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In this supplementary material, any theorems, lemmas, and propositions that are indexed without
citation are referred to our paper [17].

A CLT for Stochastic Approximation Algorithms

The existing central limit theorem (CLT) for stochastic approximation (SA) with Markovian dynamics
[4, 11, 14] usually studied a general Markov process {Xt}t≥0 on the finite state space V and its
transition kernel Pθ dependent on θ such that P (Xt+1 ∈ A|Xt = x, θt = θ) = Pθ(x,A) for any
subset A ⊆ V . Denote πθ the stationary distribution of Pθ. Define Pθvθ(x) ≜

∑
l∈V [Pθ]x,l · vθ(l).

The general SA algorithm is of the form

θt+1 = ProjΘ (θt + γt+1H(θt, Xt+1)) , (15)

where Θ ⊂ Rd is a closed and convex set. The main goal is to find the root θ∗ of function

h(θ) ≜ EX∼πθ
[H(θ,X)] i.e., h(θ∗) = 0.

As mentioned in [4] p.332 Theorem 13, and [11] p.31 Theorem 15, p.59 Theorem 25, the usual
assumptions are given as

(B1) Function h : Θ → Rd is continuous on Θ, there exists a non-negative C1 function V such
that ⟨∇V (θ), h(θ)⟩ ≤ 0,∀θ ∈ Θ and the set S = {θ; ⟨∇V (θ), h(θ)⟩ = 0} is such that
V (S) has empty interior. Also, V (θ) tends to +∞ if θ → ∂Θ, where ∂Θ is the boundary of
Θ, or ||θ||2 → ∞. There exists a compact set K ⊂ Θ such that ⟨∇V (θ), h(θ)⟩ < 0 if θ /∈ K;

(B2) For every θ, there exist a function vθ(x) such that the Poisson equation

vθ(x)−E[vθ(Xt+1)|Xt = x, θt = θ]=H(θ,X)−h(θ). (16)

For any compact set C ⊂ Θ,

sup
θ∈C,x∈V

∥H(θ, x)∥2 + ∥vθ(x)∥2 < ∞. (17)

There exists a continuous function ϕC , ϕC(0) = 0, such that for any θ, θ′ ∈ C,

sup
X∈V

∥Pθvθ(x)− Pθ′vθ′(x)∥2 ≤ ϕC (∥θ − θ′∥2) . (18)

(B3) The step size follows γt ≥ 0,
∑

t≥1 γt = ∞,
∑

t≥1 γ
2
t < ∞ and

∑
t≥1 |γt+1 − γt| < ∞.

(B4) Assume θt converges to some limit θ∗ ∈ S. Function h is C1 in some neighborhood of θ∗
with first derivatives Lipschitz, and matrix ∇h(θ∗) has all its eigenvalues with negative real
part.

Then, we have the following convergence and CLT result.
Theorem A.1. [4, 11, 14] Assume θt is given by the SA iteration (15) that satisfies assumptions (B1)
– (B3) above, then iterate θt converges almost surely to the set S defined in (B1). Moreover, with
additional assumption (B4), we have

1
√
γt

· (θt − θ∗)
Dist−−−→
t→∞

N (0,VX), (19)

where covariance matrix VX is the unique solution to the following Lyapunov equation:{
ΣX+KVX+VXKT =0 if α∈( 12 , 1),

ΣX+
(
K+ I

2

)
VX+VX

(
K+ I

2

)T
=0 if α = 1.

(20)

Here, K ≜ ∇h(θ∗) and ΣX ≜ ΣX(H(θ∗, ·)) is the asymptotic covariance matrix as in (8),
evaluated at function H(θ∗, ·).

In addition, for averaged iterates θ̄t ≜ 1
t

∑t−1
i=0 θt, we still have θ̄t

a.s.−−−→
t→∞

θ∗, and

√
t · (θ̄t − θ∗)

Dist−−−→
t→∞

N (0,V′
X), (21)

where V′
X = K−1ΣX(K−1)T with the same matrices K and ΣX as in (20).
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B Proof of Lemma 3.1

To prove Lemma 3.1 with existing Theorem A.1, we need to show that (A1) – (A5) is a special case
of (B1) – (B4). We list (A1) – (A5) here for self-contained purpose.

(A1) The step size is given by γt = t−α for α ∈ (1/2, 1];

(A2) There exists a unique minimizer θ∗ in the interior of the compact set Θ with ∇f(θ∗) = 0,
and matrix ∇2f(θ∗) (resp.∇2f(θ∗)− I/2) is positive definite for a∈(1/2, 1) (resp.a=1);

(A3) Gradients are bounded in the compact set Θ, that is, supθ∈Θ supi∈[n] ||∇F (θ, i)||2 < ∞;

(A4) For every z ∈ [n], θ ∈ Rd, the solution F̃ (θ, z) ∈ Rd of the Poisson equation

F̃ (θ, z)−E[F̃ (θ,Xt+1) | Xt = z] = ∇F (θ, z)−∇f(θ) (22)

exists, and supθ∈Θ,z∈[n] ∥F̃ (θ, z)∥2 < ∞;

(A5) The functions F (θ, i) are L-smooth for all i ∈ [n], that is, ∀θ1, θ2 ∈ Θ,∀i ∈ [n], we have
∥∇F (θ1, i)−∇F (θ2, i)||2 ≤ L||θ1 − θ2∥2.

Let H(θ,X) ≜ −∇F (θ,X) for function F (θ,X) defined in (1). Then, we have h(θ) ≜
EX∼π[H(θ,X)] = −∇f(θ). By choosing V (θ) ≜ f(θ), we know ⟨∇V (θ), h(θ)⟩ = −∇f(θ)2 ≤ 0.
From (A2) we know θ∗ is the unique minimizer of function f , by letting K = {θ∗}, we have
⟨∇V (θ), h(θ)⟩ < 0 when θ /∈ K. Therefore, (B1) is satisfied.

Now we need to check assumption (B2). Assumption (A4) is a direct translation to (16) in (B2),
and supθ∈Θ,z∈[n] ∥F̃ (θ, z)∥2 < ∞, as well as assumption (A3), implies (17). We still need to show
(18). By assuming an n-state ergodic Markov chain {Xt}t≥0 (θ-independent) with transition kernel
P ∈ Rn×n and stationary distribution π, the solution F̃ (θ, z) to the Poisson equation (22) in (A4)
exists and is given as follows.2

F̃ (θ, z)=∇F (θ, z)−∇f(θ)+

n∑
l=1

Pz,l(∇F (θ, l)−∇f(θ))+

n∑
l=1

[
P2
]
z,l

(∇F (θ, l)−∇f(θ))+· · · .

(23)
Next, we can rewrite F̃ (θ, z) in the closed form and show that it is Lipschitz continuous and satisfies
(20) in assumption (B2). Note that by definition of expectation and Chapman–Kolmogorov equation
(
∑n

k=1

∑n
l=1 Pz,kPk,l =

∑n
l=1[P

2]z,l), we have

E[F̃ (θ,Xt+1) | Xt = z] =

n∑
l=1

Pz,l(∇F (θ, l)−∇f(θ))+

n∑
l=1

[
P2
]
z,l

(∇F (θ, l)−∇f(θ))

+

n∑
l=1

[
P3
]
z,l

(∇F (θ, l)−∇f(θ)) + · · · .
(24)

Then, from (23) and (24) we have F̃ (θ, z)− E[F̃ (θ,Xt+1) | Xt = z] = ∇F (θ, z)−∇f(θ), which
is exactly (22) in (A4). Moreover, since 1 and π are the right and left eigenvectors of P respectively
with eigenvalue 1, by induction we know

Pk − 1πT = (P− 1πT )k,∀ k ∈ Z, k ≥ 1. (25)

Along with the fact that

∇f(θ) =

n∑
l=1

πl∇F (θ, l) =

n∑
l=1

[1πT ]z,l∇F (θ, l), (26)

2In this paper, we only consider θ-independent Markovian inputs. The more general conditions of the
θ-dependent Markov chain under which the solution of (22) in (A4) exists are referred to [11] p.71 Theorem 35
or [4] p.217.
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we can further simplify and get a closed form of (23), which is given below.

