
A Preliminaries: Differential forms in Rn

We provide an in-depth explanation of our divergence-free construction in this section.

We will use the notation of differential forms in Rn that will help derivations and proofs in the
paper. Below we provide basic definitions and properties of differential forms, for more extensive
introduction see e.g., [Do Carmo, 1998, Morita, 2001].

We let x = (x1, . . . , xn) ∈ Rn, and dx1, . . . , dxn the coordinate differentials, i.e., dxi(x) = xi for
all i ∈ [n] = {1, . . . , n}. The linear vector space of k-forms in Rn, denoted Λk(Rn), is the space of
k-linear alternating maps

φ :

k times︷ ︸︸ ︷
Rn × · · · × Rn → R (19)

A k-linear alternating map φ is linear in each of its coordinates and satisfies φ(. . . , v, . . . , u, . . .) =
−φ(. . . , u, . . . , v, . . .). The space Λk(Rn) is a linear vector space with a basis of alternating k-forms
denoted dxi1 ∧ · · · ∧ dxik . The way these k-forms act on k-vectors, v1, . . . , vk ∈ Rn is as a signed
volume function:

dxi1 ∧ · · · ∧ dxik(v1, . . . , vk) = det [dxir (vs)]r,s∈[k] (20)

Expanding an arbitrary element ω ∈ Λk(Rn) in this basis gives

ω =
∑

i1<i2<···<ik

ai1···ik dxi1 ∧ · · · ∧ dxik =
∑
I

aI dxI (21)

where i1, . . . , ik ∈ [n], I = (i1, . . . , ik) are multi-indices, aI are scalars, and dxI = dxi1∧· · ·∧dxik .

The space of differential k-forms (also called k-forms in short), denoted Ak(Rn), is defined by
smoothly assigning to each x ∈ Rn a k-linear alternating form w ∈ Λk(Rn). That is

w(x) =
∑
I

fI(x)dxI (22)

where fI : Rn → R are smooth scalar functions. Note that A0(Rn) is the space of smooth scalar
functions over Rn. The differential operator can be seen as a linear operator d : A0(Rn) → A1(Rn)
defined by

df(x) =

n∑
i=1

∂f

∂xi
(x)dxi (23)

The exterior derivative d : Ak(Rn) → Ak+1(Rn) is a linear differential operator generalizing the
differential to arbitrary differential k-forms:

dω(x) =
∑
I

dfI ∧ dxI (24)

where the exterior product ω ∧ η of two forms ω =
∑

I fIdxI , η =
∑

J gJdxJ is defined by
extending equation 20 linearly, that is, ω ∧ η =

∑
I,J fIgJdxI ∧ dxJ . An imporant property of the

exterior derivative is that ddω = 0 for all ω. This property can be checked using the definition in
equation 24 and the symmetry of mixed partials, ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
.

The hodge operator ⋆ : Ak(Rn) → An−k(Rn) matches to each k-form an n− k-form by extending
the rule

⋆ (dxI) = (−1)σdxJ (25)
linearly, where σ = sign([I, J ]) is the sign of the permutation (I, J) = (i1, . . . , ik, j1, . . . , in−k) of
[n]. The hodge star is (up to a sign) its own inverse, ⋆ ⋆ ω = (−1)k(n−k)ω, for all ω ∈ Ak(Rn). The
d operator has an adjoint operator δ : Ak(Rn) → Ak−1(Rn) defined by

δ = (−1)n(k+1)+1 ⋆ d ⋆ . (26)

A vector field v(x) = (v1(x), . . . , vn(x)) in Rn can be identified with a 1-form v =
∑n

i=1 vi(x)dxi.
The divergence of v, denoted div(v) can be expressed using exterior derivative :

d ⋆ v = d

n∑
i=1

vi ⋆ dxi =

n∑
i=1

∂vi
∂xi

dx1 ∧ · · · ∧ dxn = div(v)dx1 ∧ · · · ∧ dxn, (27)

15



where in the second equality we used the definition of ⋆, the definition of d and the fact that
dxi∧dxi = 0 (can be seen from the repeating rows in the matrix inside the determinant in equation 20).
Note that the n-form div(v)dx1 ∧ · · · ∧ dxn is identified via ⋆ with the function (i.e., 0-form) div(v).

