Wall-Clock Runtime vs. k (SCRNA, n = 10000) Wall-Clock Runtime vs. n (SCRNA, k=5, L1)

BanditPAM . ‘BanditPAM > Wall-clock Runtime vs. k (NEWSGROUPS, n=10000) Wall-clock Runtime vs. n (NEWSGROUPS, k = 10)
120{ @ BanditPAM++ (No virtual arms) 2907 o BanditPAM++ (No virtual arms) BanditPAM . anditAM
BanditPAM++ (No caching) BanditPAM++ (No caching) 120 @ BanditPAM++ 300 o BanditPAM++
s o 1731 e eanditpams+ * BanditPAM++ (No caching) BanditPAM++ (No caching)
100 100 @ BanditPAM++ (No virtual arms) 250 ® BanditPAM++ (No virtual arms)
. ® 150

.
125 200
. .
N . 150 *
.

- 40 100

. .
.

. “ :;;ﬁ/’/—-/‘ " //_.—//

6 8 10 12 1 10000 15000 20000 25000 30000 35000 40000 6 8 10 12 14 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of medoids (k) Dataset size (n) Number of medoids (k) Dataset size (n)

100

Wall-Clock Runtime

&
g o

Wall-Clock Runtime
Wall-clock Runtime

Wall-clock Runtime
2
3

Figure 1 (scRNA & 20 Newsgroups): Wall-clock runtime versus scaling with k and n for the SCRNA (L1 distance) and 20 Newsgroups (cosine
distance) datasets. We observe speedups of up to 6.4x and 8.5x speedup when examining the scaling of each algorithm with k and 3.2x and 7x
speedup for scaling of n for the two datasets, respectively.

Table 1: Average Runtime Speedup Summary

Dataset BUILD + SWAP SWAP only BUILD only

MNIST x4.751 x8.231 x10.77 x6.201 x9.33 1 x12.18 x1.581 x1.83 1 x2.16
CIFAR x5.051x9.241x12.52 x6.291 x11.81x15.03 x2.491 x3.27| x3.65
SCRNA x3.951 x5.121 x6.81 x4.741 x6.011 x7.94 x2.671x2.911x3.44

20 Newsgroups ~ x5.19 | x7.621 x9.18 x6.67 1 x8.981x10.27 x2.521 %290 x3.16

Table 1 (Average Speedup Table): Wall-clock speedup of BanditPAM++ compared to BanditPAM on the four datasets MNIST, CIFAR, SCRNA,
and 20 Newsgroups. Results were averaged over four different dataset sizes n = 10k, 20k, 30k, 50k for settings BUILD + SWAP, SWAP only, and
BUILD only. The BUILD only setting leverages permutation-invariant caching only, whereas the other two settings also leverage Virtual Arms.
The three speedup values in each cell correspond to experiments where £ = 5, 10, and 15 respectively.

Table 2: Relative Loss with Varying §
Dataset 1072 107* 107° 107"

MNIST 1.0 1.0 1.0 1.0
20 Newsgroups 1.0 1.0 1.0 1.0

Table 2 (Loss with §): Loss of BanditPAM-++ over BanditPAM wtih § values ranging from 102, 10~3, 105, and 10~ '°. BanditPAM++ has the
exact same clustering loss with BanditPAM for various values 9.

Loss vs. T (MNIST, k=5, L2) Loss vs. T (MNIST, k= 10, L2)

7.93 BanditPAM BanditPAM
® BanditPAM++ ® BanditPAM++

0 2 4 6 8 0 2 4 6 8
Number of swaps (T) Number of swaps (T)
Loss vs. T (CIFAR, k=5, L1) Loss vs. T (CIFAR, k=10, L1)
BanditPAM BanditPAM
1176 o BanditPAM++ 1270 ® BanditPAM++

A 11.265

174
11.260

1.73

Loss

H

11.255
1n.72
11.250
n71
11.245

11.70

0 2 4 6 8 0 2 4 6 8
Number of swaps (T) Number of swaps (T)

Figure 2 (Clustering Loss with Varying 7T'): Clustering loss with increasing 7" for the MNIST and CIFAR datasets for k = 5 and £ = 10.
Beyond T' = k, the loss shows very little change. BanditPAM++ and BanditPAM have the same loss for all 7' making them trace the exact same
optimization trajectory with increasing 7.