F̃ (θ, z) = ∇F (θ, z)−∇f(θ)+

n∑
l=1

Pz,l(∇F (θ, l)−∇f(θ))+

n∑
l=1

[
P2
]
z,l

(∇F (θ, l)−∇f(θ))+· · ·

=

n∑
l=1

[
P0 − 1πT

]
z,l

∇F (θ, l) +

n∑
l=1

[
P1 − 1πT

]
z,l

∇F (θ, l) + · · ·

=

( ∞∑
k=0

n∑
l=1

[
Pk − 1πT

]
z,l

∇F (θ, l)

)
−∇f(θ)

=

(
n∑

l=1

[ ∞∑
k=0

[
Pk − 1πT

]
z,l

]
∇F (θ, l)

)
−∇f(θ)

=

(
n∑

l=1

[ ∞∑
k=0

[(
P− 1πT

)k]
z,l

]
∇F (θ, l)

)
−∇f(θ)

=

n∑
l=1

[(
I−P+ 1πT

)−1
]
z,l

∇F (θ, l)−∇f(θ),

(27)

where the second equality comes from (26) and the fifth equality is from (25). Recall the definition
PF (θ, z) ≜

∑n
l=1 Pz,lF (θ, l), we can show that

∥PF̃ (θ, z)−PF̃ (θ′, z)∥2

=

∥∥∥∥∥
n∑

l=1

Pz,l

(
F̃ (θ, l)− F̃ (θ′, l)

)∥∥∥∥∥
2

≤
n∑

l=1

Pz,l∥F̃ (θ, l)− F̃ (θ′, l)∥2

≤ sup
z∈V

∥F̃ (θ, z)− F̃ (θ′, z)∥2

≤ sup
z∈V

∥∥∥∥∥
n∑

l=1

[(
I−P+ 1πT

)−1
]
z,l

(∇F (θ, l)−∇F (θ′, l))

∥∥∥∥∥
2

+ ∥∇f(θ)−∇f(θ′)∥2

≤C sup
z∈V

∥∇F (θ, z)−∇F (θ′, z)∥2 + ∥∇f(θ)−∇f(θ′)∥2

≤(C + 1)L||θ − θ′||2

(28)

for some constant C related to matrix (I−P+ 1πT )−1, where the first and the third inequalities are
from triangular inequality and the last inequality comes from assumption (A5). Note that we have

∥∇f(θ)−∇f(θ′)∥2=

∥∥∥∥∥
n∑

i=1

πi (∇F (θ, i)−∇F (θ′, i))

∥∥∥∥∥
2

≤sup
z∈V

∥∇F (θ, i)−∇F (θ′, i)∥2≤L∥θ−θ′∥2

in the last inequality of (28). So (18) is shown and (B2) is satisfied.

For assumption (A1) with respect to the conditions on the step size, we know for a ∈ (1/2, 1],∑
t≥1 1/t

a = ∞ and
∑

t≥0 1/t
2a < ∞. Besides,

γt − γt+1 =
1

ta
− 1

(t+ 1)a
=

(t+ 1)a − ta

ta(t+ 1)a
≤ (t+ 1)a − ta

t2a
≤ 1

t2a

where the second inequality comes from (t + 1)a − ta monotone decreasing in t for a ∈ (1/2, 1].
Then, we have

∑
t≥1 |γt − γt+1| ≤

∑
t≥1 1/t

2a < ∞. Then, (B3) is satisfied.

Since (B1) – (B3) are satisfied and (A2) assumes unique minimizer such that K = {θ∗}, from
Theorem A.1 we know θt

a.s.−−−→
t→∞

θ∗. Along with assumption (A2) on the positive definite matrix

∇2f(θ∗), (B4) is satisfied.
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Therefore, (A1)-(A5) implies (B1) – (B4) and all the results from Theorem A.1 can be carried over to
Lemma 3.1.

C Discussion on Polyak-Lojasiewicz Inequality and Positive Definite Matrix
∇2f(θ∗)

In this part, we discuss the strictness of the condition on the objective function f between Polyak-
Lojasiewicz (P-L) inequality and our assumption (A2) - positive definite matrix ∇2f(θ∗). We say that
if a scalar-valued function f satisfies µ-P-L inequality, then for any θ ∈ Rd, the following condition
holds:

1

2
∥∇f(θ)∥22 ≥ µ(f(θ)− f(θ∗)), (29)

where ∇f(θ) ∈ Rd, f(θ∗) = minθ∈Rd f(θ) and the minimizer θ∗ belongs to a non-empty solution
set. We define a new function

g(θ) ≜
1

2
∥∇f(θ)∥22 − µ(f(θ)− f∗).

Then, (29) is equivalent to saying minθ g(θ) ≥ 0, and the necessary condition to ensure that θ∗ is the
local minimizer is ∇2g(θ∗) ≥L 0 (e.g., Chapter 1.2 [26]). We have

∇2g(θ) =
(
∇2f(θ)− µI

)
∇2f(θ) +M⊗∇f(θ),

where matrix M is a 3D matrix with dimension d×d×d and ⊗ is the tensor product. Since ∇f(θ∗) =
0, we have M⊗ (∇f(θ∗)) = 0. Then, ∇2g(θ∗) ≥L 0 implies (∇2f(θ∗))2 ≥L µ∇2f(θ∗). Denote
λi ≥ 0, i = 1, 2, · · · , d the eigenvalues of matrix ∇2f(θ∗), by spectral decomposition we need
λi ≥ µ or λi = 0 for each i. If all the eigenvalues of ∇2f(θ∗) are no smaller than µ, then ∇2f(θ∗) is
a positive definite matrix by definition. For example, µ-strongly convex objective function f satisfies
both P-L inequality and ∇2f(θ∗) being positive definite. If there exists at least one eigenvalue with
zero value, then ∇2f(θ∗) is no longer positive definite.

On the other hand, positive definite matrix ∇2f(θ∗) does not necessarily imply P-L inequality. We
give a toy example of objective function f that satisfies positive definite matrix ∇2f(θ∗) while fails
to satisfy P-L inequality. For some smooth convex function

f(θ) =
√
∥θ∥22 + 1 ≥ 1,

we know

f ′(θ) =
θ√

∥θ∥22 + 1
, f ′′(θ) =

1√
∥θ∥22 + 1

I− 1

(∥θ∥22 + 1)3/2
θθT

for any θ ∈ Rd. Since θ∗ = 0, f(θ∗) = 1 and f ′′(θ∗) = I is a positive definite matrix such that this
objective function satisfies our assumption (A2). However, for any θ ∈ Rd, there always exists a
constant ϵ > 0 such that

ϵ(f(θ)− f(θ∗)) ≥ ∥f ′(θ)∥22,

which fails to satisfy (29). Therefore, there is no inclusive relationship between P-L inequality and
positive definite matrix ∇2f(θ∗). Both of the conditions can cover different types of functions.

D Proof of Theorem 3.6

D.1 Proof of Theorem 3.6 (i)

We first prove the direction that efficiency ordering implies Loewner ordering. For any vector
v ≜ [v1, v2, · · · , vd]T ∈ Rd\{0} and vector-valued function f(X) ≜ [f1(X), f2(X), · · · , fd(X)]T ,
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with Σ(f) defined in (8) we can get

vTΣ(f)v = lim
t→∞

vTΣ(f , t)v

= lim
t→∞

1

t
E

vT

[
t∑

s=1

(f(Xs)− Eπ [f(X)])

][
t∑

s=1

(f(Xs)− Eπ [f(X)])

]T
v


= lim

t→∞

1

t
E


[

t∑
s=1

(gv,f (Xs)− Eπ [gv,f (X)])

]2
= σ2(gv,f ),

(30)

where function
gv,f (X) ≜ v1f1(X) + v2f2(X) + · · ·+ vdfd(X)

is a linear combination of fi(X). For two random processes with efficiency ordering and an arbitrary
vector-valued function f , σ2

X(gv,f ) ≤ σ2
Y (gv,f ) for any vector v, which is exactly vTΣX(f)v ≤

vTΣY (f)v. Then, by definition of Loewner ordering, we have ΣX(f) ≤L ΣY (f) for any vector-
valued function f .

On the other direction, let v = [1, 0, · · · , 0]T and vector-valued function f(X) = [g(X), 0, · · · , 0]T ,
where g can be any scalar-valued function. Then, (30) can be written as vTΣ(f)v = σ2(g) and it
holds for any scalar-valued function g. For two Markov chains {Xt}, {Yt} with ΣX(f) ≤L ΣY (f)
for any vector-valued function f , we have vTΣX(f)v ≤ vTΣY (f)v for any vector v. Then, with
v = [1, 0, · · · , 0]T we show that σ2

X(g) ≤ σ2
Y (g) for any scalar-valued function g, which proves the

efficiency ordering.

D.2 Proof of Theorem 3.6 (ii)

We first introduce the closed form of the solution V to the Lyapunov equation in Lemma 3.1 and the
useful lemma on Loewner ordering.
Lemma D.1 ([8] Theorem 3.16 and (3.160)). If all the eigenvalues of matrix K have negative
real part, then for every positive-definite matrix U there exists a unique positive-definite matrix V
satisfying U+KV +VKT = 0. The explicit solution V is given as

V =

∫ ∞

0

eKtUe(K
T )tdt. (31)

Lemma D.2 ([29] Theorem 8.2.7). If two real matrix A,B ∈ Rm×m are Loewner ordered A ≤L B,
then CACT ≤L CBCT for any real matrix C ∈ Rm×m.

