Towards Understanding Orthogonalization in Muon

Valentyn Boreiko ! Zhiqi Bu? Sheng Zha?

Abstract

Muon is a recent optimizer that relies on matrix or-
thogonalization of updates and has been shown to
improve large language model (LLM) training. It
does so by introducing additional momentum and
Newton-Schulz iteration to the stochastic spec-
tral descent method (SSD). However, it incurs
higher communication cost if tensor parallelism
is enabled, and its hyperparameter transfer proper-
ties are not yet fully explored. We first introduce
block-wise orthogonalization, splitting weight ma-
trices into independent tiles that are orthogonal-
ized separately and recombined, and we empiri-
cally analyze its influence on training. This retains
the validation loss while allowing up to 16x ten-
sor parallel splits of weight matrices. Second, we
show that under spectral regularization a single
learning rate transfers when depth, width of the
model, and token count are co-scaled under Chin-
chilla guidelines. Finally, we show that a higher
weight decay value of 0.1 underperforms during
the first 80% of the training but outperforms lower
values after that, which can be attributed to the
tighter spectral norm constraint. Based on this,
we propose weight decay clipping and scheduling
to capture both regimes. The code is available at
anonymous.4open.science/r/MuonSBW-23A2.

1. Introduction

Optimization is one of the driving forces behind the rapid
development of deep learning — and LLMs in particular.
It is closely connected to the scaling laws through feature
learning: with specific parameterization and learning-rate
scaling (maximal update parameterization, yP) (Yang et al.,
2021; 2023), training remains stable, and hyperparameters,
such as learning rate, transfer when scaling model size (e.g.,

"University of Tiibingen, Tiibingen AI Center. “This work
was done during Valentyn’s internship at Amazon. >AGI Foun-
dations, Amazon. Correspondence to: Valentyn Boreiko <valen-
tyn.boreiko @ gmail.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

width (Yang & Hu, 2021) or depth (Yang et al., 2024)).

Adam (Kingma & Ba, 2015) — augmented with decoupled
weight decay (AdamW) (Loshchilov & Hutter, 2019) —is the
default LLM optimizer, yet it has some disadvantages. First,
it is heuristically derived with the need for bias correction
and storing running statistics for every parameter, which as a
consequence increases its complexity and memory footprint.
More importantly, it is known to have instabilities during
the training, known as “loss spikes” (Molybog et al., 2023),
which is especially problematic when training larger models
and requires regular re-starts during the training from the
latest checkpoints (Chowdhery et al., 2022). Hyperparam-
eters also fail to transfer across width unless one uses P
scaling (Littwin & Yang, 2023).

Recently, an alternative, Muon, was proposed in (Jordan
et al., 2024; Bernstein & Newhouse, 2024). It enjoys a
faster convergence compared to AdamW during NanoGPT
speedruns (Jordan et al., 2024) and is designed for more
stable training using the spectral update condition for feature
learning (Yang et al., 2023; Pethick et al., 2025).

Nevertheless, both Muon and Scion have limitations. First,
if a weight matrix is split among several devices, it should
be gathered on one to compute at every iteration. This leads
to higher communication costs. Moreover, Muon optimizes
layers 1 and L with AdamW, while Scion proposes to use
a different norm for layers 1 and L, leading to a costly hy-
perparameter search. Lastly, while there has been evidence
of learning rate transfer when scaling models in width in
(Pethick et al., 2025; Bernstein, 2025), it is not clear if there
is a learning transfer when scaling in depth or even more
realistically — co-scale in depth, width, and the number of
tokens (depth-width-token co-scaling).

The latter scaling is known as the Chinchilla scaling
law (Hoffmann et al., 2022). This is a widely used ap-
proach to scale the number of tokens during the pre-training
proportional to the number of parameters in the model. The
transfer of learning rate when scaling the number of tokens
has been a long-standing challenge with a recent attempt in
(Bjorck et al., 2025), which gave a rule-of-thumb to transfer
the learning rate across the token horizon. Learning rate
transfer during the depth-width-token co-scaling is an even
more challenging open problem (Everett et al., 2024).

https://anonymous.4open.science/r/MuonSBW-23A2

Towards Understanding Orthogonalization in Muon

OpenWebText

44
Ba2
(@]
|
[
S840
=
©
e
©
D38

36

2° 2! 2’ 2 2

Tensor Parallel Splits (TP)

C4

4.6
44

—— H=W

H=1

42 —— w=1

— AdamW
4.0 Scion(sign)
3.8

2° 2! 2 2 2!

Tensor Parallel Splits (TP)

Figure 1. MuonSBW is more parallelizable than MuonS with comparable performance. Here, for two datasets - OpenWebText
(Gokaslan et al., 2019) and C4 (Raffel et al., 2019) - we investigate for 124M nanoGPT model (Karpathy, 2022) with 1x Chinchilla
scaling (Hoffmann et al., 2022) the influence of splitting the momentum gradient matrix introduced in Section 3 into smaller blocks
of equal size before the orthogonalization in three ways: i) square blocks (H = W); ii) column splits (H = 1); iii) row splits (W = 1).
Increasing the number of blocks initially improves loss (row split, TP = 4), and eventually leads to worsening of the loss, which might be
explained by the increasing spectral norm of the weights as we discuss in Appendix F.

In this work, we empirically show how we can attempt to
solve all of the aforementioned limitations, by combining
the scaling update rule suggested by Muon and Scion to-
gether with the spectral norm constraint on all layers and
block-wise orthogonalization. We name these approaches
MuonS and MuonSBW, respectively.

1.1. Our Contributions

Our contributions are as follows.

* MuonSBW. In Section 4 and Section 5.1, we propose
MuonSBW, a more parallelizable version of MuonS, and
show in Figure 1 that it is stable in validation loss up to
16x tensor parallelism when training on OpenWebText
as well as C4. Moreover, we see that the 4x parallelism
slightly outperforms the MuonS baseline discussed in
Appendix C in more detail.

* Joint scaling transfer. Next, in Section 5.2, we show
that by only relying on the scaling of updates which are
known to enable feature learning and allow for learning
rate transfer only in width, we observe that surprisingly
learning rate transfers when scaling width, depth of the
model and the number of tokens simultaneously. We also
confirm the finding on the C4 dataset in Appendix H.1.

* Static weight decay. We further investigate in Section 5.3
the influence of weight decay for MuonSBW and in
Appendix E for other optimizers. We see that for 5x
Chinchilla and bigger models, higher weight decay con-
sistently outperforms lower weight decay values after
around 80% of the training run while being worse than
other weight decay values before that.

¢ Dynamic weight decay. We attribute the aforementioned
behavior to a lower spectral norm as discussed in Fig-
ure 15 and Appendix F. In Section 5.4, we further propose
weight decay schedules to improve the performance.

2. Related Work

Throughout this paper, we are interested in solving the un-
constrained optimization problem

min F(X)
Xex

ey

for a non-convex F' : X — R . During the training of a
neural network, we search for weights X that solve (1). The
compositional structure of neural networks with layers of
matrices has spurred research on the non-Euclidean norms
used during the optimization (Yang et al., 2023; Jordan et al.,
2024; Bernstein & Newhouse, 2024; Pethick et al., 2025;
Carlson et al., 2015b;a; 2016; Large et al., 2024), which
we discuss in more detail in the following. By minimizing
quadratic upper bound at the current iterate X; we can solve
(1) by the steepest descent update for general norms (Nes-
terov, 2010; Madry, 2015; Carlson et al., 2016) (for more
details see Appendix A)

Xt+1 =X; — M(VF(XJ)TH’
2
(VE(X)T, € aﬁ%ﬁxwf’(xt),m.

Stochastic Spectral Descent (SSD). In (Carlson et al.,
2015bsa; 2016), the authors applied gradient descent for
general norms to neural networks. They proposed to re-
place the gradient oracle V F(-) with the stochastic gradient

Towards Understanding Orthogonalization in Muon

Table 1. Optimizers difference. Muon (Jordan et al., 2024) and
Scion (Pethick et al., 2025) use SSD for some of the layers, while
for others they suggest to use an equivalent of AdamW (for Muon)
or Signum (Bernstein et al., 2018) (for Scion). We suggest using
spectral descent for all layers, which we abbreviate as MuonS to-
gether with its block-wise version as MuonSBW, which effectively
requires only one learning rate to tune.

