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In this appendix, we detail the baselines and metrics used for benchmarking visual sound localization
(LocAcc, F1 score, and Average Precision). We then demonstrate the effectiveness of the proposed
SLAVC in other commonly used training datasets (Flickr 10k) and other settings like semi-supervised
localization and open set visual sound source localization. Finally, we compare the qualitative results
of our approach with existing methods.
Code is available at: https://github.com/stoneMo/SLAVC.

1 Baselines

We conducted a comprehensive benchmarking study of existing approaches. For a fair comparison,
we use the same backbone-ResNet18 [1] for all baselines. Namely, we considered:

• Attention 10k [2] (2018’CVPR): the first attention-based work with a two-stream architecture
with each modality for weakly-supervised sound source localization in an image, and this
approach was extended to semi-supervised settings with ground-truth maps in 5k Flickr set;
(code: https://github.com/ardasnck/learning_to_localize_sound_source)

• DMC [3] (2019’CVPR): a multi-modal clustering network for learning audiovisual corre-
spondences by using convolutional maps with each modality in different shared spaces;
(code: https://github.com/DTaoo/Simplified_DMC, MIT License)

• CoarsetoFine [4] (2020’ECCV): a two-stage pipeline that aligned the cross-modal
features in a coarse-to-fine way; (code: https://github.com/shvdiwnkozbw/
Multi-Source-Sound-Localization)

• LVS [5] (2021’CVPR): a contrastive learning framework with hard negatives mining to
extract the audio-visual co-occurrence map discriminatively; (code: https://github.
com/hche11/Localizing-Visual-Sounds-the-Hard-Way, Apache License 2.0)

• HardPos [6] (2022’ICASSP): an improved work based on LVS by adding hard positives for
aligning audio-visual matching semantics from negative pairs;

• EZ-VSL [7] (2022’ECCV): a strong baseline that proposed the multiple instance contrastive
learning to align locations with high similarity in the image and push away from all locations
in different images; (code: https://github.com/stoneMo/EZ-VSL, Apache License
2.0)

• DSOL [8] (2020’NeurIPS): a two-stage training baseline to deal with silence in
category-aware sound source localization; (code: https://github.com/DTaoo/
Discriminative-Sounding-Objects-Localization, MIT License);

2 Localization Accuracy, F1 Score, Average Precision

Consider a set of samples D = {(vi, ai) : i = 1, . . . , N}, ground-truth maps G = {Gi}Ni=1

and predicted maps S = {Si}Ni=1. In map based localization, each prediction Si is obtained
by first computing pixel-wise localization scores Si ∈ RH×W , and then applying a thresold α,
Si(α) = {(x, y)|Si(x, y) > α}. To evaluate each prediction Si, prior work [2] relies on intersection
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over union between Si and Gi. IoU is calculated as

IoUi(α) =

∑
xy∈Si(α)

gxy∑
xy∈Si(α)

gxy +
∑

xy∈Si(α)−Gi
1

(1)

where G = {(x, y)|gxy > 0} denotes the the set of pixels that represent sounding objects, and
gxy ∈ [0, 1] the ground-truth evidence that a sounding objects lies at location (x, y). Since in some
datasets ground-truth is collected from multiple annotators, consensus IoU (cIoU) is used instead.
Refer to [2] for details on how multiple annotations are merged to compute gxy .
Since we’re interested in assessing the model’s performance both when sounding objects are present
or not, we allow the model to make no predictions. To do this, in addition to the localization prediction
map Si, the model is asked to output a confidence score ci. If the confidence score ci is too low
(below a threshold δ), the model predicts an empty set (i.e., the original Si is considered invalid).
Predictions Si are considered correct if IoUi are above a pre-specified threshold γ. Under these
definitions, true positives, false positives and false negatives are computed as

T P(γ, δ) = {i|Gi ̸= ∅, IoUi > γ, ci > δ} (2)
FP(γ, δ) = {i|Gi ̸= ∅, IoUi ≤ γ, ci > δ} ∪ {i|Gi = ∅, ci > δ} (3)
FN (γ, δ) = {i|Gi ̸= ∅, ci ≤ δ} (4)

Localization Accuracy To evaluate the localization accuracy of our models among samples with
visible sound sources, we measure the localization accuracy at a predefined IoU threshold γ

LocAcc(γ, δ) =
|T P(γ, δ)|
|{i|Gi ̸= ∅}|

. (5)

Since this metric only measures localization performance, it assumes that all samples contain a visible
source to be localized. We thus ignore the confidence threshold (i.e., δ = −∞), so as to predict a
source location for every sample. Most existing work [3, 9, 4, 5, 6, 7] report LocAcc at γ = 0.5 under
the name of “CIoU”. We use this metric when comparing to results reported in the original papers.
While the localization accuracy provides a good metric to evaluate how accurate predictions are for
samples with sounding objects, it does not assess how accurately models can ignore samples with
NO sounding objects. Thus, to comprehensively evaluate both sounding and non-sounding samples,
we also evaluate our models using F1 score and average precision (AP).
F1 score balances precision and recall,

F1(γ, δ) =
2 ∗ Precision(γ, δ) ∗ Recall(γ, δ)

Precision(γ, δ) + Recall(γ, δ)
, (6)

where

Precision(γ, δ) =
|T P(γ, δ)|

|T P(γ, δ)|+ |FP(γ, δ)|
and Recall(γ, δ) =

|T P(γ, δ)|
|T P(γ, δ)|+ |FN (γ, δ)|

.