A.1 Derivations of equation 3 and equation 6

We will need the following identity below, for µ ∈ Ωk(M), expressed as

µ =
∑
I

αI ⋆ (dx
I)

we have

⋆ µ = (−1)k(n-k)
∑
I

αIdx
I (28)

which follows by linearity of ⋆ over C∞(M) and the identity ⋆⋆ = (−1)k(n−k)id.

Here, we derive the expression for equation 3. For µ ∈ Ωn−2(M), the exterior derivative is given by
equation 24. However, in this case, since dxi ∧ dxi = 0, we can expand

dµ =
∑
i,j

dµi,j ∧ ⋆(dxi ∧ dxj) (29)

=
∑
i,j

∑
k

∂µk

∂xk
dxk ∧ ⋆(dxi ∧ dxj) (30)

=
∑
i,j

[
∂µij

∂xi
dxi ∧ ⋆(dxi ∧ dxj) +

∂µij

∂xj
dxj ∧ ⋆(dxi ∧ dxj)

]
(31)

=
∑
i,j

[
∂µij

∂xi
dxi ∧ ⋆(dxi ∧ dxj)

]
+
∑
i,j

[
∂µji

∂xi
dxi ∧ ⋆(dxj ∧ dxi)

]
(32)

=
∑
i,j

[
∂µij

∂xi
dxi ∧ ⋆(dxi ∧ dxj)

]
+
∑
i,j

[
∂µij

∂xi
dxi ∧ ⋆(dxi ∧ dxj)

]
(33)

= 2
∑
i,j

[
∂µij

∂xi
dxi ∧ ⋆(dxi ∧ dxj)

]
(34)

= 2
∑
i

∑
j

∂µij

∂xj
⋆ (dxi)

 (35)

where equation 32 follows by re-indexing i as j, and then equation 33 by anti-symmetry µij = −µji

and ⋆(dxi ∧ dxj) = − ⋆ (dxj ∧ dxi) (the sign flips cancel). Applying ⋆ then gives (by equation 28),

⋆dµ = ⋆

2∑
i

∑
j

∂µij

∂xj
⋆ (dxi)

 = 2(−1)n−1
∑
i

∑
j

∂µij

∂xj
dxi

16



To derive equation equation 6, it suffices to start by noting δ = ⋆d⋆, and so

δν = ⋆d ⋆ ν (36)

= ⋆d ⋆
∑
i

νi ⋆ (dx
i) (37)

= ⋆d(−1)n−1
∑
i

νidx
i (38)

= (−1)n−1 ⋆
∑
i

∑
j

∂νi
∂xj

dxj ∧ dxi (39)

= (−1)n−1
∑
i

∑
j

∂νi
∂xj

⋆ (dxj ∧ dxi) (40)

= −(−1)n−1
∑
i

∑
j

∂νi
∂xj

⋆ (dxi ∧ dxj) (41)

= −(−1)n−1

∑
i<j

∂νi
∂xj

⋆ (dxi ∧ dxj) +
∑
i>j

∂νi
∂xj

⋆ (dxi ∧ dxj)

 (42)

= −(−1)n−1

∑
i<j

∂νi
∂xj

⋆ (dxi ∧ dxj)−
∑
i<j

∂νj
∂xi

⋆ (dxi ∧ dxj)

 (43)

= −(−1)n−1
∑
i<j

[
∂νi
∂xj

− ∂νj
∂xi

]
⋆ (dxi ∧ dxj) (44)

then since ⋆(dxi ∧ dxj) = − ⋆ (dxj ∧ dxi), we have

− (−1)n−1
∑
i<j

[
∂νi
∂xj

− ∂νj
∂xi

]
⋆ (dxi ∧ dxj) (45)

= −(−1)n−1

1

2

∑
i<j

[
∂νi
∂xj

− ∂νj
∂xi

]
⋆ (dxi ∧ dxj) +

1

2

∑
i<j

[
∂νj
∂xi

− ∂νi
∂xj

]
⋆ (dxj ∧ dxi)