From Theorem 3.6 (i), we know efficiency ordering σ2
X(g) ≤ σ2

Y (g) for any scalar-valued function
g leads to Loewner ordering ΣX(f) ≤L ΣY (f) for any vector-valued function f . Consider two
random process {Xt}t≥0, {Yt}t≥0 with efficiency ordering X ≥E Y , we have ΣX ≤L ΣY . By
Lemma D.2 and (20), for any t in (31), we have eKtΣXe(K

T )t ≤L eKtΣY e
(KT )t. Then, for any

vector v ∈ Rd\{0}, we have

vTVXv =

∫ ∞

0

vT eKtΣXe(K
T )tvdt ≤

∫ ∞

0

vT eKtΣY e
(KT )tvdt = vTVY v,

such that VX ≤L VY by definition of Loewner ordering. Similarly, for averaged iterates, we have
V′

X ≤L V′
Y immediately from Lemma D.2 because ΣX ≤L ΣY and V′

X = K−1ΣX(K−1)T ,
V′

Y = K−1ΣY (K
−1)T .

E Additional Convergence and CLT results for SGD with Constant Step Size
and Quadratic Objective Function

Lemma 3.1 has shown the CLT result for general SGD iteration (7) with diminishing step size. A
natural question would be if any CLT result exists for the same SGD iteration with constant step size
γ. For the i.i.d inputs and a special case of the iteration

θt+1 = θt − γ(A(Xt+1)θt − b(Xt+1)), (32)
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which is usually called linear stochastic approximation in the stochastic approximation literature, it
has been studied in [13, 30] that θt forms a Markov chain and its time-averaged iterate θ̄t = 1

t

∑t−1
i=0 θi

converges to the minimizer θ∗ almost surely and a CLT result is given in Theorem 1 [30]. However,
for Markovian inputs {Xt}t≥0, V. Borkar and S. Meyn mentioned in [5] that the behavior of (θt, Xt)
itself is still an open problem under the SGD iteration (7). In this part, we propose Lemma E.1
that studies the special case of the SGD iteration [9] (which studied the diminishing step size) and
complements the CLT result for constant step size with time-averaged iterates.

We consider a quadratic objective function

f(θ) =
1

n

n∑
i=1

(
1

2
θTAθ − θTb(i)

)
,

where matrix A ∈ Rd×d is positive definite and vector b(X) ∈ Rd only depends on the state X ∈ V
of the Markovian input. Then, the SGD iteration studied in [9] is given as

θt+1 = θt − γt+1 (Aθt − b(Xt+1)) . (33)

Here, we study the constant step size γt = γ, ∀t ≥ 0. Define b̄ ≜
∑

i∈[n] b(Xi)πi. The minimizer
is given by θ∗ = A−1b̄ such that ∇f(θ∗) = 0. Then, we have the following CLT result for the SGD
update rule (33) with constant step size and Markovian input {Xt}t≥0.
Lemma E.1. Consider the update rule (33) with positive definite matrix A and constant step size γ

such that 0 < γ < 2/∥A∥2. Then, for averaged iterates θ̄t = 1
t

∑t−1
i=0 θi, we have

θ̄t
a.s.−−−→
t→∞

θ∗, and
√
t(θ̄t − θ∗)

Dist−−−→
t→∞

N (0,VX), (34)

where VX = A−1ΣX(A−1)T and ΣX = limt→∞
1
tE[BtB

T
t ], Bt ≜

∑t
s=1(b(Xs)− b̄).

Proof. Let θ̃t = θt − θ∗ and recall θ∗ = A−1b̄, we can rewrite (33) as

θ̃t+1 = θ̃t − γ(Aθ̃t − b(Xt+1) + b̄). (35)

Recursively solving (35) gives

θ̃t = (I− γA)tθ̃0 − γ

t∑
i=1

(I− γA)t−i(b(Xi)− b̄). (36)

For averaged iterates θ̄t = 1
t

∑t−1
i=0 θi, (36) gives

θ̄t − θ∗ =
1

t

t−1∑
i=0

θ̃t

=
1

t

t−1∑
i=0

(I− γA)iθ̃0 −
γ

t

t−1∑
i=1

i∑
j=1

(I− γA)i−j(b(Xj)− b̄)

=
1

t

t−1∑
i=0

(I− γA)iθ̃0 −
γ

t

t−1∑
i=1

t−i−1∑
j=0

(I− γA)j

 (b(Xi)− b̄)

=
1

t
(γA)−1(I− (I− γA)t)θ̃0 −

γ

t

t−1∑
i=1

(γA)−1(I− (I− γA)t−i)(b(Xi)− b̄),

(37)

where the third equality comes from rearranging the summation order in the second term on the RHS.
The fourth equality comes from the fact that

∑t−1
i=0(I− γA)i = (γA)−1(I− (I− γA)t).

Next we want to show limt→∞(I − γA)t = 0. Since we assume 0 < γ < 2/∥A∥2, we have
∥I − γA∥2 = maxi=1,2,··· ,n |1 − γλi(A)| < 1, where λi(A) > 0 is the i-the eigenvalue of the
positive definite matrix A. Then, by submultiplicative property, ∥(I− γA)t∥2 ≤ ∥I− γA∥t2 such
that limt→∞ ∥(I− γA)t∥2 ≤ limt→∞ ∥I− γA∥t2 = 0, which implies that limt→∞(I− γA)t = 0.
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Now we want to show limt→∞ ∥
∑t−1

i=1(I − γA)t−i(b(Xi) − b̄)∥2 < ∞. Since vector-valued
function b(·) is defined on the finite state space V , it is safe to assume ∥b(X)− b̄∥2 ≤ C for some
constant C. Then,

lim
t→∞

∥∥∥∥∥
t−1∑
i=1

(I− γA)t−i(b(Xi)− b̄)

∥∥∥∥∥
2

≤ lim
t→∞

t−1∑
i=1

∥(I− γA)t−i∥2∥(b(Xi)− b̄)∥2

≤ C lim
t→∞

t−1∑
i=1

∥I− γA∥t−i
2

= C lim
t→∞

t−1∑
i=1

∥I− γA∥i2 < ∞,

(38)

where the first inequality comes from submultiplicative property and triangular inequality, the first
equality is by rewriting the index inside the summation, and the third inequality comes from the fact
that ∥I− γA∥2 < 1. Then, we have

lim
t→∞

1

t

t−1∑
i=1

(I− γA)t−i(b(Xi)− b̄) = 0, (39)

and

lim
t→∞

1√
t

t−1∑
i=1

(I− γA)t−i(b(Xi)− b̄) = 0. (40)

With limt→∞(I− γA)t = 0 and (39), we have from (37) that

lim
t→∞

θ̄t − θ∗ = lim
t→∞

−γ

t

t−1∑
i=1

(γA)−1(b(Xi)− b̄) = −A−1 lim
t→∞

1

t

t−1∑
i=1

(b(Xi)− b̄). (41)

From the ergodic theorem for Markov chains ([7] Theorem 3.3.2), we have limt→∞
1
t

∑t−1
i=1(b(Xi)−

b̄) = 0 and therefore limt→∞ θ̄t = θ∗.

To get the CLT result in (34), we first scale θ̄t − θ∗ from (37), along with (40), such that

lim
t→∞

√
t(θ̄t − θ∗) = lim

t→∞
− γ√

t

t−1∑
i=1

(γA)−1(b(Xi)− b̄)

= −A−1 lim
t→∞

√
t− 1√
t

(
1√
t− 1

t−1∑
i=1

(b(Xi)− b̄)

)
.

(42)

From the CLT of Markov chain in Theorem 2.1, we know 1√
t

∑t
i=1(b(Xi)− b̄)

dist−−−→
t→∞

N (0,ΣX),

where ΣX = limt→∞
1
tE[(

∑t
s=1(b(Xi) − b̄))(

∑t
s=1(b(Xi) − b̄))T ]. This result shows that time-

averaged iterate θ̄t will guarantee the convergence to the exact solution and we have CLT result for√
t(θ̄t − θ∗) too.

Finally, we need to quantify the covariance matrix in the CLT result to
√
t(θ̄t − θ∗). We will look

at limt→∞ tE[(θ̄t − θ∗)(θ̄t − θ∗)T ]. Note that the second term in (37) is bounded (see (38) for the
proof) such that the cross term in the outer-product of θ̄t − θ∗ will vanish when t → ∞. Then, we
have

lim
t→∞

t(θ̄t − θ∗)(θ̄t − θ∗)T

= lim
t→∞

t− 1

t

(
− 1√

t− 1
A−1

t−1∑
i=1

(b(Xi)− b̄)

)(
− 1√

t− 1
A−1

t−1∑
i=1

(b(Xi)− b̄)

)T

=A−1 lim
t→∞

1

t

(
t−1∑
i=1

(b(Xi)− b̄)

)(
t−1∑
i=1

(b(Xi)− b̄)

)T

(A−1)T .

