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1 Model and Training Details

We first provide additional details about our EditGAN.

1.1 TImage GAN

EditGAN uses StyleGAN2 as a backbone generative model of images. We denote the image generator
as G : Z — W — X, which is trained following standard StyleGAN training, see for more
information [1, 2]. In particular, we use the pre-trained Car, Face-FFHQ and Cat StyleGAN2 models
from the official GitHub repository provided by StyleGAN22. For Bird, we use the StyleGAN2
model trained on NABirds-48k [3].

The StyleGAN?2 generator maps latent codes z € Z, drawn from a multivariate Normal distribution,
N (z;0,1), into realistic images. A latent code z is first transformed into an intermediate code w € W
by a non-linear mapping function m(z). w is then further transformed into X + 1 independent vectors,
w', ..., w¥ through K + 1 learned affine transformations. These K + 1 transformed latent codes are
fed into synthesis blocks, sometimes called style layers and denoted as {Style?, Style', .., Style” 1 [4].
The output of these synthesis blocks are deep feature maps {S°, S1, ..., SE}. These feature maps
carry the information for forming the image x € X, which is achieved by connecting them to a
residual image synthesis branch. Further details and visualizations about the StyleGAN?2 architecture
can be found in [1, 2].

1.2 Image Encoder

To embed images into the GAN’s latent space, the EditGAN framework relies on optimization,
initialized by an encoder. To train this encoder we mainly follow SemanticGAN [5], which builds
on [6], with further improvements.

We start by introducing notation. Let us denote Dy as a dataset of real images and Dy, as a dataset
of image-segmentation mask pairs. Note that the number of images in the unannotated data Dy is
usually much larger than the annotated Dy . In fact, Dy ,, is as small as 16 or 30 image-segmentation
pairs for our datasets. We directly embed the images into W7 space, where the K + 1 w?, ..., w’
are modeled independently for each style layer [7]. Thus, we can formally define a variation of the
generator as G : WT — X, which operates on this W space. We follow [6] and train an encoder
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Eg : X — W™ with parameters ¢ using the following objective functions:

Lran(®) = Exen, | M Lipws (%, G(Ep())) + daLia(x, G(Eq(x)))] (M)

where Ly pips loss is the Learned Perceptual Image Patch Similarity (LPIPS) distance [8] and Ly, is a
standard L2 loss. We also explicitly regularize the encoder output distribution using an additional
loss that utilizes samples from the GAN itself:

Lsanping(®) = Ex=(2),a~N(m:0,1) A3 Lipws (x, G(Eg(x))) @)
+MLia(x, G(Eg(x))) + AsLia(m(z), Eg(x))] 3)

Here, m(z) is the previously introduced mapping function m : Z — W and Ay, 5 are hyperpa-
rameters. For all classes, we set Ay = 10, Ao = 1, A3 = 10, \y = 1, and A5 = 5. We use the
Adam [9] optimizer with learning rate 3 x 10~5 and batch size 8 to train the encoder. Experimentally,
for the Car and Cat datasets, we first train only on samples from the GAN itself using Eq. 3 for
20,000 iterations as warm up, and then train jointly using Eq. 1 and Eq. 3 iteratively until the model
converges on the training dataset.

After successful encoder training, to embed images we first use the encoder E4 and further iteratively
refine the latent code w™ via optimization with respect to the Lrgp objective (without further
modifying encoder parameters ¢). We run optimization for 500 steps with A\; = 10, Ay = 1. We use
the Adam [9] optimizer with the lookahead technique [10] with a constant learning rate of 0.001.

1.3 Segmentation Branch

Using our encoder together with additional optimization, as described in the previous section, we
embed the annotated images x from Dy y into W, formally constructing Dy y v+, the annotated
dataset augmented with w embeddings.

Similar to DatasetGAN [11], to generate segmentation maps y alongside images x we then train a
segmentation branch I, with parameters 1). I is a simple three-layer multi-layer perceptron classifier
on the layer-wise concatenated and appropriately upsampled feature maps. Specifically, the lower-
resolution deep feature maps in {S°, S, ..., SX} are first appropriately upsampled, S* = Uy, (S¥) for
k € 0,..., K and upsampling functions Uy, so that all feature maps have the same spatial resolution,
equal to the highest resolution, and can be concatenated channel-wise. The classifier operates on the
layer-wise concatenated feature maps in a per-pixel fashion and predicts the segmentation label of
each pixel. It is trained via the objective

El(w) = Ex,y,w*EDx,y,er [H(ya Iw((go7 Slv ceey SK))) s 4
with  S* = Uy (Style, (wy)), (5)

where I, takes as input the concatenated and appropriately upsampled feature maps (5‘ 0 S L, SK ).
We use bilinear-upsampling operations Uy,. Furthermore, H denotes the pixel-wise cross-entropy.

