1
o 1 ~ o 1 - ~ =11
\5@ m 1-— \55—2 VUt—1,5 V Ut—1,i
1 1
+ frp - = )re—2.i
\/’Uftfl,i

According to the L-smoothness, we have that

L
J(eg1) < f(pe) +(V f(we), pev1 —pe) +(V f(pe) =V f(we), pes1 —pe) + 5||Pt+1 —pel* 33)

Summing up the above inequality over {1, ..., 7'} and take the expectation yields that

Elf(pr+1)] < f(p1) + D> E(Vf(wi), ey —pr) + > B(VF(pe) = V. (we), pryr — pe)

L
+§E\|pt+1 — e 34

For the term Zle E(V f(w), pe+1 — pr), we follow Wang et al.| (2023a) and the analysis in Lemma
bound each term as

Vf(wt)l<—§izd:1@vf(wt) +p2L2ZZE ol (35)
E Vo Ve

== VUt t=1 1=1 t=1 1=1
T d T d T
St,l 3 Vf(xt) 22 Ul
- ——V f(w) < - E———="+p°L E (36)
I s N
2
T d d T d Tt,1
St—1,1 3 Vf(xt l)l 2,92 U,
- =V f(we); < —— E = +p°L E 37
T d 1 1
( — ——)mu—1,;V f(we)
tzzl ; Bavi11 \/Ti1
T T 2
1 Vf(we)i | 4B81v/(1 = B2)Do mi_i
< — E = + E . (38)
16 tz::l ZZ:; 1 (1—PB1)B2 ; ; Vel
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IA

IN

IA
| —
(]
M=
&
<
=
g
=0
&
=
|
&
5
Nk
(]
&
Hﬁ
|

ZZ(\/ﬁgit271—\/ﬂ1_1l)rt_2’lvf(wt)l

T d o )
1 vf(wt)lQ 46 1 - Bz o Ty 9]
g E E + E E E >
16 t=1 =1 ﬂt*l,l (1 - ﬁl 62 =1 1= Ut—1,1

IN

T d 1 1
>3 — ——)my V f(wy),

t=1 =1 6t,l Ut
T d
(1—=pu)n ZZEVf(wt)% n 214/ (1 52 Dq ZEQH
b1 ~
21 - 75) im0 bt (1- 52 =1 1=1

=1
4(1 — B1)nD i E(Vﬂwt 1)} Viw)?

+
(1_%)2 t=11=1 /B2t Vel
64(1 — 81)D1(1 4+ D1)n ZZE +8p? tl)
(1*51)521*% 1*52D0f 1i=1 el
n (1—pB1)n zT:Zd:]EV wtl2+ 20/ (1 = f2) Do ZZ
8(1— ) &= & Ut (1-51)1
V5 t=11=1 . 2 =1 =1

(1= B s~xmp VS w)f | 29 1—62 Dy r?,
2(17 B )ZZE + Z;E

Ut i (1- t=1

=1
A1 = B)nDy N~ g VI (wia)? Vf<wt>l
gy 22 mn v
64(1 — B1)D1(1 + Dy)nL? ZZEQU mi, pzvi,z)

(1751)B217 Béz 1752D0f 117=1 ut,l
d

(=Bn 5~ VI | wm ZZ

5 ~
8(1- %) =S Ul A=B)0-T5) =i Y

For the other two terms, we have

T
Z]E<Vf(29t) = Vf(we), pr1 — pe) + g]E”ptH —pill?

2 2
1 1 1
< 2L(2< VP )E ®my_ 2+2( >E om 2)
< o ﬁéz H\/H -1 ﬁéz H\/E al

(39)

(40)

(41)

(42)

2 2
B2 1 2 1 1 2
+p2L<4( v )En O] +3( )Ell@nﬂ (43)
1-— fﬁ% VUt—1 1-— %2 Vg
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Summing up the above results yields that

ZZEVOE < COZZE(V%)? - Vf(;ft)%)

t=1 [=1 ot

d
+C Z Elnry, + Cs Z Elnm;, + Cs
=1 =1
where Cy, C, Cs and Cj are constants with respect to 7, p, 51, 82, Dy and D;.

Lemma 10. If f(z) in Algorithmsatisﬁes Assumptions we have that
Vg < Cliy g,

where the constant C = max{1,2(1 — 82)[1 + %]}

Proof.
gt = (Vi@ + p—r—, &) — V(@ &)1 + Vf(24,6)1)?