(7)
However, F1(γ, δ) depends on how strict the confidence threshold δ is set (the highest δ is set, the
more samples are predicted as non-sounding). To find the optimal balance, we compute F1(γ, δ) for
all values of δ and report the max-F1 score

max-F1(γ) = max
δ

F1(γ, δ). (8)

Average precision (AP) is another metric often used in object detection. To compute AP, we closely
follow [10]. The only difference is that, when computing the Precision-Recall curve, we do not
perform 11 point interpolation. We compute the full curve (without interpolation). Refer to [10] for
details on AP computation.

3 Training curves

Prior work, including previous state-of-the-art EZ-VSL [7] overfit to the self-supervised loss. To
better see this, we plotted the training curve of both EZ-VSL and our method SLAVC in Fig. 1. We
plot both LocAcc and AP obtained on the extended VGG-SS test set as the model is trained on the
VGG-SS 144k. As can be seen, the localization performance of EZ-VSL peaks very early (around
epoch 6), and degrades significantly afterwards. We also observe that EZ-VSL has a more unstable
training behavior than SLAVC, which completely avoids overfitting and thus continuously improves
localization performance as it is trained.
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Figure 1: Training curves on VGG-SS 144k: training epoch vs LocAcc and training epoch vs AP for
both the current state-of-the-art EZ-VSL [7] and the proposed SLAVC.

Table 1: Comparison results of weakly-supervised and semi-supervised training on Flickr SoundNet
testset where models are trained on Flickr-10k data. ⋆ indicates values reported in the original papers.

Method Early Stop NO Early Stop
AP max-F1 LocAcc AP max-F1 LocAcc

weakly-supervised:
Attention10k [2] 45.02 49.90 43.60⋆/42.54 20.28 32.80 19.60
DMC [3] 53.17 70.80 54.80 51.92 70.50 54.40
LVS [5] 68.92 71.80 58.20⋆/59.20 8.46 15.50 8.40
EZ-VSL [7] 75.64 76.20 62.65 70.54 73.10 57.60
SLAVC (w/o OGL) 87.10 90.10 82.00 87.10 90.10 82.00

EZ-VSL + OGL [7] 84.56 89.40 81.93⋆/81.93 83.60 89.90 81.60
SLAVC (ours) + OGL [7] 88.45 91.80 84.80 88.45 91.80 84.80

semi-supervised:
Attention10k [2] 82.75 88.28 82.80⋆/82.70 – – –
SLAVC (ours) 85.94 91.10 83.60 – – –
SLAVC (our) + OGL [7] 88.01 92.50 86.00 – – –

4 Weakly/Semi Supervised Results on Flickr-10k

In addition to the weakly-supervised setting, some works also explore the use of a small annotated
dataset to guide training [2]. To better understand the added value of a small number of bounding
boxes, we also train our model in the semi-supervised setting. Following [2], we use the ground-truth
maps of 5000 Flickr images to directly supervise SLAVC’s predictions through the additional loss

Lsemi =
1

1sup
i

B∑
i=1

1sup
i ∥SAVL(vi, ai)−Gi∥2, (9)

where SAVL denote the model’s prediction of ??, 1sup
i indicates whether sample i has ground-truth

annotations, Gi represents the ground-truth localization map, and ∥ · ∥ represents the norm over all
spatial locations x, y.
To compare the semi-supervised to the weakly-supervised setting, we train the model on the Flickr-
10k [2] (containing 10k samples from Flickr). Results are reported in Table 1. We don’t report results
with the latest checkpoint in the semi-supervised case, since the available ground-truth annotations
can be used for early stopping. Nevertheless, our SLAVC achieves the state-of-the-art results compared
to existing methods in both settings. The additional annotations allow our model to achieve higher
LocAcc. However, the difference between the two settings (weakly and semi supervised) is much
smaller in our case, when compared to Attention10k. This result indicates that the gains achieved
by Attentio10k with the additional supervision were mostly due to the overfitting and false positive
issues identified in this work.

5 Open Set Results

To evaluate the generalization of our model beyond sound sources heard during training, we follow
previous work [5, 7] and train the model on 70k data with 110 heard categories in VGG-Sound
dataset [11]. Table 2 reports the comparison results on heard and unheard 110 classes. We achieve
significant improvements against previous methods. For instance, using models without OGL and
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Table 2: Comparison results on VGG-SS for open set audio-visual localization trained on 70k data
with heard 110 classes. ⋆ indicates values reported in the original papers.