Method | Firstlayer Middle layers Last layer
Scion Signum Spectral Signum
Muon AdamW Spectral AdamW

MuonSBW (ours) Spectral Spectral Spectral

oracle Vf(-,£) and do the update (2) with respect to the
matrix norm, the spectral norm, since for neural networks
the iterates are structured as weight matrices. This led to
significant speed-ups when training smaller feedforward and
convolutional neural networks as well as Restricted Boltz-
mann Machines (RBMs) and other probabilistic models.

Muon. When using the spectral norm (largest singular value
of a matrix) opmax(+) in (2), the sharp operator (X)fmax(_) is
a semi-orthogonal matrix closest to X, which can be com-
puted using singular value decomposition (SVD). In (Jor-
dan et al., 2024), however, the authors replaced SVD with
Newton-Schulz iteration (NS), which is more efficient on
modern GPUs. Moreover, they incorporated an additional
momentum term in SSD. This allowed for speed-ups com-
pared with AdamW during both nanoGPT (Karpathy, 2022)
and CIFAR-10 (Krizhevsky & Hinton, 2009) speedruns.
However, their algorithm does not apply SSD for each layer.
Instead, it still uses AdamW for the first and last layers of a
neural network (see Table 1).

Distributed Shampoo. As discussed in (Bernstein & New-
house, 2024), Shampoo (Gupta et al., 2018) without accu-
mulation can be viewed as SSD. It is therefore interesting to
understand approaches for distributed optimization with it.
In (Shi et al., 2023a), the authors propose in Section 4.2 to
allow for tensor parallelism by a strategy called “blocking”,
which effectively applies Shampoo on each of the blocks.
This inspired our approach that we introduce in Section 4
and investigate in more detail in Section 5.1.

Scion. The Stochastic Conditional Gradient with Operator
Norms (Scion) optimizer introduced in (Pethick et al., 2025)
is a concurrent work based on the Stochastic Conditional
Gradient method (SCG) that provides a control over the
norm in each layer of a neural network. The authors pro-
posed using the || - || norm in SCG for the first and last
layers, effectively applying the Signum optimizer for them.
For the other layers, they propose to use spectral norm as in
Muon and SSD. Learning rates for these two different norms
(spectral and || - ||o) should be tuned separately. Because
our first aim is to speed up the hyperparameter search by

simplifying the algorithm, we instead use SSD with spectral
norm constraint for all layers (see Table 1).

Moonlight. In (Liu et al., 2025), the authors have trained
big Mixture-of-Experts models (MoE) with 3B and 16B
parameters for longer than 17x Chinchilla using both Muon
and AdamW. Muon improves the Pareto frontier achiev-
ing a lower loss with much less training FLOPs. They
further compare it with AdamW and show that Muon is ap-
proximately 2x more computationally efficient compared to
AdamW. On this big scale, they show, among other findings,
that a higher weight decay of 0.1 for most of the training
run performs worse for Muon while starting to outperform
less and no weight decay at the end of the training. Because
this scale is not out of reach for many academic labs, in Sec-
tion 5.3 we investigate if this phenomenon is happening at a
smaller scale, for models with up to 758M parameters and
with 1x and 5x Chinchilla scaling. Moreover, in Figure 15
and Appendix F, we show that better generalization occurs
when the spectral norm is constrained more tightly.

3. Muon

In this section, we introduce the Muon algorithm with
weight decay and its main properties. We discuss it in more
detail in Appendix B.

Norm. In (Bernstein & Newhouse, 2024), the authors show
that algorithms, such as SGD, Adam, and Shampoo (Gupta
et al., 2018) are all related to each other through the steepest
descent problem (8) discussed in Appendix A by the choice
of the norm |- || — l2, lso, and opyax (+) — respectively. Muon,
similarly to Shampoo, uses the steepest descent updates
with respect to the spectral norm.

Algorithm. For 7;, A\ > 0 and a neural network with L
layers, Muon orthogonalizes updates to weight matrices
W} for layers I € {2,...,L — 1} at each time step ¢ to

compute the steepest descent direction (X)TT”RMS%RMS =

v/ d;‘z‘!‘]" Ortho(G') with respect to the RMS-to-RMS opera-

tor norm (more details are in Appendix B):

dl
Wiy =W =)/ St Ortho(G) + AW/), ()

m

1 Lo, . .
where G € R%ut* % is the momentum stochastic gradient

Gi=(1—a)G | + VW, &))
Ortho(GL) returns the closest semi-orthogonal matrix:

Ortho(GY) = argming 10 -Gr, (5

myXng

Towards Understanding Orthogonalization in Muon

Model Size = 345M
Weight Decay
0.0

Model Size = 124M

0.001

001
- 04

S T A o e
A

o5 AR Syt ek

500 1000 1500 2000 2500 3000 3500 4000 O
Model Size = 524M

2000 4000 6000 8000 10000 12000 14000
Model Size = 758M

» |

©350 i
1
13
t,

s

0 5000

10000 15000 20000 0 5000 10000 15000 20000 25000 30000
Step Step

Figure 2. Higher weight decay of 0.1 consistently outperforms
only at the end of the training. Here, for MuonSBW, we vary
weight decay for 5x Chinchilla. A similar observation was already
made in (Liu et al., 2025), however only for one training run
at a much larger scale and only for the MoE architecture. In
Appendix E, we observe similar trend for 1x Chinchilla scaling
and in Appendix H.2 - for models trained on C4.

where one minimizes over semi-orthogonal matrices.

Omxn = {AER™" | AAT = I,umor ATA=T,,}.

4. Block-wise Orthogonalization

Inspired by (Shi et al., 2023b), we propose to i) split the
momentum gradient matrix before orthogonalization into
tensor parallel splits (TP) row-, column-, or block-wise, do-
ing so in sub-matrices of equal dimensions; ii) compute with
NS orthogonalized sub-matrices; iii) concatenate later it as
one matrix. The influence of this varying granularity can
be seen in Figure 1, showing how we interpolate between
the two modes of orthogonalizing the whole matrix on the
left (TP = 2°) and orthogonalizing an increasing number of
sub-blocks separately until TP = 24

S. Experiments

We train the original nanoGPT (Karpathy, 2022), without
changing its initialization, on OpenWebText (Gokaslan et al.,
2019) and C4 (Raffel et al., 2019) datasets. In all exper-
iments, we increase the size of the model by increasing
the number of its layers (depth scaling); set the number of
attention heads to be equal to the number of layers, while
increasing the embedding dimension proportionally by the
factor 64 (width scaling); moreover, for each experiment
we use 1x or 5x Chinchilla scaling for the number of tokens
depending on the setting (token number scaling). In the
experiments, we train and analyze models of different sizes,
from 124M up to 1.43B parameters, more precisely (we
include the number of layers in brackets): 124M (12), 215M
(15), 345M (18), 524M (21), 758M (24), 1.43B (30). For
more details, see Appendix I.

Table 2. For MuonS and MuonSBW we observe learning
rate transfer during depth-width-token co-scaling. We train
nanoGPT models on OpenWebText with 1x Chinchilla scaling. We
plot validation losses for all tested learning rate values in Figure 2.

Size | AdamW MuonS | MuonSBW

| LR Loss | LR Loss | LR Loss
124M | 5.0e-04 4.2912 | 0.05 3.5668 | 0.01 3.5557
215M | 5.0e-04 3.5657 | 0.05 3.1932 | 0.01 3.1743
345M | 0.002 3.1019|0.02 2.9692 | 0.01 2.9522
524M | 0.002 2.878510.02 2.7876 | 0.01 2.7892
758M | 0.002 2.7271(0.02 2.6839 | 0.02 2.6885
1.43B | 0.001 2.5435]0.05 2.5377 |0.01 2.5377

5.1. Analyzing Block-wise Orthogonalization

One of the downsides of the Muon optimizer is the need to
gather the update matrix G on one device, which incurs ad-
ditional communication costs during tensor parallel training.
For a naive implementation, it can save communication cost
during Allgather operation of dyyt, X di, orthogonalizing the
update matrix for each layer. To understand the influence of
block-wise orthogonalization on the validation loss achieved
by the model, we compare in Figure 1 several different ways
of splitting (sharding) the update matrix G'. We find that
doing row-wise orthogonalization even improves the loss at
4x tensor parallelism and stays stable in validation loss up to
16x tensor parallelism. Degradation in validation loss can be
attributed to the increase of the spectral norm as we discuss
in Appendix 5.1. As for row-wise 4x tensor parallelism, we
observed a better performance than the baseline MuonS, we
use it as our default setting for MuonSBW in the rest of the
experiments. In the next Section, we show the transfer of
learning rate during depth-width-token co-scaling.