2p2L2

\/72

TtlJrQStl

IN

2(1 — 2 2L2 .
20 L S e, 2 424
T=1

Thus, we have that

t
v = (1—=P2) > By gp, + Bse?
k=1

< 2(1—51)2(1—62 L Zﬁé ’CZ Ts:0)? +2(1 — Bo) Zﬂ

k=1

Since 51 < \/52, there exists constants 0 < a,b < 2 satisfy that 512*“ < ﬁ%“’. Then,

(44)

(45)

(46)

t 2
Sk,l + Bae

47
we have that

t
Zﬂé kZ ) < Yo B Zﬁ““‘ K fo@‘”““”sio
k=1

T=1

1 — —a)(k—1
< g Y Y g,
— P k=1 =1
1 t t—k
2—a)j pt—k—j
= l_ﬁaZ@ﬁ% Yyt s
1 k=1 j=0
t—k
bi
< Zﬁ (D_B)sk,
Ih P =
<

t—k 2
(=59 1—62 25 e
Substituting (@8] into @7) yields that

t

— B1)2p%L2
vy < 2(1-B)1 + < Bl L Zﬁt Pt

(=757
< Cuyy.
Finally, considering the definition of v, ;, we have that
@t,l < Cut,l~

25

(43)

(49)

(50)



Under review as a conference paper at ICLR 2025

Theorem 5. (Restatement of Theorem EI) If f(z)in Algorithm satisfies Assumptions and and
0 < B1 < VB2 —32Dg(1 — B2)/B2 B2 = 1 — O(1/V/T). Then, for any perturbation radius
p = O(1/V/T) and learning rate n = ©(1/\/T), we have that

ZEHW sl <0( 22

Proof. From the definition, we have that

1-061 G4 1 ( 1 1 )
Qt+1i = qti = =N 5. = 1 2 e L
1— By Ut i 1-— B Vt,i Vt,i

b1 1 1
+n — —=)Mt—1, (51)
1—- %(\/ﬁ2vt—1,i \/Ut) o

E[f(qe+1)]
< fla) FECVf(a), g1 — a) + gEHQt+1 — q]?
- 15 o oy IR B
= fla) Uil_jéjmvf( t)a\/@»t (wy)) T \/57<Vf( t)s (\/UT \/E)G t)
b1

) ©mi_1) +E(Vf(q:) = Vf(xe),qe01 — q1)

+7717<Vf(95

1
t), (———= —
ﬁﬁ% vV 521&—1 Vo
L
+§]E||Qt+1 —q|?

Summing up the above inequality over {1, ..., T} yields that

E[f(grs1)] — f((h)

T
nl —B) Vf(@)Vf(we) 1
< fizzu«: - S S EV f(aimes(——
B
1_\/@ t=1 VUt —~ & =112 a4 % ”
T d
nﬁl 1 1 L )
+ ZZ EV f(z¢)ims—1,( - —= )-l-*ZEHqu—QtH
1- \//72 t=1 =1 VB2vi—11 /e 2 =1
T
Z (Vflae) = V(@) @1 — ar) (52)
Firstly, s1m11ar to (24), we obtain that
ZZEvf 241V f (wi)i
t=1 =1 VUt
T d T d Tt,1
3 Vf(xe)} 272 gl
< I D B PPy Y B
4 t=1 1=1 Vel t=11=1 Vel
T d T d
3 v 2 1-— 2p2L2
< _ZZZE f(fft)l + ( B1) o ZZ]E )
=1 1=1 Vt,l (1-2 ) (1= B2)**V/Do (= 15
(53)
Secondly, following the derivation in|Wang et al. (2023a), we have
1 (1- )(Qt e DO)
ZZEW (@)1 )il
t=1 1=1 VU t=1 |=1 VLI Vet (/001 + 3/ 0)
(54)
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For the above inequality

T d 2 T
(1—B2)g, (1—B)n Vf(a)?
P | f(mt)l”mt,” Tnlﬁ( Ttl + ’l’}t l) S 4(1 — \/51572) e (thﬁl