Test class Method Early Stop NO Early Stop
AP max-F1 LocAcc AP max-F1 LocAcc

Heard 110

Attention10k [2] – – – 11.03 27.20 18.78
CoarsetoFine [4] – – – 0.00 33.50 20.09
DMC [3] 22.35 35.60 21.68 23.13 36.30 22.15
LVS [5] 28.67 43.00 28.90⋆/28.48 20.10 33.90 20.40
EZ-VSL [7] (w/o OGL) 33.95 49.00 32.49 32.80 46.90 30.62
EZ-VSL [7] (w OGL) 36.48 53.30 37.25⋆/36.35 36.81 53.90 36.93
SLAVC (w/o OGL) 38.08 52.40 35.53 38.51 52.80 35.84
SLAVC (w OGL) 40.38 55.00 37.95 40.84 55.30 38.22

Unheard 110

Attention10k [2] – – – 15.72 27.30 15.91
CoarsetoFine [4] – – – 0.00 38.20 23.57
DMC [3] 24.24 39.00 24.23 24.69 39.50 24.62
LVS [5] 26.04 41.00 26.30⋆/26.01 19.42 32.80 19.65
EZ-VSL [7] (w/o OGL) 32.87 49.50 32.93 33.63 45.60 29.55
EZ-VSL [7] (w OGL) 38.19 55.50 39.57⋆/38.37 38.04 55.30 38.21
SLAVC (w/o OGL) 36.97 53.30 36.35 37.27 53.50 36.50
SLAVC (w OGL) 39.24 56.00 38.87 39.19 55.90 38.83

Ground Truth Attention 10k DMC LVS EZ-VSL !"#$%

Figure 2: Qualitative results of Attention10k [2], DMC [3], LVS [5], EZ-VSL [7], and the proposed
SLAVC on huge sounding objects. Red bounding box and blue maps denote the ground-truth and
predictions.

no early stopping for testing heard 110 classes increases the baseline by 5.71%, 5.90%, and 5.22%
in terms of AP, max-F1, and LocAcc. When it comes to unheard 110 classes, the proposed SLAVC
without OGL outperforms the current state-of-the-art approach by 4.10%, 3.80%, and 3.42% in terms
of AP, max-F1, and LocAcc. New state-of-the-art results are achieved in all settings, demonstrating
the generalization of our approach to unheard sounding categories in the training set.

6 Qualitative Results

In order to qualitatively demonstrate the effectiveness of the proposed SLAVC, we compare visualize
attention maps from existing work and our model on various sizes of sounding objects in VGG-SS test
set. The qualitative results of of Attention10k [2], DMC [3], LVS [5], EZ-VSL [7], and the proposed
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Ground Truth Attention 10k DMC LVS EZ-VSL !"#$%

Figure 3: Qualitative results of Attention10k [2], DMC [3], LVS [5], EZ-VSL [7], and the proposed
SLAVC on large sounding objects. Red bounding box and blue maps denote the ground-truth and
predictions.

SLAVC on huge/large/medium/small sounding objects are shown in Figure 2, 3, 4, and 5. Note that
results of our SLAVC are shown on the last column. We can observe that the proposed SLAVC achieves
decent localization maps compared to previous approaches in all settings, such as the barking dog on
row 3 in Figure 2, the sounding cello on row 1 in Figure 3, and the crying baby on row 1 in Figure 4.
For small objects in Figure 5, we also predict better maps for sounding objects than existing work.
While our predictions seem to focus more on the actual sources, they are very large compared to the
actual objects.

7 Broader Impact

This paper seeks to establish a more balanced evaluation protocol for visual sound source localization,
that considers both cases with sounding and non-sounding objects. We hope the proposed metrics
will lead to more balanced localization algorithms in the future. Improving sound source localization
methods can lead to interesting applications, for example, interfacing with blind or low-vision individ-
uals as they navigate the world. However, our work still relies on data collected from internet sources,
and thus is likely to hold biases that have not been identified. While we believe current datasets and
evaluation protocols are valuable for the development of sound source localization procedure, better
curation of the datasets against nefarious bias should be conducted before deployment in real world
settings. Advances in audio-visual localization can also be leveraged in surveillance applications,
which can potentially have a negative societal impact.
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Ground Truth Attention 10k DMC LVS EZ-VSL !"#$%

Figure 4: Qualitative results of Attention10k [2], DMC [3], LVS [5], EZ-VSL [7], and the proposed
SLAVC on Medium sounding objects. Red bounding box and blue maps denote the ground-truth and
predictions.

Ground Truth Attention 10k DMC LVS EZ-VSL !"#$%

Figure 5: Qualitative results of Attention10k [2], DMC [3], LVS [5], EZ-VSL [7], and the proposed
SLAVC on Small sounding objects. Red bounding box and blue maps denote the ground-truth and
predictions.
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