5.2. Learning Rate Transfer

Next, in Figure 3, we increase the number of layers and thus
the size of the network and observe that, unlike AdamW,
our suggested optimizers MuonS and MuonSBW, together
with the block-wise versions, transfer well. We also report
the best validation losses and the learning rates achieving it
in Table 2. Surprisingly, for MuonSBW the same learning
rate 0.01 is the best for all model sizes, but one, with 24
layers. However, there the learning rate 0.01 is second best
and achieves a loss of 2.6896, close to the best.

5.3. Influence of Static Weight Decay

Further, we investigate the influence of weight decay by
training models with 5x Chinchilla scaling. We can ob-
serve in Figure 2 that throughout most of the training for
all model sizes, the higher weight decay 0.1 has a higher

Towards Understanding Orthogonalization in Muon

AdamW

N

Validation Loss
[¢]

-12 -10 -8 -6 -4 -12 -10

2 2 2 2 2 2 2
Learning Rate

MuonS

Learning Rate

MuonSBW

Learning Rate

Figure 3. MuonS and MuonSBW enjoy learning rate transfer during depth-width-token co-scaling. We are training nanoGPT on
OpenWebText with 1x Chinchilla scaling. For both MuonS and MuonSBW learning rate transfers well, unlike for AdamW. Moreover,
MuonSBW enjoys a better transfer: the same learning rate of 0.01 is the best across all sizes (see Table 2), staying the best also for another
dataset, C4, in Figure 20 in Appendix. We report optimal learning rate values together with achieved validation loss in Table 2.

validation loss than the lower weight decay values. In the
end, roughly at the last 80% of the training (more details
are in Appendix E), the value of 0.1 results in significantly
lower validation loss. This can be attributed to the spectral
norm, which we discuss in Appendix F.

5.4. Dynamic Weight Decay

We observed in Section 5.3 that the weight decay of 0.1 out-
performs at the end of the training, likely due to the tighter
constraints on the spectral norm throughout the training, as

Cutoff Schedule

2.71
wn 2.70
w0
3
2.69
S --- Constant wd = 0.1
< 2.68 — Constant wd = 0.0
i)
©
g 2.67

2.66

2.65

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
Cutoff proportion

Figure 4. Clipping weight decay at the end improves the val-
idation loss. For the 345M model and 5x Chinchilla scaling,
clipping at 80% of the training improves the validation loss. See
Appendix E for more experiments and details.

we discuss in Appendix F. Here, we investigate whether the
spectral norm constraint should be relaxed by decreasing
weight decay towards the end of the training. For this, we
try three weight decay schedules:

Cutoff, w.(t) = 0.1 - X¢t<t,,..-t.» Where weight decay is 0.1
up until the cutoff proportion ¢, € [0, 1] and 0 after that;

. tk
Polynomial, wy,(t) = 0.1 - 7—;
Inverse Polynomial, w,(t) = 0.1- (1 — tki

max

).

For the 124M model, we show in Figure 4 that decreas-
ing weight decay towards the end of the training reduces
validation loss - both using Cutoff and Inverse Polynomial
schedules. Thus, we take the simpler schedule, Cutoff, and
train a larger 345M model, with the results in Figure 4. We
confirm that the Cutoff schedule achieves a lower validation
loss than the baseline. More details are in the Appendix E.

6. Conclusion

For the Muon optimizer, we propose using the spectral
norm constraint for all layers to speed up the hyperparame-
ter search, perform block-wise orthogonalization to improve
communication efficiency when using tensor parallelism,
and observe learning rate transfer across model sizes when
co-scaling depth, width, and the number of tokens. Addi-
tionally, we investigate in more detail the weight decay and
CBS of the proposed optimizers.

Acknowledgements

We thank Volkan Cevher, Antonio Orvieto, and Vaclav
Voracek for stimulating and helpful discussions.

Towards Understanding Orthogonalization in Muon

References

Arora, S., Li, Z., and Panigrahi, A. Understanding gradient
descent on the edge of stability in deep learning. In ICML,
2022.

Bernstein, J. Deriving muon, 2025. URL
https://jeremybernste.in/writing/

deriving-muon.

Bernstein, J. and Newhouse, L. Old optimizer, new norm:
An anthology. arXiv preprint arXiv:2409.20325, 2024.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signSGD: Compressed optimisation for non-
convex problems. In ICML, 2018.

Bjorck, J., Benhaim, A., Chaudhary, V., Wei, F., and Song,
X. Scaling optimal LR across token horizons. In ICLR,
2025.

Carlson, D., Cevher, V., and Carin, L. Stochastic spectral
descent for restricted boltzmann machines. In AISTATS,
2015a.

Carlson, D., Hsieh, Y.-P., Collins, E., Carin, L., and Cevher,
V. Stochastic spectral descent for discrete graphical mod-
els. Selected Topics in Signal Processing, 2016.

Carlson, D. E., Collins, E., Hsieh, Y.-P., Carin, L., and
Cevher, V. Preconditioned spectral descent for deep learn-
ing. In NeurlPS, 2015b.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Bartham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P.,, Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Weli, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. Palm: Scaling language mod-
eling with pathways. arXiv preprint arXiv:2204.02311,
2022.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A.
Gradient descent on neural networks typically occurs at
the edge of stability. In ICLR, 2021.

Everett, K., Xiao, L., Wortsman, M., Alemi, A. A., Novak,
R., Liu, P. J., Gur, I, Sohl-Dickstein, J., Kaelbling, L. P.,
Lee, J., and Pennington, J. Scaling exponents across
parameterizations and optimizers. In ICML, 2024.

for AI, T. A. I. C4 corpus. https://huggingface.
co/datasets/allenai/c4, 2019.

Gokaslan, A., Cohen, V., Pavlick, E., and Tellex, S. Open-
webtext corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Precondi-
tioned stochastic tensor optimization. In ICML, 2018.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de las Casas, D., Hendricks, L. A.,
Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican,
K., van den Driessche, G., Damoc, B., Guy, A., Osindero,
S., Simonyan, K., Elsen, E., Vinyals, O., Rae, J. W., and
Sifre, L. An empirical analysis of compute-optimal large
language model training. In NeurIPS, 2022.

Jordan, K., Jin, Y., Boza, V., You, J., Cesista, F., New-
house, L., and Bernstein, J. Muon: An optimizer for
hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Karpathy, A. NanoGPT. https://github.com/
karpathy/nanoGPT, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

Large, T., Liu, Y., Huh, M., Bahng, H., Isola, P., and Bern-
stein, J. Scalable optimization in the modular norm. In
NeurlPS, 2024.

Littwin, E. and Yang, G. Tensor programs ivb: Adaptive
optimization in the infinite-width limit. In /CLR, 2023.

Liu, J., Su, J., Yao, X,, Jiang, Z., Lai, G., Du, Y., Qin, Y.,
Xu, W, Lu, E., Yan, J., Chen, Y., Zheng, H., Liu, Y., Liu,
S., Yin, B., He, W., Zhu, H., Wang, Y., Wang, J., Dong,
M., Zhang, Z., Kang, Y., Zhang, H., Xu, X., Zhang, Y.,
Wu, Y., Zhou, X., and Yang, Z. Muon is scalable for llm
training. arXiv preprint arXiv:2502.16982, 2025.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2019.

Madry, P. Lecture 13: Mirror descent. https:
//people.csail.mit.edu/madry/635978/
files/lecture_13.pdf, 2015. MIT Course
6.S978/18.5997, “Optimization for Theoretical Com-
puter Science”.

Mokhtari, A., Hassani, H., and Karbasi, A. Stochastic
conditional gradient methods: from convex minimization
to submodular maximization. JMLR, 2020.

https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon
https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/allenai/c4
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://people.csail.mit.edu/madry/6S978/files/lecture_13.pdf
https://people.csail.mit.edu/madry/6S978/files/lecture_13.pdf
https://people.csail.mit.edu/madry/6S978/files/lecture_13.pdf

Towards Understanding Orthogonalization in Muon

Molybog, 1., Albert, P., Chen, M., DeVito, Z., Esiobu, D.,
Goyal, N., Koura, P. S., Narang, S., Poulton, A., Silva,
R., Tang, B., Liskovich, D., Xu, P,, Zhang, Y., Kambadur,
M., Roller, S., and Zhang, S. A theory on adam insta-
bility in large-scale machine learning. arXiv preprint
arXiv:2304.09871, 2023.

Nesterov, Y. Efficiency of coordinate descent methods on
huge-scale optimization problems. Discussion paper,
2010.