(43)
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Taking the expectation of (43) gives

lim
t→∞

tE[(θ̄t − θ∗)(θ̄t − θ∗)T ]

=A−1 lim
t→∞

t− 1

t
E

 1

t− 1

(
t−1∑
i=1

(b(Xi)− b̄)

)(
t−1∑
i=1

(b(Xi)− b̄)

)T
 (A−1)T

=A−1ΣX(A−1)T .

(44)

Therefore, we have √
t(θ̄t − θ∗)

dist−−−→
t→∞

N (0,A−1ΣX(A−1)T ).

In Lemma E.1, A = ∇2f(θ) and ΣX , by definition (8), is an asymptotic covariance matrix of the
Markov chain {Xt}t≥0 for vector-valued function b(·). Therefore, (34) shares a similar form to (21)
in Lemma 3.1. Our Theorem 3.6 can be carried over to Lemma E.1, which enables us to compare the
efficiency ordering of SGD algorithms driven by different stochastic inputs under the update rule (33)
and constant step size.

F Proof of Proposition 4.1

[31, 19] proposed the guidance by modifying a reversible random walk into a non-Markovian
random walk to achieve higher sampling efficiency and it was applied to other applications to
improve sampling efficiency (e.g., [23, 25]). Specifically speaking, consider a reversible random walk
{Xt}t≥0 (e.g., SRW) with transition matrix P and stationary distribution π. Let its counterpart (e.g.,
NBRW) on the augmented state space be given by {Zt}t≥0 ≜ {(Yt−1, Yt)}t≥0, where Yt−1, Yt ∈ V
and Z0 = (Y0, Y0). Additionally, {Zt}t≥0 is a Markov chain on the augmented state space

E ≜ {(i, j) : i, j ∈ V s.t. P (i, j) > 0} ⊆ V × V

with stationary distribution π′. For notation simplicity, we use eij to represent edge (i, j). Note that
by definition eij ̸= eji and we allow i = j if P (i, j) > 0, which is a bit different from the edge set
that does not include edge (i, i). As proved in [19], the properties of NBRW {Zt}t≥0 are detailed in
the following theorem.
Theorem F.1 ([31] Theorem 2). Suppose that {Xt} is an irreducible, reversible Markov chain on
the state space V = {1, 2, · · · , n} with transition matrix P = {P (i, j)} and stationary distribution
π. Construct a Markov chain {Zt} on the augmented state space E with transition matrix P′ =
{P ′(eij , elk)} in which the transition probabilities P ′(eij , elk) satisfy the following two conditions:
for all eij , eji, ejk, ekj ∈ E with i ̸= k,

P (j, i)P ′(eij , ejk) = P (j, k)P ′(ekj , eji), (45a)

P ′(eij , ejk) ≥ P (j, k). (45b)
Then, the Markov chain {Zt}t≥0 is irreducible and non-reversible with a unique stationary distribu-
tion π′ in which

π′(eij) = πiP (i, j) = πjP (j, i), eij ∈ E . (46)

Also, for any scalar-valued function g, the asymptotic variance σ2
Z(g) ≤ σ2

X(g).

Now, we show how the non-Markov random walk with properties in Theorem F.1 can be included
in Lemma 3.1. For the original function G : Rd × V → Rd, we define another function Φ :
Rd × E → Rd such that Φ(θ, eij) = G(θ, j). Then, the SGD update rule (7) becomes θt+1 =
ProjΘ (θt − γt+1∇Φ (θt, Zt+1)). From (46), we have for any θ ∈ Rd,

ϕ(θ)≜EZ∼π′Φ(θ, Z)=
∑
eij∈E

Φ(θ, eij)π
′(eij)=

∑
i,j∈V

G(θ, j)πjP (j, i)=
∑
j∈V

1

nπj
F (θ, j)πj = f(θ),

(47)
showing the mean-field function ϕ(θ) for Φ(θ, Z) is the same as the objective function f(θ).
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Next, we show assumptions (A1)-(A5) of Lemma 3.1 still hold for {Zt}t≥0 on the augmented state
space E and function Φ. Assumption (A1), (A5) and (A3) hold for function Φ(θ, Z) because of our
definition Φ(θ, eij) = G(θ, j). Assumption (A4) is satisfied because from Theorem F.1, {Zt}t≥0 is
an irreducible and non-reversible Markov chain on the augmented state space E and there always
exists a solution (27) to (22). Assumption (A2) holds because matrix K = ∇2ϕ(θ∗) = ∇2f(θ∗)
by (47). Therefore, we can say the Markov chain {Zt}t≥0 on the augmented state space E , along
with the newly defined function Φ, can apply Lemma 3.1. The asymptotic covariance matrix
ΣZ ≜ ΣZ(∇Φ(θ∗, ·)) is given as

ΣZ=Varπ′(∇Φ(θ∗, Z0))+
∑
k≥1

Covπ′(∇Φ(θ∗, Z0),∇Φ(θ∗, Zk))Covπ′(∇Φ(θ∗, Z0),∇Φ(θ∗, Zk))
T

= lim
t→∞

1

t
E


[

t∑
s=1

(∇Φ(θ∗, Zs)−Eπ′(∇Φ(θ∗, ·)))

][
t∑

s=1

(∇Φ(θ∗, Zs)−Eπ′(∇Φ(θ∗, ·)))

]T
= lim

t→∞

1

t
E


[

t∑
s=1

(∇G(θ∗, Ys)−Eπ(∇G(θ∗, ·)))

][
t∑

s=1

(∇G(θ∗, Ys)−Eπ(∇G(θ∗, ·)))

]T
=ΣY (∇G(θ∗, ·)),

(48)

where the third equality comes from (46) because

Eπ′ [(∇Φ(θ∗, Z))] = ∇f(θ∗) =
∑
j∈V

1

nπj
∇F (θ, j)πj =

∑
j∈V

πj∇G(θ, j) = Eπ(∇G(θ∗, ·)).

{Yt}t≥0 on the node space V is the trajectory generated by {Zt}t≥0 on the augmented state space
E . Let VZ be the covariance matrix generated by the SGD algorithm driven by {Zt}t≥0. Denote
ΣX ≜ ΣX(∇G(θ∗, ·)) the asymptotic covariance matrix and VX the covariance matrix in (20) from
the original Markov chain {Xt}. Then, from Theorem F.1 we know the asymptotic variances of
NBRW and SRW are ordered for any scalar-valued function. Then, with Theorem 3.6 (i) we know
that the asymptotic covariance matrices of NBRW and SRW are Loewner ordered for any vector-
valued function such that ΣY (∇G(θ∗, ·)) ≤L ΣX(∇G(θ∗, ·)). From (48) we have ΣZ ≤L ΣX . By
applying Theorem 3.6 (ii), we have VZ ≤L VX .

G Proof of Lemma 4.2

Assume we have a vector-valued function g : [n] → Rd. For shuffling without replacement, which
traverses every node in each epoch with length n, we group all the terms in each k-th epoch (shown
in Figure 3) and analyze the term

∑kn−1
i=(k−1)n(g(Xi)−Eπ(g)) < ∞ for k ∈ Z+. Note that we have

kn−1∑
i=(k−1)n

g(Xi) =

n∑
j=1

g(j) (49)

by definition of shuffling without replacement. By (49) and Eπ(g) =
1
n

∑n
i=1 g(i), we have

kn−1∑
i=(k−1)n

(g(Xi)− Eπ(g)) =

n∑
j=1

g(j)− n

n∑
i=1

1

n
g(i) = 0. (50)
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Epoch 𝑘

Sampled functions in the 𝑘-th epoch

+ + + +

SUM

=

Figure 3: Diagram of the sampled functions in each epoch.

With the definition of the asymptotic covariance matrix, we have

ΣX(g) = lim
t→∞

1

t
E


(

t∑
i=1

(g(Xs)−Eπ(g))

)(
t∑

i=1

(g(Xs)−Eπ(g))

)T


= lim
t→∞

1

t
E

{[
s∑

i=1

(g(Xi)−Eπ(g))+

t∑
i=s+1

(g(Xi)−Eπ(g))

]

·

[
s∑

i=1

(g(Xi)−Eπ(g))+

t∑
i=s+1

(g(Xi)−Eπ(g))

]T}

= lim
t→∞

1

t
E


[

t∑
i=s+1

(g(Xi)−Eπ(g))

][
t∑

i=s+1

(g(Xi)−Eπ(g))

]T ,

(51)

where π is the uniform stationary distribution, s ≜ t− (t mod n) is the time at which the previous
epoch ended before time t and we let

∑t
i=t+1(g(Xi)−Eπ(g)) = 0 by default. The third equality in

(51) comes from (50). Note that there always exists a constant D such that ||g(i)− Eπg||2 < D for
any i ∈ [n] because of the boundedness of function g. Then, we have for any t,∥∥∥∥∥

t∑
i=s+1

(g(Xi)−Eπ(g))

∥∥∥∥∥
2

≤
t∑

i=s+1

∥g(Xi)−Eπ(g)∥2 < (t− s− 1)D < nD < ∞,

where the second last inequality holds since t− s− 1 = (t mod n)− 1 < n. Back to (51), we have

||ΣX(g)||2 ≤ lim
t→∞

1

t
E

∥∥∥∥∥
t∑

i=s+1

(g(Xi)−Eπ(g))

∥∥∥∥∥
2

2

 ≤ lim
t→∞

nD

t
= 0,

where the first inequality comes from Jensen’s inequality. Finally, we have ΣX(g) = 0 such that the
asymptotic covariance matrices for both random and single shuffling are zero for any vector-valued
function g.