To train the segmentation branch I, and minimize the objective L£;(1)), we use the Adam optimizer
with learning rate 0.001. We randomly sample 64 pixels across all training images for each batch.
The segmentation branch is trained until it converges on the training dataset. After training the
segmentation branch I, we can formally define a generator G : Wt — X, Y that models the joint
distribution p(x,y) of images x and semantic segmentations y.

Notice that we defined the segmentation branch here using a new symbol, I, opposed to G¥
from the main paper. Here, I, specifies the specific network that is only part of the segmentation
branch and acts on top of the feature maps (S’O, S LI SK ) in a pixel-wise manner. On the other
hand, the segmentation generation component GG¥, defined in the main paper, denotes the complete
segmentation generation module, starting from W7, including the style layers and deep feature maps
that are shared between the image and segmentation generation branches.

1.4 Learning Editing Vectors

To perform editing and learn editing vectors, we proceed as described in detail in Secs. 3.3 and 3.4
in the main text. The ArcFace feature extraction network checkpoint [12] is taken from https:
//github.com/TreBleN/InsightFace_Pytorch (MIT License).
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Figure 1: Car, Bird and Cat part labeling schemes [11].

In the main paper, we already provided the label scheme for the Face data (Fig. 6). The further
labeling schemes for the Car, Bird, and Cat classes are shown in Fig 1. The annotations contain
34, 32, 16, and 11 possible pixel labels for the Face, Car, Bird and Cat data, respectively. When

performing optimization to find the editing vectors 6W;Eit, we use the Adam [9] optimizer with

learning rate 0.02 and run for 100 steps. We use the hyperparameters A" = 15, AS%" — 1 and

)\de“g = 10 (Eq. 5 in main paper). When performing optimization for self-supervised refinement
after initializing the edit with an editing vector (as described in second bullet point in Sec. 3.4 in

main paper), we use the same optimizer and we set hyperparameters X" = 5, A% — 1 and
A" — 5 Hyperparameters are chosen based on visual quality on hold-out examples. We will

release the training set Dy y and learnt editing vectors.

2 Experiment Details
Here, we provide additional experiment details.

2.1 Smile Edit Benchmark

In Section 4.2 of the main paper, we evaluate our model against strong baselines on the smile edit
benchmark introduced by MaskGAN [13]. Here we provide more details for completeness. Semantic
Correctness: To measure whether the faces show smiling expressions after editing, a binary smile
attribute classifiers is trained on the CelebA training set, using a ResNet-18 [14] backbone. The
input faces are resized into resolution of 256 x 256. The classifier achieives 92.2% accuracy on the
CelebA testing dataset. Identity Preservation: We again use the pretrained ArcFace feature extrac-
tion network [12] with checkpoint from https://github.com/TreBleN/InsightFace_
Pytorch (MIT License). As pointed out in main paper, we did not use the identity loss in this
benchmark experiment when performing face editing. In this benchmark experiment, this facial
feature extraction network is used only for evaluation purposes.

To compare with the baselines, we took the officially released MaskGAN? [13] and LocalEditing* [15]
checkpoints. Furthermore, we train an InterFaceGAN [16] smile model using the officially released
code’ where we replaced the generator with a StyleGAN2 for fair comparison. At inference time
when performing editing, we use the same test image embeddings for the InterFaceGAN model
as we use for our EditGAN model. As mentioned in the main paper, we also use StyleGAN2
Distillation [17] as baseline, for which we rely on the official codebase® and train a Pix2PixHD
network for the smile edit using the default hyperparameters as provided in the paper [17]. We further
show in Fig. 2 the image and initial and modified segmentation masks that were used to learn our
smile editing vector.

Finally, we provide more details for Fig. 10 in the main text: For each curve, we report results with
five different editing vector scale coefficients seq; € [0.7,1,1.3,1.5,1.7].