Nesterov, Y. Lectures on Convex Optimization. Springer
Publishing Company, Incorporated, 2nd edition, 2018.

Pethick, T., Xie, W., Antonakopoulos, K., Zhu, Z., Silveti-
Falls, A., and Cevher, V. Training deep learning
models with norm-constrained Imos. arXiv preprint
arXiv:2502.07529, 2025.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Shi, H.-J. M, Lee, T.-H., Iwasaki, S., Gallego-Posada, J.,
Li, Z., Rangadurai, K., Mudigere, D., and Rabbat, M. A
distributed data-parallel pytorch implementation of the
distributed shampoo optimizer for training neural net-
works at-scale. arXiv preprint arXiv:2309.06497, 2023a.

Shi, H.-J. M., Lee, T.-H., Iwasaki, S., Gallego-Posada, J.,
Li, Z., Rangadurai, K., Mudigere, D., and Rabbat, M.
A distributed data-parallel pytorch implementation of
the distributed shampoo optimizer for training neural
networks at-scale, 2023b.

Yang, G. and Hu, E. J. Tensor programs iv: Feature learning
in infinite-width neural networks. In ICML, 2021.

Yang, G., Hu, E. J., Babuschkin, 1., Sidor, S., Liu, X., Farhi,
D., Ryder, N., Pachocki, J., Chen, W., and Gao, J. Tensor
programs v: Tuning large neural networks via zero-shot
hyperparameter transfer. In NeurIPS, 2021.

Yang, G., Simon, J. B., and Bernstein, J. A spec-
tral condition for feature learning. arXiv preprint
arXiv:2310.17813, 2023.

Yang, G., Yu, D., Zhu, C., and Hayou, S. Tensor programs
VI: Feature learning in infinite depth neural networks. In
ICLR, 2024.

Zhang, H., Morwani, D., Vyas, N., Wu, J., Zou, D., Ghai,
U., Foster, D., and Kakade, S. M. How does critical batch
size scale in pre-training? In ICLR, 2025.

Zhang, J., He, T., Sra, S., and Jadbabaie, A. Why gradient
clipping accelerates training: A theoretical justification
for adaptivity. In /CLR, 2020.

Towards Understanding Orthogonalization in Muon

A. Steepest Descent for General Norms

L-smoothness. Assume that F is differentiable with L-Lipschitz gradient with respect to a general norm || - || (that is F is
L-smooth with respect to || - ||),

IVEF(X)-VEFY)|. <L|X =Y, VXY € X, (6)
where || - || is the dual norm
G« = sup (G, X), @
Ix1<1

Then for X = R™ by descent lemma (Nesterov, 2018) for all X, Y this implies (and for F' convex it is equivalent
by (Nesterov, 2018))

F(¥) < F(X) + (VF(X),Y = X) + 5 [V = X ®

Inequality (8) provides a quadratic upper bound (majoriser) of F' around X. Minimizing this surrogate at the current iterate
X allows to solve (1) by the steepest descent update for general norms (Nesterov, 2010; Madry, 2015; Carlson et al., 2016)

VF(X4)|«
X1 = X, — IWVEXOI- (L Ol (VE(X))], (VE(X)[, € arg ‘IlnaX<VF(Xt)7H>. ©)
H|=1
For the Euclidean ¢ norm, (VF (Xt))n%H2 = %, so the steepest descent step in (2) reduces to gradient descent

(GD) with step size 1/L. The standard GD X;; = X; — n:VF(X;) with an arbitrary 7, is therefore not the steepest
descent update unless 7, = 1/L. Note as well that for the standard GD L-smoothness is a sufficient descent condition,
guaranteeing that F'(X;11) < F(X;), as longasn; < 2.

Neural Networks. It is well known that neural networks do not admit L-smoothness with respect to the Euclidean
norm (Cohen et al., 2021; Zhang et al., 2020; Large et al., 2024). On the other hand, while global (or even local) L-
smoothness is sufficient for monotone descent, neural network training can succeed without it: full-batch GD stabilizes at
Amax & 2/m — hovering right at or just above the strict upper bound for the sufficient descent condition — yet still converges
(Cohen et al., 2021; Arora et al., 2022). In such cases, we can interpret L not as a Lipschitz constant, but as the “sharpness”
(Bernstein & Newhouse, 2024) — by decreasing sharpness, we increase the step size.

B. More Details on Muon
B.1. Feature learning.

The spectral norm is motivated by recent work (Yang et al., 2023), where feature learning condition is derived for MLP with
weight matrices W/ € Rebowe Xin Tt requires that for each step ¢ and each layer [, the following holds:

. d! d!
It holds for (2) with the norm [|W}||rms—rms = 4/ ﬁ“max(th)’ l|zllrms = 4/ 3 2o @2,
B.2. Constrained Optimization via Weight Decay.

By explicitly choosing different norms for each layer, the concurrent work of (Pethick et al., 2025) builds on the Stochastic
Conditional Gradient method (SCG), introduced in (Mokhtari et al., 2020). Concretely, in (Pethick et al., 2025), the authors
rewrite Muon update (3) by constraining n; € (0,1) and A € [0, 1] as follows

th+1 = (1 - nt)‘)th + Ui lmOH'HRMS—H’{MS (Gi) (]O)

8

Towards Understanding Orthogonalization in Muon

Here, Imo stands for linear minimization oracle defined as

lm0\|~|\,r(X) S arg min <X, S>
{sex | |ISlI<r}

and can be expressed via sharp operator: Imoy.;| .(X) = —r(X)m.

The formulation in (10) makes it clear that when 7; € (0,1) and A = 1, we recover SCG, which minimizes our main
objective (1) in the norm-ball of radius D == {X € X | || X|| < r}.

C. Orthogonalizing All Layers

8 Layers In the original Muon implementation, AdamW was chosen for
T 12 the first and last layers. However, to speed up hyperparameter
; 1 12 training, stabilize the training, and simplify the optimizer, we
—_— 2 choose to use the spectral norm constraint for all layers, which
24 we name MuonS. When optimizing one learning rate and keep-
3 6 Optimizers ing the rest of the hyperparameters fixed (more details are in
S T mzz:s Appendix I), it outperforms Muon and AdamW for all model
8 sizes, as can be seen in Figure 5 and Figure 3.
®5 Tuning additional hyperparameters can, of course, lead to
% better performance, as we demonstrate in the next section.
>
4
3 SNSSSSSSe-—— =
2—12 2—10 2—8 2—6 2—4

Learning Rate

Figure 5. By tuning only one hyperparameter, MuonsS is bet-
ter than Muon. We train nanoGPT on OpenWebText with 1x
Chinchilla. We increase the size of the model by simultaneously
increasing its depth and width, represented by the number of
layers in the legend. We can also observe that for both algo-
rithms there is a transfer of learning rate.

Towards Understanding Orthogonalization in Muon

D. Tuning more hyperparameters

In this paper, we focus on MuonS and its parallelizable version, MuonSBW, that require tuning only one hyperparameter.
However, in this section, we want to understand the performance of optimizers when tuning more hyperparameters. As this
requires expensive testing of all combinations of hyperparameters, we focus on varying two hyperparameters for the 124M
nanoGPT model with 1x Chinchilla scaling. For this, we train it on OpenWebText.

Muon optimizer uses two optimizers depending on the layer: for the first
and last layers, as well as 1D tensors AdamW is used, while for all others
— optimizers based on SSD with momentum and NS iteration. By tuning a
separate learning rate for the AdamW-optimized tensors for Muon optimizer
in Table 4 and our proposed MuonS (AdamW is used only for 1D tensors) in

Table 3. Optimal learning rates and validation
losses for MuonS and Scion optimizers. Here,
we train nanoGPT models on OpenWebText.
The best and second-best validation losses per
model size are highlighted.

Table 5, we see that we can achieve a better loss in both cases. While the best Layers ‘ MuonS Scion
performance is a.chleved with the Muon in th1§ full sweep, note in the case (?f ‘ LR Loss ‘ LR Loss
MuonsS that the influence of the second learning rate is not as strong as it is
used only for 1D tensors — a property we would like to have in the optimizer 121 0.05 3.5668 | 0.05 3.4342
that requires tuning only one hyperparameter. For completeness, in Table 6 15 0.05 3.1932 | 0.05 3.1311
we have additionally analyzed the performance of MuonS with normalized 18 0.02 2.9692 | 0.02 2.9305
momentum SGD for 1D tensors. Because performance in validation loss is 21 0.02 2.7876 | 0.02 2.7798
worse than that of MuonS when using AdamW for 1D tensors in Table 5. 24 10.02 2.6839 | 0.02 2.6826
30 0.05 2.5377 | 0.02 2.5214

Next, in Figure 6 and Table 3 we observe that following the optimizer

suggested in Scion (Pethick et al., 2025) that uses a different norm constraint for the input and output layers can also improve
performance. Concretely, in Scion (Pethick et al., 2025), the authors propose to enforce the ¢, norm for the input and
output layers, while keeping the spectral norm for the rest of the layers. Thus, we separately tune the learning rate for the
spectral norm-constrained layers and /., norm-constrained ones.