H Proof of Proposition 4.3 and Extension to Mini-batch Gradient Descent

H.1 Single Shuffling in SGD CLT Analysis

Single shuffling is seen as a time-homogeneous, irreducible, periodic Markov chain and we know
(A4) is the only requirement for Markov chain in the CLT result. As mentioned in [15] and [28]
Chapter 17, the necessary condition to ensure the existence of function F̃ as in (27) is that the inverse
(I − P + 1πT )−1 exists. This is true for periodic Markov chain, and is shown in the following
lemma.
Lemma H.1. The solution (27) to the Poisson equation (22) exists for an underlying finite, irreducible
periodic Markov chain with transition matrix P ∈ Rm×m, stationary distribution π and period
n ≤ m.

Proof. From Perron–Frobenius theorem for irreducible, non-negative stochastic matrices [34], we
know there are n complex eigenvalues uniformly distributed on the unit circle, including the unique

11



eigenvalue with value 1. Other m − n eigenvalues fall inside the unit circle, but still uniformly
distributed on some circles with absolute value strictly smaller than 1 because transition matrix P is
similar to eiωP where i =

√
−1 and ω = 2π/n.

Denote λ1, λ2, · · · , λm = 1 the eigenvalues of the transition matrix P and let J be the Jordan norm
form. There exists an invertible matrix Q = [u1,u2, · · · ,um]T and Q−1 = [v1,v2, · · · ,vm] such
that P = QJQ−1 and uT

i vi = 1 for all i ∈ [m]. In particular, um = π and vm = 1. Now,
(λm = 1,um,vm) is also the PF eigenpair for the matrix Π, which enables us to write down
1πT = QΛQ−1, where Λ = diag(0, 0, · · · , 1). Therefore, I − P + 1πT = Q(I − J + Λ)Q−1.
Note that I− J+Λ is a new Jordan norm form with non-zero entries on the main diagonal. Assume
Ji = λiI+N is one of its Jordan block with nilpotent matrix N such that Npi = 0 for some pi ≥ 2,
then

J−1
i = λ−1

i (I+ λ−1
i N)−1 = λ−1

i (I− λ−1
i N+ · · ·+ (λi)

−pi+1Npi−1),

showing that J−1
i exists for all Jordan blocks in the new Jordan norm form I− J+Λ because all λi

are non-zero. Therefore, (I−P+ 1πT )−1 exists and (27) holds.

With Lemma H.1, single shuffling can indeed be included in the SGD CLT result, and its covariance
matrix is the zero matrix 0 (from Lemma 4.2). Random shuffling is a time-inhomogeneous Markov
chain due to its nature of reshuffling at the beginning of each epoch. Before providing our main
proof, we first present the augmentation of the random shuffling sequence which transforms it into a
time-homogeneous periodic Markov chain on the augmented state space.

H.2 Augmentation of Random Shuffling for CLT Analysis

By the definition of random shuffling, in each epoch of length n, the sampler traverses one permutation
sequence drawn uniformly at random from the permutation sequence set with size n!. Due to its
random nature across each epoch, random shuffling is not a Markov chain on state space [n]. In
order to include random shuffling in the SGD CLT result, Lemma 3.1, we need to transform it into a
Markov chain on a augmented state space.

Let {Xt}t≥0 be the sequence generated by random shuffling. We first define an augmented
state space S, where for each state st ≜ {{A(t)

j }j∈[n], ct} ∈ S, the sequence {A(t)
j }j∈[n] ≜

{Xt−n+1, Xt−n+2, · · · , Xt} is of length n, and records the history of past n indices until time t. The
integer ct ∈ {1, 2, · · · , n} is the time spent in current epoch at time t. For examples, consider the
state space to be S = {1, 2, · · · , 6} in total and assume the sequence of visited states until t = 8 is
{3, 6, 2, 1, 5, 4, 2, 5}. Here, {3, 6, 2, 1, 5, 4} is one complete permutation sequence in the first epoch
and {2, 5} are in the second epoch. At time t = 8, the sampler is at index 5 and the sequence of past
6 indices is {2, 1, 5, 4, 2, 5} and ct = 2, such that s8 = {{2, 1, 5, 4, 2, 5}, 2}. In the next iteration
t = 9, the sequence will be {1, 5, 4, 2, 5, X} and ct = 3, where X is the index that can be chosen
from {1, 3, 4, 6} uniformly at random because {2, 5} have been chosen in the current epoch. Then,
we have

s9 =


{{1, 5, 4, 2, 5, 1}, 3} w.p 1/4,

{{1, 5, 4, 2, 5, 3}, 3} w.p 1/4,

{{1, 5, 4, 2, 5, 4}, 3} w.p 1/4,

{{1, 5, 4, 2, 5, 6}, 3} w.p 1/4.

(52)

Assume s12 = {2, 5, 6, 1, 3, 4, 6} at t = 12, the next state s13 = {{5, 6, 1, 3, 4, X}, 1} and X is
chosen from {1, 2, · · · , 6} uniformly at random.

Note that

• We only include proper combination of sequence {Aj}j∈[n] in the augmented state space,
where ‘proper’ means the sequence is possible to appear with the current value of ct.
For instance, {{2, 1, 5, 4, 2, 2}, 2} or {{2, 1, 5, 1, 2, 5}, 2} is inproper because {2, 2} or
{2, 1, 5, 1} doesn’t exist in the permutation sequence in one epoch.

• Transition probability P (st, st+1) is possibly non-zero only when ct+1 = ct + 1 for
ct ≤ n− 1, or ct+1 = 1 when ct = n.

Next, we show the proposition that will be used later to show that random shuffling can also be fitted
into the CLT result.
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Proposition H.2. {st}t≥0 forms a finite, irreducible and periodic Markov chain with period n.

Proof. By our construction, the size of choice of {Aj}j∈[n] with c = i is (Ci
n)

2i!(n− i)!, because
the first i indices has Ci

ni! choices and remaining sequence has Cn−i
n (n− i)! choices. The size of

the augmented state space is
∑n

i=1(C
i
n)

2i!(n− i)! and is still finite.

The irreducibility can be shown by P (st+2n = s′|st = s) > 0 because we can always construct two
permutation sequences in two epochs; one including first i indices of {A′

j}j∈[n] in state s′ and the
other including the remaining sequences.

For periodicity, if the sequence {A(t)
j }j∈[n] in the current state st = s ∈ S includes repeated in-

dex at time t, e.g., index i ∈ {Xt−n+1, · · · , Xm} (in the m
n -th epoch) and i ∈ {Xm+1, · · · , Xt}

(in the (mn + 1)-th epoch), then i /∈ {Xt+1, · · · , Xm+n} due to the nature of shuffling without
replacement in an epoch, which leads to P (st+n = s|st = s) = 0. In addition, for k ≥ 2 we can
always construct intermediate sequences {Xt+1, · · · , Xt+(k−1)n} such that {Xt−n+1, · · · , Xm} =
{Xt+(k−1)n+1, · · · , Xm+kn} and {Xm+1, · · · , Xt} = {Xm+kn+1, · · · , Xt+kn}, implying that
P (st+kn = s|st = s) > 0 for k ≥ 2. On the other hand, if {A(t)

j }j∈[n] does not include repeated in-
dex, P (st+kn = s|st = s) > 0 for k ∈ N. We also note that P (st+j = s|st = s) = 0 for s ∈ S , j ̸=
kn and k ∈ N. Since {ct} by its definition is a periodic sequence {1, 2, · · · , n, 1, 2, · · · , n, 1, 2, · · · }
with period of length n, we know that ct = ct+j holds only when j = kn for k ∈ N. Then, for
j ̸= kn, we have ct+j ̸= ct such that st+j ̸= st, which leads to P (st+j = s|st = s) = 0 for j ̸= kn
and k ∈ N. Therefore, by definition of periodicity, the Markov chain is of period n.

Together with Lemma H.1 and Proposition H.2, we can see random shuffling can also be include in
the SGD CLT.