*https://github.com/switchablenorms/CelebAMask-HQ
*nttps://github.com/IVRL/GANLocalEditing
Shttps://github.com/genforce/interfacegan
®https://github.com/EvgenyKashin/stylegan2-distillation
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Figure 2: Image and mask pair to learn smile editing vector on CelebA. Images are face before editing,
face after editing, segmentation mask predicted by segmentation branch before editing (after embedding the
image into EditGAN’s latent space), and target segmentation mask after manual modification.
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Figure 3: Left: We apply learnt editing vectors with varying scales (see 5 markers in FID plots) both without
(top row) and with (bottom row) additional 30-step self-supervised refinement to correct artifacts. Red boxes
denote original images. For each class, the leftmost image is the one used to learn the editing vector with the
editing result next to it and orginal and modified segmentations below. Right: Visual quality after editing with
different scales as measured by FID with and without 30-step refinement.

2.2 Additional Results: Editing Vector Scale Experiment

In the main paper, in Fig. 9, we presented another ablation study where we studied editing quality
when applying edits with different editing vector scales scqi. We analyzed editing quality both
visually and quantitatively, both with and without self-supervised refinement. While in the main
paper we only presented the results for Car and Cat data, here we additionally show the results on
Face images, using an edit that raises eyebrows as example (Fig. 3). Similar to the other results on
Car and Cat data, we find that editing by purely applying our learnt editing vector, which can be done
at interactive rates, already yields virtually perfect editing results. However, we do observe almost
unnoticeable entanglement with the beard. Using self-supervised refinement we can fully remove this
editing artifact, if necessary.

2.3 Additional Results: Smile Edit Benchmark with more Test Images

In Tab. 1 of the main paper, we use

MaskGAN’s [13] smile edit benchmark. Metric iﬁastk * ﬁﬁ::tu * /fctg itf;:)t? FID 4 1D Scoret
The FID scores are calculated between 400

edited test images and the CelebA-HD test MaSkGA'l\,I () 20.000 - 657 183 05229
database, which enables a fair comparison LocalEditing [13] - - 287 204 05726
with existing approaches and directly fol- ~nterFaccGANTIO] - 30000 795 344 06560
lows the practice by MaskGAN. Although  EditGAN (ours) 16 - 880 321 06422
the estimates may be biased with respect to  EditGAN'30 (ours) 16 - 814 318  0.6625

the true FID due to the limited number of  Typle 1: Quantitative comparisons to multiple baselines on
test images [18], we expect that they never- the smile edit 4k benchmark.

theless provide a fair comparison between

the different methods. However, here we re-calculate FID as well as attribute accuracy and ID score
using 10 times as many images, i.e. 4000 images, from the training set from MaskGAN. Notice
that only MaskGAN uses this data for training, while the GANs of all other baselines, including
our EditGAN, are based on the FFHQ faces data and do not use this annotated training data that
MaskGAN relies on. Hence, calculating the FID using these 4000 images is advantageous for
MaskGAN.



Figure 4: We demonstrate challenging editing operations where we disentangle semantically related parts. The
presented results correspond to pure optimization-based editing. First example: Lift right eyebrow while keeping
the left eyebrow unchanged. Second example: Enlarge the front wheel while keeping the back wheel unchanged.

We show results in Tab. 1. Since we use different and much more data for evaluation compared to the
evaluation reported in the table in the paper, the numbers are different. However, the rankings and
comparisons between the methods remain the same and the conclusions are the same. In particular,
EditGAN achieves the best attribute accuracies and ID scores. MaskGAN achieves a relatively low
FID, but this is simply due to the unfair comparison, as discussed above. MaskGAN still performs
significantly worse than InterfaceGAN and EditGAN in attribute accuracy and ID score.

3 Computational Resources

Training of the underlying StyleGAN?2, the encoder, and the segmentation branch, as well as opti-
mization for embedding and editing were performed using NVIDIA Tesla V100 GPUs on an in-house
GPU cluster. Overall, the project used approximately 14,000 GPU hours (according to internal GPU
usage reports), of which around 3,500 GPU hours were used for the final experiments, and the rest
for exploration and testing during the earlier stages of the research project.

4 Additional Qualitative Results

Below, we present further qualitative results.

We first demonstrate particularly challenging editing operations where we try to disentangle semanti-
cally related parts. For example, we want to lift the right eyebrow while keeping the left eyebrow
unchanged. We present the results ins Fig. 4. Furthermore, we again demonstrate the ability to
combine multiple different edits in Fig 5. We also invite the reader to watch our video, which shows
latent code interpolations between the edits. Finally, for all edits we perform in the main paper, we
first show the image and segmentation mask pairs that were used to learn the latent space editing
vectors, and then we present a few more editing results on GAN-generated images (Figs. 6-22).