Validation Loss

2 2 2 2
Learning Rate

Layers

12

15

18

21

24

30
Optimizers

Scion I 41

MuonS

I
I
|
I
I
]
I
U

¥

I
i
1l
I
I

—~

9
!

=

Because it has been shown in Scion (Pethick et al., 2025)
that such an optimizer enjoys the learning rate transfer when
scaling the width, we are interested in both tuning two hyper-
parameters and testing the learning rate transfer when doing
depth-width-token co-scaling, which was the case for Muon,
MuonS, and MuonSBW (see Section 5.2 and Figure 5), with
MuonSBW and MuonS having more consistent behavior of
the validation loss when varying learning rate (optimal learn-
ing rate is the same for the smallest and the largest models)
during such co-scaling. For Scion, we observe in Figure 6
that up-scaling the learning rate by factor 10 for the input and
output layers leads to better performance in validation loss and
learning rate transfer during depth-width-token co-scaling. We
see, however, that MuonS has more consistent behavior of the
validation loss and the difference in the achieved validation
loss decreases with model scale. This might imply that tuning
this additional hyperparameter is less relevant at bigger model
scales.

Figure 6. By tuning an additional hyperparameter, the Scion
optimizer can outperform MuonS. Here, we show that by
tuning an additional hyperparameter for the first and last layers,
we can achieve a better performance than MuonS. This becomes
less evident for larger models. See Table 3 for the optimal
learning rate and validation loss values.

10

Towards Understanding Orthogonalization in Muon

Table 4. Muon validation losses for the 124M nanoGPT model trained on OpenWebText. Here, A stands for the learning rate used for
tensors optimized with AdamW - first and last layers, together with 1D tensors. M stands for the learning rate used for all the other tensors

optimized with Muon. Here,
(faster search), and

cells denote the best validation loss achieved when using the same learning rate during the optimization
- best validation loss achieved when using different learning rates during the optimization (longer search).

M A le-04 2e-04 5e-04 1e-03 2e-03 5e-03 le-02 2e-02 5e-02 1e-01 2e-01 5e-01
le-04 5.9390 5.7853 5.6063 5.5068 5.4671 5.4352 54355 5.4525 54670 5.5710 5.8037 7.2642
2e-04 5.9344 57719 55703 54461 5.3390 5.2956 5.3305 5.3804 54107 5.5289 5.7673 7.0563
S5e-04 5.7813 5.6212 5.4087 5.2653 5.1457 5.0251 5.0733 5.2154 5.2319 5.3614 5.6518 6.6242
le-03 5.5489 53877 5.1773 5.0298 4.8968 4.7512 4.7525 4.9443 49166 5.0906 5.5074 6.4771
2e-03 5.1832 5.0178 4.8000 4.6233 4.4614 4.3365 4.3910 4.5600 4.5663 4.7187 5.3250 6.5286
5e-03 4.5376 4.3326 4.0997 3.9685 3.8631 3.8181 3.9197 4.0588 4.0772 4.1451 4.9531 6.7412
le-02 4.2066 4.0190 3.7967 3.6850 3.6212 3.6203 3.7142 3.8321 3.8488 3.9396 4.5877 6.6117
2e-02 4.0653 3.8872 3.6785 3.5718 3.5327 3.5427 3.6310 3.7162 3.7234 3.8101 4.4429 7.4264
5e-02 3.9382 3.7602 3.5800 3.5127 3.4983 3.5136 3.6266 3.6957 3.7353 3.8357 5.2475 6.6402
le-01 4.2107 3.9947 3.8332 3.7574 3.7060 3.7826 3.8502 3.8895 3.7817 3.9937 5.0316 8.2968
2e-01 6.6563 6.4079 6.1657 6.0540 6.0091 6.0897 6.2917 6.2566 6.4390 6.4332 6.7816 10.9911
S5e-01 74857 7.0731 6.8243 6.6584 6.5182 6.6184 6.7522 6.9997 6.9901 7.1735 7.2850 10.9911

Table 5. MuonS validation losses for the 124M NanoGPT model trained on OpenWebText. Here, A stands for the learning rate used for
tensors optimized with AdamW - only 1D tensors. M stands for the learning rate used for all the other tensors optimized with Muon. Here,
cells denote the best validation loss achieved when using the same learning rate during the optimization (faster search), and

best validation loss achieved when using different learning rates during the optimization (longer search).

A

M le-04 2e-04 Se-04 le-03 2e-03 5e-03 1e-02 2e-02 5e-02 le-01 2e-01 Se-01
le-04 74393 7.3879 7.2704 7.1551 7.0565 < 6.9783 6.9340 6.9035 6.8836 6.8830 6.8920 6.9085
2e-04 6.7325 6.6915 65970 6.5000 6.4076 6.3227 6.2774 6.2477 6.2320 6.2371 6.2522 6.2887
Se-04 57924 57705 5.7127 5.6501 5.5853 5.5140 54755 54517 54398 54456 54601 @ 5.4903
le-03 5.1101 5.0963 5.0629 5.0259 49886 4.9470 4.9251 49049 4.8959 49077 49602 5.0222
2e-03 44332 44351 44122 43942 43753 43543 43387 43267 43178 43099 43175 4.3879
5e-03 38076 3.8017 3.7966 3.7913 3.7880 3.7827 3.7728 3.7644 3.7581 3.7715 3.7981 3.8709
le-02 3.6474 3.6429 3.6366 3.6465 3.6345 3.6426 3.6259 3.6264 3.6227 3.6148 3.6449 3.7259
2e-02 38047 3.7775 3.7681 3.7593 3.7375 3.7167 3.6623 3.6181 3.5622 3.5577 3.5773 3.6933
Se-02 48114 48270 4.8160 4.7428 4.6636 4.4013 3.9651 3.7402 3.5668 3.5463 3.6068 54322
le-01 5.4238 54633 5.6575 55914 54680 5.2629 4.8798 4.0335 3.8014 3.8496 49753 7.1162
2e-01 6.1991 6.2095 6.1799 6.1810 6.1312 59375 54313 5.2340 4.9602 54483 6.8416 10.9911
Se-01 109911 109911 109911 10.9911 10.9911 8.6015 6.6321 6.3084 6.3822 9.0017 10.9911 10.9911

Table 6. MuonS validation losses for the 124M nanoGPT model trained on OpenWebText.
for tensors optimized with normalized momentum SGD - only 1D tensors. M stands for the learning rate used for all the other tensors

optimized with Muon. Here,
(faster search), and

Here, S stands for the learning rate used

cells denote the best validation loss achieved when using the same learning rate during the optimization
- best validation loss achieved when using different learning rates during the optimization (longer search).

M S le-04 2e-04 Se-04 le-03 2e-03 S5e-03 le-02 2e-02 S5e-02 le-01 2e-01 Se-01
le-04 7.4963 7.4931 7.4829 74684 7.4390 73606 7.2610 7.1347 6.9964 6.9355 69013 6.8954
2e-04 6.7780 6.7749 6.7684 6.7567 6.7337 6.6738 6.5937 6.4869 6.3559 6.2962 6.2648 6.2522
Se-04 5.8165 5.8144 58109 58027 5.7872 5.7440 5.6818 5.5949 54850 54250 5.3693 5.3035
le-03 5.1273 5.1253 5.1207 5.1127 5.0986 5.0580 5.0080 4.9378 4.8401 4.7620 4.7015 4.6365
2e-03 44485 44444 44424 44397 44303 44018 43694 43194 42404 4.1591 4.0989 4.0658
S5e-03 3.8122 3.8069 3.8047 3.8057 3.8024 3.7889 3.7795 3.7649 3.7386 3.7246 3.7150 3.7245
le-02 3.6490 3.6450 3.6458 3.6449 3.6563 3.6417 3.6248 3.6292 3.6189 3.6148 3.6112 3.6230
2e-02 3.8423 3.7921 37862 3.7783 3.7711 37764 3.7556 3.7265 3.6867 3.6416 3.6111 3.5986
5e-02 48113 48326 47843 4.8653 4.7846 47352 4.5963 4.1807 3.9549 3.8951 3.9050 3.8143
le-01 5.5294 5.6321 5.5654 57361 54144 53642 53437 52497 47069 4.6061 4.8194 5.6131
2e-01 6.2283 6.2298 59690 6.0936 6.1978 59463 6.1157 5.7292 53737 55721 6.3683 = 7.7045
5e-01 109911 109911 109911 10.9911 109911 10.9911 109911 9.2089 6.7458 7.5215 10.9911 10.9911