H.3 Extension to Mini-batch Gradient Descent

Mini-batch gradient descent is another popular gradient descent variant and is widely used in the
machine learning tools [10, 1, 32] to accelerate the learning process when compared to SGD. Instead
of sampling a single element, mini-batch gradient descent samples multiple elements from [n] in
each iteration that form a batch.

To incorporate the notion of mini-batches in our SGD framework, we provide a reformulation of the
general SGD iteration based on a similar formulation in [16] for the general analysis of SGD with
i.i.d inputs. Consider a stochastic process {Bt}t≥0 as the driving sequence, which randomly samples
batches of size S (without replacement) from the state space [n], that is Bt ⊂ [n] and |Bt| = S for all
t ≥ 0. Here we assume [n] mod S = 0 for simplicity. Bt will therefore refer to the batch chosen at
any time t > 0. We assume that Bt for all t > 0 are i.i.d random variables drawn from a distribution
P , such that P(B) > 0 is the probability with which a batch B ⊂ [n] is picked. We associate with
any batch B, v(B) ≜

[∑
i∈B ei

]
/
(
N
S

)
P(B), where ei is the i’th vector of the canonical basis of Rd.

We then denote F(θ) ≜ [F (θ, 1), · · · , F (θ, n)]T , and ∇F(θ) ≜ [∇F (θ, 1), · · · ,∇F (θ, n)]T for all
θ ∈ Θ. With this notation, we can rewrite the general update rule for mini-batch SGD as

θt+1 = ProjΘ
(
θt − γt+1∇F(θt)

Tv(Bt+1)
)
. (53)

Note that this way of defining the mini-batch based random input ensures that EP [F(θ)
Tv(·)] = f(θ)

for all θ ∈ Θ, maintaining the same objective function irrespective of the distribution from which
batches are sampled.

With Xt = Bt for all t ≥ 0, and ∇G(θt, Xt+1) = ∇F(θt)
Tv(Bt+1), the iteration (53) can still be

written in the form of (7) with i.i.d input sequence {Xt}t≥0. We can thus apply the CLT for SGD
algorithms to the mini-batch SGD with i.i.d input, and in a similar fashion as (13) derive the explicit
form of the asymptotic covariance matrix of (53), that is,

ΣB(∇F(θ∗)Tv(·)) ≜ VarB0∼P(∇F(θ∗)Tv(B0)). (54)
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In practice, mini-batch gradient descent with shuffling is more widely used than i.i.d sampling [1], in
which Bt is generated by shuffling-based method instead of independent drawn from a distribution.3
At the beginning of each epoch, Mini-batch gradient descent with random shuffling shuffles the whole
dataset [n] and split it into small batches. On the other hand, mini-batch gradient descent with single
shuffling only shuffles the dataset [n] once before dividing it into batches, sticking to a predetermined
sequence of batches for all epochs of the training process. As pointed out by [36], there is still a
gap between practical implementation and theoretical analysis for mini-batch gradient descent with
shuffling. Nevertheless, by extrapolating the analysis from Proposition 4.3, we are able to analyze the
efficiency ordering of shuffling and i.i.d sampling in the mini-batch version, as stated next.

Proposition H.3. Consider the mini-batch gradient descent (53) with stochastic inputs single/random
shuffling {Xt}t≥0 and i.i.d sampling {Yt}t≥0, we have θXt , θYt

a.s.−−−→
t→∞

θ∗ and VX = 0 ≤L VY .

Proof. Let l ≜ n/B ∈ N. We first give the following corollary.

Corollary H.4. Mini-batch gradient descent with single shuffling is an irreducible, periodic Markov
chain with period l.

Proof. For single shuffling version, we divide the whole dataset [n] into B(1), B(2), · · · , B(l) and
the corresponding sampling vector will be v(1),v(2), · · · ,v(l). We shuffle the indices once, denoted
by a(1), a(2), · · · , a(l), and stick to this sequence all the time. Then, in each epoch, sampler will
update θt according to the sequence v(a(1)),v(a(2)), · · · ,v(a(l)), where {vt}t≥0 forms the finite,
irreducible periodic Markov chain with period l.

Together with Corollary H.4 and Lemma H.1, mini-batch gradient descent with single shuffling can
be included in the SGD CLT analysis and Theorem 3.6. Then, by Lemma H.1 and 4.2, mini-batch
SGD with single shuffling can be applied to CLT result, which gives the asymptotic covariance matrix
Σw(∇F(θ∗)Tv(·)) = 0 and thus the covariance matrix in the CLT result is also zero.

For random shuffling version, we can use similar method as in Appendix H.2 to augment the state
space, which forms the corollary as follows.

Corollary H.5. {xt}t≥0 forms a finite, irreducible and periodic Markov chain with period l.

Proof. Let X be the augmented space, where state xt ≜ {{W (t)
j }j∈[l], ct}. Sequence {W (t)

j }j∈[l] =

{vt−l+1,vt−l+2, · · · ,vt} records the last l selected batches and ct ∈ {1, 2, · · · , l} is the relative
position of the batch in the current epoch at time t. The only difference for mini-batch version to the
single element version is that we sample one batch of size B without replacement according to the
indices yet to be chosen in the current epoch. Similar to the proof in Proposition H.2, {Xt}t≥0 is
also a finite, irreducible and periodic Markov chain with period l.

Corollary H.5 and Lemma H.1 show that mini-batch gradient descent with random shuffling can
also be included in the SGD CLT analysis. However, we still need to check the form of asymptotic
covariance matrix due to the augmentation. We follow the same idea from Appendix F and define
a function Φ(θ, xt) ≜ F(θ)Tv(Bt). Then, from Lemma 4.2, asymptotic covariance matrix Σx is

3The reformulation (53) enables us to analyze mini-batch gradient descent with various stochastic processes
that samples Bt, not just i.i.d input and shuffling. However, discussing general processes {Bt}t≥0 is beyond the
scope of this paper.
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given as

Σx=Varπ(∇Φ(θ∗, x0))+
∑
k≥1

Covπ(∇Φ(θ∗, x0),∇Φ(θ∗, xk))Covπ(∇Φ(θ∗, x0),∇Φ(θ∗, xk))
T

= lim
t→∞

1

t
E


[

t∑
s=1

(∇Φ(θ∗, xs)− Eπ(∇Φ(θ∗, ·)))

][
t∑

s=1

(∇Φ(θ∗, xs)− Eπ(∇Φ(θ∗, ·)))

]T
= lim

t→∞

1

t
E


[

t∑
s=1

(
∇F(θ∗)Tv(Bs)−∇f(θ∗)

)][ t∑
s=1

(
∇F(θ∗)Tv(Bs)−∇f(θ∗))

)]T
= Σx(∇F(θ∗)Tv(·)) = 0,

(55)

where the third equality comes from the limiting distribution of random shuffling that is uniform.
Thus, the covariance matrix of random shuffling in the CLT result is also zero.

Above results show that both single shuffling and random shuffling in mini-batch SGD have higher
efficiency than mini-batch SGD with i.i.d sampling.

Proposition H.3 generalizes Proposition 4.3 (special case with mini-batch of size S = 1) in that the
same efficiency ordering between shuffling and i.i.d input holds true even with mini-batches.

I Simulation

In Appendix I.1, we give the details of our simulation setup for Figure 1, involving three reversible
Markov chains - the Metropolis-Hasting random walk (MHRW), a modification of MHRW (Modified-
MHRW) and fastest mixing Markov chain (FMMC), each having the uniform distribution as their
stationary measure. In Appendix I.2, we expand upon the numerical results in Section 5 by including
additional results for large graphs.

I.1 Details behind Figure 1

For the random walk SGD (RWSGD) simulation in Figure 1, we consider the problem of minimizing
a (scalar-valued) quadratic objective function

f(θ) ≜
1

n

n∑
i=1

F (θ, i) =
1

2n

n∑
i=1

(θ − b(i))2, (56)

where θ, b(i) ∈ R for i = 1, 2, · · · , n and n is the number of nodes on the graph. The minimizer is
given by θ∗ ≜ argminθ f(θ) =

1
n

∑n
i=1 b(i). The RWSGD iteration for the objective function (56)

is then given by
θt+1 = θt − γt+1(θt − b(Xt+1)), (57)

where we choose γt = 1/t0.9 and {Xt}t≥0 is the stochastic input, e.g., MHRW, Modified-MHRW,
and FMMC.

In Figure 1, we simulate the SGD algorithm on two graphs; one is an 8-node graph G1 and the other
is a 5-node graph G2. The two graphs are arbitrarily constructed while ensuring connectivity. See
Figure 4 for resulting topologies.

Now, we are ready to introduce the construction of three Markov chains on two graphs in Figure 4.