20/ (1= B2) Do s~ = 921 4(1 = B1)nD; 1
2/ (L= B2)Do g s i 41— Pu)uDy n ) ZZE N
11l=1 Ut’l (]' 2 t=1 =1 \/m vV IUt,l

a-Zp %
(55)
Further, we have
T d
ZZEVf(wf)z
t=11=1 B2t
oSS Bavt—1, 16D, P Bea
16(1 + Dy)L? ,
N Eljwy — wy—1]]
21— J5)(1 - BT = B2)Do ;
< zT:Zd:]EVf(wt—l)lQ N (1- 21— 5) 522T:2d:EM
O \/W—l,l 16D, et Tea
2 T d ) )
3/2 ﬁ16(1+D1)L > E(2n? Tl 4 g2 by (56)
Y (1= =) (1= B)V/(1 = B2)Do i i s e
Thus, we have
T d .
! ! Viwe_1)?  Vf(w)?
E(—==— ——=)V/(w)} < LAV )
+(1 52)(1_61)%§:§:EM
16D, o e Tea
2 T d 5 )
T ﬂ16(1+D1)L > B2 il 4 g2ty (57)
2 (1—ﬁ)(1—ﬁ1) (1-p52)Do 1= 15 o gy
Substituting Lemma J]into (57) yields that
d T
. Vf(we—1)i  Vf(w)]
B~ ) Vi < LAY/ )
d
C’4ZIElnm+C5Z]Elnm”+C6 58
=1 1=1
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Substituting (38) into (53)) yields that

d 2
(1= p2)g
ZZEWJC (@)l e ] = Y
t=1 1=1 VO O (O] + /)
< Upn g g VI @)? + Vw)? | 20/ BzDo Egtl
< ZZ o >y
t=1 1=1 el (1- t=1 =1
1 7ﬂ1 77D1 iZE Vf W — 1 12 _ Vf(wt)l )
(1- 52 t=1 =1 /B2t RVAUN/
+O4ZE1nril +Cs ZElnmil +Cs (59)

=1 =1

Then, we have

T d
(1= B2)Do
E|Vf .’L't \mt ll — —
;lzzl VLN Ve (VUi + v/ Ou)
< (1—5Bu)n ZZEVf x)i | 2ny/(1 = B2)D ii f 60)
S (1 [312 — /Utl (1 —ﬁl)(l _ ﬁ1 — =
Substituting (39) and (60) into (54) yields that
XT:Zd:EVf(xf)lmtl( 1~ S )
t=1 1=1 Ut VUL
31— BN o~ VS (@)} + Vi ()} 2nm 9%
< 8(1— Bl)ZZ]E T ZZE
V5 =1 1=1 £l (1- =1 1=1
401 = BunDi s~ gy VS win)f Vi (w)?
LA DU S ()i _ 1)
-2 =5 VP20 bt
d d
+Cy Y Elnrf, +Cs Y Elnm?, + Cq (61)

=1 =1

Thirdly, similar to|Wang et al.| (2023a), we have

T d
1
EV f(2:)im
t:“Z; ime—1,( W?Utll ﬁ
T a T A2
1 Vf(fft) f1v1 mi_11
OISy SRR T 2} 2B )

and

T

L
E E(Vf(q) = Vf(xe),qe01 — i) + 5]E||Qt+1 —
t=1

T B1 2 2
= 1 1 1
<D 772L<4< D ) E|| @mt1||2—|—3<) E||®mt2) (63)
P 1— 4 VU1 2 Vot

= VB2
O
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acy(%)
¥l

I - " i B vy oo " omn v
SGD —— Adam —— SAM —— ASAM AdaSAM ~ —— LightSAM
Figure 1: Experimental results of fine-tuning ViT models on Imagenet. (a): Test accuracy w.r.t.
epochs for ViT-Tiny; (b): Train loss w.r.t. epochs for ViT-Tiny; (c): Test accuracy w.r.t. epochs for
ViT-Small; (d) Train loss w.r.t. epochs for ViT-Small.

2
Next, substituting , , and into &l) and bounding the term Zthl sz:1 %,

m? T . .
S %, ST Il with Lemmal|10|yields that

Ut,1

T d 2 d
SR <oy oS B, “
t=1 1=1 Vo =1

where C; and Cs are constants with respect to 7, p, 31, 82, Do and D;. Finally, following Wang

et al. (2023a) to bound E /7, ; and the final steps in proof of Theorem we obtain the O(InT'//T)
convergence rate.

B EXPERIMENT ILLUSTRATION

We plot the curves of training loss and test accuracy of fine-tuning ViT models in Figure[T} From
the figure, we could observe that regardless of the test accuracy and training loss, AdaSAM and our
proposed algorithm LightSAM are ahead of other baselines obviously throughout the whole process,
and LightSAM has a little advantage over AdaSAM. Though this performance is partly due to the
power of Adam in Transformer-based model, it still illustrates the capability of adopting adaptive
hyper-parameters in the SAM optimizer.
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