11

Towards Understanding Orthogonalization in Muon

Model Size = 124M Model Size = 345M
Weight Decay
— 0.0
5.5 0.001
R (e [| N O Y AN K N S 0.01
=== 0.1
0 5.0 %
w0
o
-
- 45 \
RS
© 4.0 AR
g \\“\‘W‘ :’{‘.‘\‘.
835 B O R M v
"TG:,_.,)*W
3.0 Rt e T s
2.5
100 200 300 400 500 600 700 800 0 500 1000 1500 2000 2500
Model Size = 524M Model Size = 758M
{ 1
5.5 ‘\
5.0
3> | |
\ \
s \ \
€ \
S \\ \
E 4.0 - \'.
3 X\ \
> 35 \\ \ii;\
3.0 s R
R e SRR A R R
ISR 7 ST ey
2.5
0 1000 2000 3000 4000 0 1000 2000 3000 4000 5000 6000

Step Step

Figure 7. For MuonSBW, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, for MuonSBW,
we vary weight decay for 1x Chinchilla. One can see that with 1x Chinchilla scaling it is still visible that at the end of the training higher
weight decay of 0.1 consistently outperforms lower weight decay values while being significantly worse before. However, this occurs at
the earlier proportion of the training run than using 5x scaling (see Figure 2).

E. Extended Weight Decay Evaluation

In Section 5.3 and Figure 2 for MuonSBW overtrained with 5x Chinchilla scaling, we investigated the influence of weight
decay on validation loss. There, the weight decay of 0.1 started to perform better than the lower weight decay values only
after 70% of the training run for the 124M model, 78% for the 345M model, 82% for the 524M model, and 84 % for the
758M model with a mean of 77%. That is, the bigger the model is and the longer we train (because we co-scale tokens when
scaling model size), the later 0.1 weight decay value improves the validation loss.

In this section, we continue training nanoGPT on OpenWebText and do it for additional optimizers, Muon, MuonS, and
AdamW, as well as for 1x Chinchilla and 5x Chinchilla scaling.

MuonSBW. First, we train using MuonSBW introduced in Section 4, but with fewer tokens, using 1x Chinchilla scaling. In
this setting, as we observe in Figure 7 that a similar trend holds — MuonSBW with the weight decay of 0.1 outperforms in
validation loss only at the end of the training, however, it starts outperforming at the earlier proportion of the training run
than with 5x Chinchilla scaling: the weight decay of 0.1 started to perform better than the lower weight decay values only
after 32% of the training run for the 124M model, 64% for the 345M model, 68% for the 524M model, and 71% for the
758M model with a mean of 59%.

AdamW. Next, to understand if similar behavior happens for AdamW, we first train it with 5x and then 1x Chinchilla scaling.
In both settings, as we observe in Figure 8 for the 5x Chinchilla scaling and in Figure 9 for the 1x Chinchilla scaling, the
weight decay of 0.1 outperforms in validation loss only at the end of the training, similar to MuonSBW. However, for both
5x and 1x Chinchilla scaling we observe it only for models of larger sizes — with 524M and 758M parameters, and the
difference in performance with higher weight decay is less prominent. Concretely, with the 5x Chinchilla scaling, AdamW
with a weight decay of 0.1 started to perform better than the lower weight decay values only after 14% of the training run
for the 124M model, 9% for the 345M model, 68% for the 524M model, and 68% for the 758M model with a mean of 40%.
For 1x Chinchilla scaling, it starts outperforming already early in the training: after 20% of the training run for the 124M
model, 5% for the 345M model, 3% for the 524M model, and 3% for the 758 M model with a mean of 8%.

12

Towards Understanding Orthogonalization in Muon

Model Size = 124M Model Size = 345M
weight_deca
\ il yiid
\ 0.001
4x100 axw00 O\)
N\ ‘ —_—

3 VA \
g MM"“W‘V\W
2 \~Avren
S
E 3x100 3x10° WH“W\“'\«
o,
. .
i V\wwdmwﬁn“m
500 1000 1500 2000 2500 3000 3500 4000 O 2000 4000 6000 8000 10000 12000 14000
Model Size = 524M Model Size = 758M
4x10° " 4x10°
" |
a \ \
3 \
c
g\ \
= \
©
8 \
© 3x10° 3x10°
S “ N\
""’f\?{:&at« N \;“’&’\ 2
AR Lo~ P IV
MM"‘N\“\W’@WWZ‘ i ﬁuwh:c:@ﬁ;& W"‘Mm
N AL NS e
0 5000 10000 15000 20000 0 5000 10000 15000 20000 25000 30000
Step Step

Figure 8. For AdamW, higher weight decay of 0.1 outperforms at the end of the training only for bigger models. When varying
weight decay values for AdamW, for Sx Chinchilla, we can see that higher weight decay of 0.1 outperforms lower weight decay values at
the end of the training only for larger models, 524M and 758M ones.

MuonS. Similarly, we train with MuonS first with a 5x and then 1x Chinchilla scaling. In both settings, as we observe in
Figure 10 for the 5x Chinchilla scaling and in Figure 11 for the 1x Chinchilla scaling, the weight decay of 0.1 outperforms
in validation loss only at the end of the training, similar to MuonSBW. Concretely, with the 5x Chinchilla scaling, MuonS
with a weight decay of 0.1 started to perform better than the lower weight decay values after 82% of the training run for the
124M model, 89% for the 345M model, 93% for the 524M model, and 99% for the 758M model with a mean of 91%. Thus,
this improvement occurs later than for MuonSBW. For 1x Chinchilla scaling, it also occurs later in the training: after 66% of
the training run for the 124M model, 79% for the 345M model, 81% for the 524M model, and 84% for the 758 M model
with a mean of 78%.

Muon. Similarly for Muon, we first train nanoGPT on OpenWebText with 5x and then 1x Chinchilla scaling. In both
settings, as we observe in Figure 12 for the 5x Chinchilla scaling and in Figure 13 for the 1x Chinchilla scaling, the weight
decay of 0.1 outperforms in validation loss only at the end of the training, similar to MuonSBW. However, for the case of
the 5x Chinchilla, we observe a “loss spike” at the end of the training. Such “loss spikes” have been observed when training
models with AdamW (Molybog et al., 2023), which might be relevant here since Muon uses AdamW to optimize the first
and the last layers. In our experiments, with the 5x Chinchilla scaling, Muon with a weight decay of 0.1 started to perform
better than the lower weight decay values after 61% of the training run for the 124M model, 77% for the 345M model, 84%
for the 524M model, and 89% for the 758M model with a mean of 78%. For 1x Chinchilla scaling, it starts outperforming
after 37% of the training run for the 124M model, 53% for the 345M model, 63% for the 524M model, and 68% for the
758M model with a mean of 55%. In both cases, it is similar to MuonSBW.

13

Towards Understanding Orthogonalization in Muon

Model Size = 124M Model Size = 345M
weight_decay

6x 10° — 0.0
—— 0.001

------ 0.01

--- 01

6x 10°

wn
(%)
o
'}
c
o
“rB'AXIO" 4x10°
o
©
>
3x10° 3x10°
100 200 300 400 500 600 700 800 0 500 1000 1500 2000 2500
Model Size = 524M Model Size = 758M
6x10°
%]
"
o
|
C
°
T 4x10°
el
©
>

3x10°

3000 4000 5000 6000

0 1000 2000 3000 4000 0 1000 2000
Step

Step

Figure 9. For AdamW, higher weight decay of 0.1 outperforms at the end of the training only for bigger models. When varying
weight decay values for AdamW, for 1x Chinchilla, we can see that, similarly to 5x Chinchilla (see Figure 8), higher weight decay of 0.1
outperforms lower weight decay values at the end of the training only for larger models, 524M and 758M ones. The difference becomes

less visible, however.