MHRW: Metropolis-Hasting algorithm [27] shows that the transition matrix of MHRW is constructed
in the following manner:

P (i, j) =

{
min

{
1
di
, 1
di

}
, j ∈ N(i),

1−
∑

j∈N(i) P (i, j), j = i,
(58)

where di is the degree of node i and N(i) is the set of node i’s neighbors.
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(a) 8-node graph G1.
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(b) 5-node graph G2.

Figure 4: Topology of two graphs.

Modified-MHRW: To construct a ‘modified-MHRW’, which is more efficient than the standard
MHRW,4 we employ the notion of ‘Peskun ordering’, originated from [33].

Definition I.1 (Peskun ordering [33]). For two finite, ergodic, reversible Markov chains
{Xt}t≥0, {Yt}t≥0 on the state space V with transition matrices PX ,PY having the same station-
ary distribution π, it is said that PY dominates PX off the diagonal, written as PX ⪯ PY if
PX(i, j) ≤ PY (i, j) for all i, j ∈ V and i ̸= j.

We have the following lemma that connects the Peskun ordering to the efficiency ordering.

Lemma I.2 ([33] Theorem 2.1.1). If PX ⪯ PY , then σ2
X(g) ≥ σ2

Y (g) for any scalar-valued function
g with Eπ(g

2) < ∞, that is, {Yt}t≥0 is more efficient than {Xt}t≥0.

We can manually construct a more efficient Markov chain by reducing the self-transition probability
P (i, i) of the MHRW and redistributing to off-diagonal entries, whenever possible, in a way that
each row still sums to one and the resulting matrix is doubly-stochastic (i.e., the resulting Markov
chain is reversible w.r.t the uniform distribution). In view of Lemma I.2, this modification improves
the efficiency (smaller AV σ2 compared to the standard MHRW).5

FMMC: FMMC is obtained by solving a semidefinite programming (proposed in problem (6) of [6]),
which gives a Markov chain that minimizes the SLEM of the transition matrix over the entire class of
reversible Markov chains w.r.t the uniform stationary distribution for a given graph topology. This is
done numerically by using the CVXOPT package [12]. Later we will show in the simulation that
FMMC indeed has the smallest SLEM compared to MHRW and Modified-MHRW.

In what follows, we index these three Markov chains with numbers in the subscript: MHRW (indexed
by 1), Modified-MHRW (indexed by 2), and FMMC (indexed by 3). For graph G1, the transition

4Efficiency ordering of Markov chains is introduced in Definition 3.5. In short, a Markov chain {Xt}t≥0

is more efficient than {Yt}t≥0 if the asymptotic variances (AV) satisfy σ2
X(g) ≤ σ2

Y (g) for any scalar-valued
function g with Eπ(g

2) < ∞, where σ2
X(g) is defined in (4).

5Note that there can be many ways to modify the standard MHRW that make the Markov chain more efficient.
The pursuit of the ‘optimal’ modification w.r.t the efficiency is out of the scope of this paper.
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matrices of MHRW PG1
1 , Modified-MHRW PG1

2 , and FMMC PG1
3 are given by

PG1
1 =



1/12 1/3 1/4 0 0 1/3 0 0
1/3 1/6 0 0 1/2 0 0 0
1/4 0 0 1/4 0 1/4 1/4 0
0 0 1/4 1/12 1/3 0 0 1/3
0 1/2 0 1/3 1/6 0 0 0
1/3 0 1/4 0 0 5/12 0 0
0 0 1/4 0 0 0 1/4 1/2
0 0 0 1/3 0 0 1/2 1/6


,

PG1
2 =



0 0.35 0.25 0 0 0.4 0 0
0.35 0.02 0 0 0.63 0 0 0
0.25 0 0 0.25 0 0.25 0.25 0
0 0 0.25 0 0.37 0 0 0.38
0 0.63 0 0.37 0 0 0 0
0.4 0 0.25 0 0 0.35 0 0
0 0 0.25 0 0 0 0.13 0.62
0 0 0 0.38 0 0 0.62 0


,

PG1
3 =



0.13 0.42 0.17 0 0 0.28 0 0
0.42 0.1 0 0 0.48 0 0 0
0.17 0 0 0.06 0 0.32 0.45 0
0 0 0.06 0.14 0.46 0 0 0.34
0 0.48 0 0.46 0.06 0 0 0

0.28 0 0.32 0 0 0.4 0 0
0 0 0.45 0 0 0 0.09 0.46
0 0 0 0.34 0 0 0.46 0.2


.

(59)

For graph G2, the transition matrices of MHRW PG2
1 , Modified-MHRW PG2

2 , and FMMC PG2
3 are

given by

PG2
1 =


0 1/4 1/4 1/4 1/4
1/4 1/6 0 1/4 1/3
1/4 0 1/2 1/4 0
1/4 1/4 1/4 0 1/4
1/4 1/3 0 1/4 1/6

 ,

PG2
2 =


0 0.25 0.25 0.25 0.25

0.25 0 0 0.25 0.5
0.25 0 0.5 0.25 0
0.25 0.25 0.25 0 0.25
0.25 0.5 0 0.25 0

 ,

PG2
3 =


0.09 0.25 0.33 0.08 0.25
0.25 0.25 0 0.25 0.25
0.33 0 0.34 0.33 0
0.08 0.25 0.33 0.09 0.25
0.25 0.25 0 0.25 0.25

 .

(60)

In both (59) and (60), observe that Modified-MHRW and MHRW follow the Peskun ordering, i.e.,
PG1

1 ⪯ PG1
2 and PG2

1 ⪯ PG2
2 , such that Modified-MHRW is more efficient than MHRW according to

Lemma I.2. In addition, the SLEMs of these matrices are given in Table 1, where FMMC has the
smallest SLEM in both graphs compared to MHRW and Modified-MHRW. Interestingly, Modified-
MHRW has larger SLEM than MHRW in graph G1, which means Modified-MHRW can mix slower
than MHRW to the stationary distribution.

In Figure 5, we show the simulation result of each Markov chain in the RWSGD algorithm with
iteration (57) w.r.t MSE E∥θt − θ∗∥22 in graph G1 and G2.6 In both graphs, Modified-MHRW (green
curve) performs better than MHRW (red curve) and FMMC (blue curve) with smallest MSE while it
has the largest SLEM shown in Table 1. This implies that the order of SLEM does not reflect the
order of MSE in the RWSGD algorithm.

6The reason we plot the same curves in each graph will be explained in the next paragraph.
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G1 G2

MHRW (β1) 0.761 0.500
Modified-MHRW (β2) 0.868 0.500

FMMC (β3) 0.712 0.408

Table 1: SLEMs of the transition matrices in (59) and (60).

(a) Graph G1 (b) Graph G2

Figure 5: MSE E∥θt − θ∗∥22 of three Markov chains in the SGD algorithm with iteration (57).

In Figure 5, we repeat the plot in each graph three times with three different values of AVs inside the
legend, the reason being that we want to see if the performance of each Markov chain is related to the
AV σ2(g) and its test function g, other than SLEM solely. In the top row of Figure 5, as well as in
Figure 1, we choose the test function g1(i) = ∇F (θ∗, i) for i = 1, 2, · · · , n, where ∇F (θ, i) is the
gradient of the local function F (θ, i) (56) w.r.t θ. In the middle row of Figure 5, the test function is
g2(i) = di, which estimates the average degree of the graph. In the bottom row of Figure 5, the test
function is g3(i) = 1{i=1}, which estimates the probability of visiting node 1. We include the AVs of
all three test functions g1, g2, g3 in the legend of Figure 5, e.g., σ2

3(g1) is the AV of the test function
g1 for FMMC.7 We observe that σ2

1(g1) < σ2
3(g1) and σ2

1(g3) < σ2
3(g3) while σ2

1(g2) > σ2
3(g2) in

both graphs. This means MHRW and FMMC are not efficiency ordered, which is possible because
efficiency ordering is a partial order such that not every two Markov chains can be ordered. On the
other hand, in both graphs, σ2

1(gk) > σ2
2(gk) for k = 1, 2, 3, which is consistent with the fact that

the constructed Modified-MHRW is more efficient than MHRW. Regarding the MSE, we find that
Modified-MHRW performs better than MHRW in both graphs, which is in line with the efficiency
ordering. This leads us to conjecture that two efficiency ordered Markov chains might also have their
performance in the RWSGD algorithm ordered in the same way.