Figure 5: Combining multiple edits. Results are based on editing with learnt editing vector and 30 steps of
self-supervised refinement. Edits in detail: First row: Slight frown, look left, add hair, remove smile wrinkle.
Second row: Close eyes, close mouth, remove smile wrinkle. Third row: Lift back of the car, enlarge wheels,
shrink front light. Fourth row: Enlarge front light, shrink wheels. Please also see attached video which shows
latent code interpolations between editing operations.
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Figure 6: Gaze position editing. First row: Image and mask pair to learn editing vector. Images are images
before editing and after editing. Segmentation masks are before editing and target segmentation mask after
manual modification. Second and third rows: Applying the learnt edit on new images.



Figure 7: Closing eyes editing. First row: Image and mask pair to learn editing vector. Images are images
before editing and after editing. Segmentation masks are before editing and target segmentation mask after
manual modification. Second and third rows: Applying the learnt edit on new images.



Figure 8: Raising eyebrows editing. First row: Image and mask pair to learn editing vector. Images are images
before editing and after editing. Segmentation masks are before editing and target segmentation mask after
manual modification. Second and third rows: Applying the learnt edit on new images (with flipped direction, i.e.
negative editing vector scale Sedit.)-



Figure 9: Vertical gaze position editing. First row: Image and mask pair to learn editing vector. Images are
images before editing and after editing. Segmentation masks are before editing and target segmentation mask
after manual modification. Second and third rows: Applying the learnt edit on new images.

10



i\

Figure 10: Smile editing. First row: Image and mask pair to learn editing vector. Images are images before
editing and after editing. Segmentation masks are before editing and target segmentation mask after manual
modification. Second and third rows: Applying the learnt edit on new images.
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Figure 11: Adding smile wrinkle editing. Firss row: Image and mask pair to learn editing vector. Images are
images before editing and after editing. Segmentation masks are before editing and target segmentation mask
after manual modification. Second and third rows: Applying the learnt edit on new images.
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Figure 12: Hairstyle editing. First row: Image and mask pair to learn editing vector. Images are images before
editing and after editing. Segmentation masks are before editing and target segmentation mask after manual
modification. Second and third rows: Applying the learnt edit on new images.
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Figure 13: Pupil size editing. First row: Image and mask pair to learn editing vector. Images are images before
editing and after editing. Segmentation masks are before editing and target segmentation mask after manual
modification. Second and third rows: Applying the learnt edit on new images.
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Figure 14: Front light size editing. First row: Image and mask pair to learn editing vector. Images are images
before editing and after editing. Segmentation masks are before editing and target segmentation mask after
manual modification. Second to fourth rows: Applying the learnt edit on new images.
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Figure 15: License plate deletion editing. First row: Image and mask pair to learn editing vector. Images are
images before editing and after editing. Segmentation masks are before editing and target segmentation mask
after manual modification. Second to fourth rows: Applying the learnt edit on new images.

16



Figure 16: Side mirror deletion editing. First row: Image and mask pair to learn editing vector. Images are
images before editing and after editing. Segmentation masks are before editing and target segmentation mask
after manual modification. Second to fourth rows: Applying the learnt edit on new images.
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Figure 17: Wheel size editing. First row: Image and mask pair to learn editing vector. Images are images
before editing and after editing. Segmentation masks are before editing and target segmentation mask after
manual modification. Second to fourth rows: Applying the learnt edit on new images.
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Figure 18: Wheel/spoke rotation editing. First row: Image and mask pair to learn editing vector. Images are
images before editing and after editing. Segmentation masks are before editing and target segmentation mask
after manual modification. Second to fourth rows: Applying the learnt edit on new images.
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Figure 19: Beak size editing. First row: Image and mask pair to learn editing vector. Images are images before
editing and after editing. Segmentation masks are before editing and target segmentation mask after manual
modification. Second and third rows: Applying the learnt edit on new images.
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Figure 20: Belly size editing. First row: Image and mask pair to learn editing vector. Images are images before
editing and after editing. Segmentation masks are before editing and target segmentation mask after manual
modification. Second and third rows: Applying the learnt edit on new images.
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Figure 21: Raising head editing. First row: Image and mask pair to learn editing vector. Images are images
before editing and after editing. Segmentation masks are before editing and target segmentation mask after
manual modification. Second and third rows: Applying the learnt edit on new images.
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Figure 22: Cat image editing. First and second rows: Eye size editing. Third and fourth rows: Ear size
editing. Fifth and sixth rows: Open mouth editing. First, third, and fifth rows: Image and mask pair to learn
editing vector. Images are images before editing and after editing. Segmentation masks are before editing and
target segmentation mask after manual modification. Second, fourth, and sixth rows: Applying the learnt edits
on new images.
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