14

Towards Understanding Orthogonalization in Muon

Model Size = 124M Model Size = 345M
Weight Decay
— 0.0
\ —— 0.001
i e 001
| --- 01

Validation Loss
w
N

3.0
2.8
2.6
500 1000 1500 2000 2500 3000 3500 4000 0 2000 4000 6000 8000 10000 12000 14000
Model Size = 524M Model Size = 758M
4.0
3.8

Validation Loss
w
N

3.0
28
26 ;
SR D
0 5000 10000 15000 20000 0 5000 10000 15000 20000 25000 30000
Step Step

Figure 10. For MuonS, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, we vary weight
decay for 5x Chinchilla. In this setting, at the end of the training higher weight decay of 0.1 consistently outperforms lower weight decay
values while being significantly worse before. This behavior is similar to using MuonSBW (see Figure 2).

Model Size = 124M Model Size = 345M
Weight Decay
i — 0.0
0.001
- 0.01
0.1

>
o

Validation Loss
B
w

w
5

w
=}

N
3]

200 300 400 500 600 700 800 0 500 1000 1500 2000 2500
Model Size = 524M Model Size = 758M

-
o
o

Validation Loss
> B
o w

0 1000 2000 3000 4000 0 1000 2000 3000 4000 5000 6000
Step Step

Figure 11. For MuonS, only at the end of the training higher weight decay of 0.1 consistently outperforms. Here, for MuonS, we
vary weight decay for 1x Chinchilla. In this setting, it is still visible that at the end of the training higher weight decay of 0.1 consistently
outperforms lower weight decay values while being significantly worse before. However, this occurs at the earlier proportion of the
training run than using 5x scaling (see Figure 10).

15

Towards Understanding Orthogonalization in Muon

Model Size = 124M Model Size = 345M
Weight Decay
4.0 — 00
—= 0.001
we 0,01
--= 0.1

w
o

w
S

w
N

Validation Loss
w
o

N
o

N
o

500 1000 1500 2000 2500 3000 3500 4000 O 2000 4000 6000 8000 10000 12000 14000
Model Size = 524M Model Size = 758M

Validation Loss
wow ow w
o N B o

N
©

N
o

0 5000 10000 15000 20000 0 5000 10000 15000 20000 25000 30000
Step Step

Figure 12. For Muon, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, we vary weight
decay for 5x Chinchilla. In this setting, at the end of the training higher weight decay of 0.1 consistently outperforms lower weight decay
values while being significantly worse before. This behavior is similar to using MuonSBW (see Figure 2). For the largest model we see a
“loss spike” — an undesired artefact, which sometimes occurs for AdamW (Molybog et al., 2023).

Model Size = 124M Model Size = 345M
Weight Decay
— 0.0
== 0.001
...... 0.01
=== 01

5.0

Py >
S)

Validation Loss
w
b

3.0

300 400 500 600 700 800 500 1000 1500 2000 2500
Model Size = 524M Model Size = 758M

5.0

&
o

Validation Loss

3.0

500 1000 1500 2000 2500 3000 3500 4000 4500 1000 2000 3000 4000 5000 6000
Step Step

Figure 13. For Muon, higher weight decay of 0.1 consistently outperforms only at the end of the training. For 1x Chinchilla, this
occurs at the earlier proportion of the training run than using 5x scaling (see Figure 12).

16

Towards Understanding Orthogonalization in Muon

E.1. Weight Decay Schedule

In Section 5.3, we show that for the larger model with 345M parameters, the Cutoff schedule outperforms the baseline
(constant weight decay of 0.1) at 80% of the data. Here, for the smaller model with 124M parameters, we do ablation for
different schedules introduced in Section 5.3. For it, we observe in Figure 14 that decreasing weight decay with the Inverse
Polynomial Schedule leads to similar gains. This, together with the observations in Section 5.3, might indicate that the
weight decay becomes less important at the end of the training. We analyze it further from the perspective of a spectral norm
in the next section.

Cutoff Schedule Polynomial Schedule Inverse Polynomial Schedule
3.08
7]
0
O 3.07
-
_5 3.06 --- Constant wd = 0.1
B — Constant wd = 0.0
8305
g

w
o
s

w
o

24

3
0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0 2° 2! 22 23 24 20 21 22 23
Cutoff proportion Polynomial degree Inverse Polynomial degree

Figure 14. Clipping weight decay at 80% of the training and Inverse Polynomial Schedule helps. For MuonSBW, with weight decay
clipping (Cutoff Schedule), we can improve compared to the fixed weight decay by turning the weight decay off at the last 80% of the
training. We observe similar gains for the Inverse Polynomial Schedule.

F. Investigating Spectral Norms

To better understand the reason behind the suddenly better performance of the higher weight decay at the end of the training,
we analyze the spectral norm of the 124M model for the LM head. We observe in Figure 15 the following: i) (on the left) a
higher weight decay value of 0.1 has a significantly lower spectral norm, in line with the optimization constrained to the
spectral norm-ball that it induces, as we discuss in Appendix B.2; ii) (in the middle) increasing the number of splits of the
gradient update matrix for MuonSBW leads to a higher spectral norm that indicates a gradually worse approximation of the
orthogonalization due to a higher number of splits, which still works well in practice as we can see in Figure 1; iii) (on the
right) MuonSBW has the lowest spectral norm, likely due to the spectral norm being enforced on the first and last layers
additionally, compared to Muon, which uses AdamW for them. In addition, we computed the spectral norm for each of
the layers: our 124M model has 12 layers or transformer blocks, each containing 4 weight matrices: 2 in MLP and 2 in
self-attention. For each layer/block, we take the maximal spectral norm across 4 weight matrices, computed with singular
value decomposition (SVD) for higher precision and report it across training steps. We discuss it in the following sections.

70 Weight Decay TP
— 0.0 —1

60 0.001 2
Ewol — Pk 0 I T I I
5 : — 16 Optimizer
% 0 —— MuonSBW
-(-‘; AdamW
8.30 —— Muon
%)

AEEuEEEE

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Step Step Step

Figure 15. Higher weight decay leads to a significantly lower spectral norm. For the 124M model, we compute the spectral norm of
the last layer, LM head, while varying weight decay, number of tensor parallel splits for MuonSBW, and optimizer. We see that a higher
weight decay of 0.1, on the left, leads to a significantly lower spectral norm, which might explain its better generalization properties.

17

Towards Understanding Orthogonalization in Muon

F.1. Influence of the Number of Splits

10 =1 TP=2 TP=4 TP=8 TP =16 i
E
S ——
s
5 | B
® 6
Q
%) [B
T4
£ =
©
2, /%
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Step Step Step Step Step

Figure 16. Increasing the number of tensor parallel splits (TP) in MuonSBW leads to higher spectral norms across all layers. For
the 124M model, we compute the maximal spectral norms across weight matrices in one layer (block of the transformer) varying the
number of row-wise splits.

First, in Figure 16, we observe that increasing the number of row-wise tensor parallel splits (TP) for MuonSBW, introduced
in Section 4, consistently increases the spectral norms for all layers. We take row-wise splits, as they had the lowest
validation loss, close to the MuonS baseline (no block-wise orthogonalization is used) as we could see in Figure 1.

F.2. Influence of the Weight Decay

Weight Decay = 0.0 Weight Decay = 0.001 Weight Decay = 0.01 Weight Decay = 0.1 Lover o
B —

— Layer2
— Layer3
— Layerd

o

— Layers

__— Layer 6

o

Layer 7
— Layer8
Layer 9
Layer 10
— Layer 11
— Layer 12

Maximal Spectral Norm
I IS

N

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Step Step Step Step

Figure 17. Increasing the weight decay value in MuonSBW leads to lower spectral norms across all layers. For the 124M model, we
compute the maximal spectral norms across weight matrices in one layer (block of the transformer) varying the number of row-wise splits.

Next, in Figure 17, we see that for MuonSBW we also have a consistent decrease of the spectral norms for all layers when
increasing the weight decay value.

F.3. Influence of the Optimizer
AdamW Muon MuonSBW Layer number

—— Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
—— Layer8
Layer 9
Layer 10
Layer 11
Layer 12

Maximal Spectral Norm

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Step Step Step

Figure 18. MuonSBW obtains lower spectral norms than Muon. For the 124M model, we compute the maximal spectral norms across
weight matrices in one layer (block of the transformer) varying the number of row-wise splits.

Lastly, in Figure 18, we can notice a consistent decrease in the spectral norm for all layers, when using MuonSBW, compared
to Muon, which in turn attains lower spectral norms compared to AdamW.