7The AV of the test function for each Markov chain is calculated by running a stochastic simulation for a
long time and directly computing according to the definition in (4).
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Remark I.3. Section 1.1 in [35] numerically compares the performance of a reversible Markov
chain and its non-reversible counterpart in the RWSGD algorithm w.r.t SLEM, and shows that the
non-reversible counterpart with smaller SLEM performs better. The main theorem therein is also
applicable to the comparison of two reversible Markov chains. However, as shown in Figure 5, we
provide examples to show that a reversible Markov chain with smaller SLEM does not necessarily
lead to smaller MSE in the RWSGD algorithm. Note that our results do not contradict the simulation
results in Section 1.1 of [35], since it is possible for a Markov chain to have both smaller AV and
smaller SLEM; which could be the case for the non-reversible counterpart in [35], although they
didn’t specify the AV in their simulation. Moreover, their main theorem is an upper bound to the
error terms considered, which means that an SLEM-based ordering does not guarantee a performance
ordering of the error terms themselves, as also exemplified in Figure 5. All of these together imply
that SLEM alone cannot be the sole indicator of performance of the Markov chains as input sequences
for RWSGD algorithms.

I.2 Numerical Results on Large Graphs

We first specify the process of dataset generation for the sum-of-nonconvex functions f̂(θ) in (14).
We generate random vectors a1, · · ·an,b ∈ R10 uniformly from [0, 1] and ensure the invertibility
of
∑n

i=1 aia
T
i . Then, we randomly select half of the matrices in {Di}i∈[n] and assign +1.1 to their

j-th diagonal; other matrices are assigned −1.1 to j-th diagonal. We repeat the above process for all
diagonal values j = 1, 2, · · · , 10. This process guarantees

∑n
i=1 Di = 0.

We perform additional simulations on graph ‘AS-733’ [22] with 6474 nodes, and graph ‘wikiVote’
[21] with 889 nodes with the same objective functions f̃(θ) and f̂(θ) in (14). The simulation results
are given in Figure 6 and 7. We plot the curves of NBRW and SRW in the insets of Figures 6a,
6b, 7a, and 7b, with the same x,y axes but at linear scale, to better observe the difference in their
performance. For both objective functions, NBRW has smaller MSE than SRW and both random and
single shuffling perform better than uniform sampling, e.g., Figure 6a and 7a.8 This demonstrate that
NBRW and SRW are efficiency-ordered, which also holds for random/single shuffling and uniform
sampling. Note that since we simulate on large graphs, for the logistic regression problem, the
SGD algorithm with NBRW and SRW is yet to enter the asymptotic regime even in the 100, 000-th
iteration, which can be explained by the blue and green increasing curves in the inset of Figure 6b and
7b. On the other hand, the curve of uniform sampling becomes flat and the curves of single/random
shuffling are starting to go down in Figure 6b, 6d and 7b, 7d, implying that they have entered the
asymptotic regime. These results are consistent to the observations in Figure 2, which support our
theory.

I.3 Additional Simulations on Non-convex Objective Function and SGD Variants

Regarding the SGD variants other than the vanilla SGD, central limit theorem (CLT) is less well
studied in the literature. To list a few, [20] studied variance reduced SGD (SVRG) and obtained
the CLT for constant step size. [2] analyzed Adam and their follow-up [3] extended the CLT for a
general SGD algorithm, which includes Stochastic Heavy Ball (SHB), Nesterov accelerated SGD
(NaSGD) and Adam. [24] established the CLT for momentum SGD (mSGD) and NaSGD under more
general conditions on the step size. However, all of these recent works focus only on the Martingale
difference noise

E[δt+1|Ft ≜ σ(θ0, X0, X1, · · · , Xt)] = E[∇f(θt)−∇F (θt, Xt+1)|Ft] = 0,

which is equivalent to saying that the input {Xt}t≥0 is independently sampled from some identical
distribution for each time t (i.i.d input sequence). Meanwhile, for Markovian inputs,

E[δt+1|Ft] =
∑
i∈[n]

πi∇F (θt, i)−
∑
i∈[n]

P (Xt, i)∇F (θt, i) ̸= 0

because πi ̸= P (Xt, i) in general (unless {Xt}t≥0 is an i.i.d sequence). It remains an open problem to
obtain the CLT for these SGD variants with general Markovian inputs, which would be a prerequisite

8The curves of NBRW and SRW in Figure 6a and 7a appear flat because they are plotted in the same figure
with uniform sampling and single/random shuffling, which have much smaller MSE. We plot the comparison
between NBRW and SRW separately in the inset.
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for our efficiency ordering. Indeed, one of our future works is to theoretically prove the CLT results for
SGD variants with Markovian inputs and to carry over our efficiency ordering of different stochastic
inputs.

Next, we simulate two SGD variants, i.e., Nesterov accelerated SGD (NaSGD) and ADAM, on graph
“AS-733” (as used in Appendix I.2) with two pair of stochastic inputs, i.e., NBRW versus SRW and
shuffling methods versus i.i.d input sequence, with respect to both convex objective function and
non-convex objective function. We choose the convex objective function f̂(θ) from (14) such that

f̂(θ)=
1

n

n∑
i=1

θT (aia
T
i +Di)θ+bT θ, (61)

where
∑n

i=1 aia
T
i is invertible and

∑n
i=1 Di = 0. We can see ∇2f̂(θ) = 2

n

∑n
i=1 aia

T
i is a positive

semi-definite matrix and f̂(θ) is convex. Then, we modify matrices {Di}i∈[n] such that the first
element on the main diagonal of each matrix Di is subtracted by 0.1, and we denote the new matrices
as {Mi}i∈[n]. We define a new function ĝ(θ) such that

ĝ(θ) =
1

n

n∑
i=1

θT (aia
T
i +Mi)θ+bT θ. (62)

We numerically compute ∇2ĝ(θ) = 2
n

∑n
i=1(aia

T
i +Mi) and ensure it has at least one negative

eigenvalue such that the objective function ĝ(θ) is non-convex. For Nesterov accelerated SGD, we
employ the following iteration from [24]:

θt+1 = ut − γt+1∇G(ut, Xt+1),

ut+1 = θt+1 + βt+1(θt+1 − θt),
(63)

where γt = 1/0.9t and βt+1 ≡ β = 0.5 in our settings. For ADAM, we use the following iteration
from [18]:

gt+1 = ∇G(θt, Xt+1),

mt+1 = α1mt + (1− α1)gt+1,

vt+1 = α2vt + (1− α2)g
2
t+1,

m′ = mt+1/(1− αt
1),

v′ = vt+1/(1− αt
2),

θt+1 = θt − γtm
′/(

√
v′ + ϵ),

(64)

where γt = 1/0.9t, α1 = 0.9, α2 = 0.999, ϵ = 10−8, g2t+1 is the element-wise square for the
vector gt+1 and

√
v′ is the element-wise square root for the vector v′. In both (63) and (64),

function G(θ, i) = θT (aia
T
i + Di)θ + bT θ for convex objective function f̂(θ) and G(θ, i) =

θT (aia
T
i +Mi)θ + bT θ for non-convex objective function ĝ(θ).

The insets of Figure 8 are to enlarge the curves of NBRW and SRW in ADAM algorithm for the
iteration t ∈ [40000, 50000] to make them more distinguishable. In Figure 8, we show that for
both convex and non-convex objective functions, the curves of NBRW are always below those of
SRW in vanilla SGD, NaSGD and ADAM, respectively. This not only supports our Theorem 3.6 on
vanilla SGD and both convex and non-convex objective functions, but also suggest that the efficiency
ordering is still valid for other SGD variants. In Figure 9, we also empirically test the performance
of shuffling methods and uniform sampling on vanilla SGD, NaSGD and ADAM with non-convex
objective function ĝ(θ). In all three SGD iterations, we show that shuffling methods are better than
uniform sampling, although the gap between shuffling methods and uniform sampling is small in
NaSGD and ADAM in Figure 9b and 9c and the reason could be that these SGD variants implicitly
include the “momentum” may decrease the effect of the correlation from the stochastic inputs. We
also notice from Figure 8 that for a given stochastic input, NaSGD and ADAM are better than vanilla
SGD, while in Figure 9 the result is reversed. Currently, we only know that those SGD variants
NaSGD and ADAM work better than vanilla SGD in practice for i.i.d input sequence. It remains an
open problem for SGD variants with general Markovian inputs, and thus, it’s possible that Markovian
inputs can influence the performance of NaSGD and ADAM, compared to vanilla SGD. In any case,
Figure 8 and Figure 9 still validate our efficiency ordering.
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(a) Logistic regression (MSE)

(b) Logistic regression (scaled MSE)
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Figure 6: Performance comparison of different stochastic inputs on the graph ‘AS-733’.
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(a) Logistic regression (MSE)

(b) Logistic regression (scaled MSE)
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Figure 7: Performance comparison of different stochastic inputs on the graph ‘wikiVote’.
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(a) sum-non-convex functions f̂(θ)

(b) non-convex function ĝ(θ)

Figure 8: Performance comparison of NBRW and SRW in vanilla SGD, NaSGD and ADAM
algorithms on the graph “AS-733”.
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(a) Vanilla SGD

(b) NaSGD

(c) ADAM
Figure 9: Performance comparison of shuffling methods and uniform sampling with non-convex
objective function ĝ(θ) on the graph “AS-733”.
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