18

Towards Understanding Orthogonalization in Muon

G. Critical Batch Size

For a better understanding of MuonS and MuonSBW, we analyze its critical batch size introduced in (Zhang et al., 2025) on
the OpenWebText dataset and compare it to AdamW. For this, we use 1x Chinchilla scaling and achieve a loss of 3.2 with a
baseline optimizer, AdamW, with the smallest batch size of 27 to ensure that we can also achieve it in other settings. We
choose the 345M model as this is the smallest model, which does not have big differences in the best validation loss obtained
when comparing AdamW, MuonS, and MuonSBW (see Figure 3). In addition, for each batch size, we vary 5 learning rates
and choose the best. The maximum number of steps for each batch size is such that it preserves the 1x Chinchilla scaling. In
this setting, in Figure 19, we observe that CBS for AdamW is higher; however, it requires more steps for each batch size and
scales much worse for higher batch sizes. Moreover, it does not achieve the target loss for the largest batch size of 2'2.

Steps to Target Loss 3.2

©
/
/
/
/

7 8 9

2 2 2 2 2 2 2
Batch Size

----- Linear steps scaling
30% overhead
—-- Critical Batch Size

Optimizer
—— AdamW
MuonS
~—— MuonSBW

1
|
|
|
i
i i
i i
i i
i i
Ny |
I
™
|
|
|
|
|
|
|

i
|
|
|
i
i
i
i
i

Batch Size Batch Size

Figure 19. While CBS for AdamW is higher, it requires more steps for each batch size and scales much worse for higher batch sizes.
For 345M nanoGPT model, we vary batch size during the training using 1x Chinchilla scaling (thus the number of optimization steps is
changed accordingly) to understand, how optimizers influence CBS. Note that for batch size 2'* AdamW does not reach the target loss.

H. Results for C4 Dataset

Layers
—_— 12

15
L — 18
— 21

24

Optimizers
—— MuonSBW
== AdamW

Validation Loss

Step

Figure 20. MuonSBW enjoys learning rate transfer during
depth-width-token co-scaling for C4 dataset. Similar to ob-
servations in Figure 3 for OpenWebText, we observe for another
dataset, C4, that the MuonSBW learning rate transfers when
simultaneously scaling model depth, width, and number of to-
kens, while for AdamW it does not.

In this section, we investigate how some of the properties
of MuonSBW observed with nanoGPT on the OpenWebText
dataset transfer to the C4 dataset. We already saw in Figure 1
that MuonSBW has a similar scaling behavior when increasing
the number of tensor parallel splits (TP) for OpenWebText and
C4. Here, we further compare its learning rate transfer and
weight decay influence in the following sections.

H.1. Learning rate transfer

First, we compare the learning rate transfer of MuonSBW and
AdamW. We can see in Figure 20 a behavior similar to that
we already observed for OpenWebText in Figure 3 — there
is learning rate transfer for MuonSBW during depth-width-
token co-scaling, unlike for AdamW. Furthermore, the optimal
learning rate for OpenWebText of (.01 is also the best here.
Due to the time and compute constraints we train the models
here up to 24 layers, while for the experiment in Figure 20 we
trained one more size of the model, with 30 layers.

19

Towards Understanding Orthogonalization in Muon

H.2. Static Weight Decay

In addition, for two model sizes, 124M and 345M, in Figure 22 we show the behavior of static weight decay when training
with MuonSBW and 5x Chinchilla scaling. Similarly to models trained on OpenWebText (see Section 5.3), we observe that
a higher weight decay value of 0.1 outperforms other weight decay values only at the end of the training run.

Model Size = 124M Model Size = 345M)
Weight Decay
4.0 ' — 0.0
' 0.001
38 E“ 0.01
. .““ === 0.1
%] ‘_
8 36 \\
. 1}
. \
o (N
= 3.4 Wi
© “‘xﬁw“ *
= W """"n,\ N
< 3.2 Y e,
g 9“'&"%, ! ML,
ﬁ'&"ﬁww‘ T
3.0 BAAAS Al ST
hnd W"‘\:@:f V. TN
2.8
500 1000 1500 2000 2500 3000 3500 4000 O 2000 4000 6000 8000 10000 12000 14000
Step Step

Figure 21. Higher weight decay of 0.1 consistently outperforms only at the end of the training. Similar to previous observations in
Section 5.3, we observe for MuonSBW additionally on the C4 dataset, that a higher weight decay value of 0.1 initially performs worse
and then, at the end of the training, better than lower constant values in validation loss.

H.3. Dynamic Weight Decay

Finally, we try the weight decay schedules proposed in Section 5.4 for MuonSBW trained on C4. We see that similarly
to OpenWebText (see Appendix E.1), increasing the Cutoff proportion and the degree in the Inverse Polynomial schedule
decreases the validation loss. However, it remains comparable to the baseline with the constant weight decay value of 0.1,
while on OpenWebText we observe improvement in the validation loss for these both schedules.

Cutoff Schedule Polynomial Schedule Inverse Polynomial Schedule
3.24
3 323
Q3.
-
g 3.22 -=-- Constant wd = 0.1
'_g —— Constant wd = 0.0
3 321
232
3.19
0.1 0.2 03 04 05 06 0.7 0.8 09 1.0 2° 2! 22 23 24 20 2! 22 23 24
Cutoff proportion Polynomial degree Inverse Polynomial degree

Figure 22. Clipping weight decay at 80% of the training and Inverse Polynomial Schedule. Motivated by previous observations in
Section 5.3, we investigate for MuonSBW additionally on the C4 dataset, if clipping weight decay or varying it throughout the training
influences the performance of the model. We see that clipping it at 90% of the training outperforms the baseline weight decay slightly.

20

Towards Understanding Orthogonalization in Muon

I. Experimental Details

Here, we provide more details of our experimental setting used throughout the paper. They remain consistent across all
experiments in the paper unless we specify otherwise.

I.1. Model Hyperparameters

We used the original nanoGPT model (Karpathy, 2022) without changing its initialization with a block size of 1024 and
vocabulary size of 50304 (GPT-2 vocabulary size of 50257, padded up to the nearest multiple of 64 for efficiency). When
we increase the number of layers, we consider the following model sizes, together with the number of layers in brackets:
124M (12), 215M (15), 345M (18), 524M (21), 758M (24), 1.43B (30). We do depth-width-token co-scaling, by setting the
number of heads in the nanoGPT to be the same as the number of layers, and additionally setting the embedding dimension
to be four times the number of heads (and thus layers).

L.2. Optimizer Hyperparameters

For all optimizers, we use a cosine learning rate schedule with a linear warm-up for the first 2% of the training steps,
followed by a decay until the end of the training. The learning rate is swept over the values {le—4, 2e—4, 5e—4, le—3, 2e—3,
5e—3,1le—2,2e—2,5e—2,1e—1,2e—1, 5e—1}. By default, we use 1x Chinchilla scaling, that is, the number of tokens used
is twenty times the number of model parameters. Following the nanoGPT codebase, we also use gradient clipping of the
global norm at 1.0.

AdamW, By default, we set the weight decay to 0.1 and 8; with 85 to 0.9 and 0.95, respectively.

Muon. Spectral norm constraint is used for all layers, but the 1D tensors, together with the first and last layers, are optimized
with AdamW. By default, we set the Nesterov momentum to 0.9, AdamW (; and 5 to 0.9 and 0.95, and AdamW weight
decay to 0.01. The orthogonalization is approximated with the quintic NS iteration using 6 steps. If not explicitly specified,
we use the same learning rate for the layers optimized with the spectral norm constraint and AdamW.

MuonS. We use the same setting as for Muon, with the difference that we use the spectral norm constraint for all layers, and
we use AdamW for 1D tensors unless specified otherwise.

MuonSBW. We use the same setting as for MuonS, however, we perform NS iteration on either row-, column-, or block-wise
splits as described in Section 4 and concatenate them afterward.

Scion. We use the same setting as for MuonS; however, for the first and last layers, we use /. norm constraint, which
implies sign updates. Unless otherwise specified, we increase the learning rate for the first and last layers with the £, norm
constraint by a factor 10.

L.3. Details About Datasets

OpenWebText (Gokaslan et al., 2019). Train split contains 9B tokens and validation split — 4M tokens.

C4 (Raffel et al., 2019; for AL 2019). We use the “en” part of the dataset. The train split contains 175B tokens, and the
validation split — 87M tokens.

L.4. Details About the Compute

For all our experiments, we were training models using three types of nodes with 8 NVIDIA GPUs each: A100, L40S, and
A10G. Each training run was done on one full node, depending on the RAM required.

21