(46)

= −(−1)n−1

1

2

∑
i<j

[
∂νi
∂xj

− ∂νj
∂xi

]
⋆ (dxi ∧ dxj) +

1

2

∑
i>j

[
∂νi
∂xj

− ∂νj
∂xi

]
⋆ (dxi ∧ dxj)


(47)

= −(−1)n−1

1

2

∑
i,j

[
∂νi
∂xj

− ∂νj
∂xi

]
⋆ (dxi ∧ dxj)

 (48)

(49)

B Proofs and derivations

B.1 Universality

Theorem 2.1. The matrix and vector-field representations are universal in T, possibly only missing
a constant vector field.

Proof. First, consider a divergence-free vector field and its representation as a 1-form v ∈ A1(T).
Then v being divergence-free means d⋆v = 0. We denote by c = (c1, . . . , cn) ∈ Rn a constant vector
field; note that c is also a well defined vector field over T. We will use the notation c to denote the
corresponding constant 1-form. We claim ⋆v = dµ+ ⋆c, where µ ∈ An−2(T), and ⋆c ∈ An−1(S)

17



is constant. This can be shown with Hodge decomposition [Morita, 2001] of ⋆v ∈ An−1(T):

⋆ v = dµ+ δτ + h, (50)

where µ ∈ An−2(T), τ ∈ An(T) and h ∈ An−1 is a harmonic n-1-form. Note that the harmonic
n-1-forms over T are simply constant. Taking d of both sides leads to

d ⋆ v = dδτ. (51)

Since we assumed v is div-free, d ⋆ v = 0 and we get dδτ = 0. Since dδτ = 0 = δδτ then δτ is
harmonic (constant) as well.

So far we showed ⋆v = dµ+ ⋆c, which shows the universality of the matrix-field representation (up
to a constant). To show universality of the vector-field representation we need to show that:{

dµ+ ⋆c
∣∣ µ ∈ An−2(T)

}
=

{
dδν + ⋆c

∣∣ ν ∈ An−1(T)
}

(52)

The left inclusion ⊃ is true since δν ∈ An−2(T ). For the right inclusion ⊂ we take an arbitrary
µ ∈ An−2(T) and decompose it with Hodge: µ = dω+δν+h, where ω ∈ An−3(T), ν ∈ An−1(T),
and h ∈ An−2(T) is harmonic. Taking d of both sides leaves us with dµ = dδν that shows that
dµ+ ⋆c is included in the right set.

B.2 Stabilizing training for fluid simulations

In order to stabilize training, we can modify the loss terms LF , LG, LI to avoid division by ρ. As
before v = [ρ, ρu],and

L̃F =
∥∥ρ2(ρu)t − ρ(ρt)ρu+ ρ[D(ρu)(ρu])− [∇ρ⊗ ρu](ρu) + ρ2∇p

∥∥2
Ω

(53)

L̃div =
∥∥∥∇̃ρ · v

∥∥∥
Ω

(54)

L̃I = ∥ρu(0, ·)− ρ0u0(0, ·)∥2Ω + ∥ρ(0, ·)− ρ0(0, ·)∥2Ω (55)

L̃G = ∥ρu · n∥2∂Ω (56)

In practice, we noticed this improved training stability significantly, which is intuitive since the
possibility of a division by 0 is removed. The derivation of L̃G, and L̃I is simply scaling by ρ. We
derive L̃F and L̃div by repeatedly applying the product rules for the Jacobian and divergence operators
and solving for ρ2,3 scaled copies of the residuals. Below, we use the convention that the gradient
and divergence operators only act in spatial variables, but the ∇̃, d̃iv operators include time

∇̃ρ(t, x) =


∂ρ
∂t (t, x)
∂ρ
∂x1

(t, x)
...

 d̃iv(u) =
∂u0

∂t
+

d∑
i=1

∂ui

∂xi
(57)

Derivation of L̃div:
To derive L̃div, we consider

d̃iv
(
ρ

(
1
u

))
= ∇̃ρ ·

(
1
u

)
+ ρd̃iv

(
1
u

)
(58)

by construction div
(
ρ

(
1
u

))
= 0, and since d̃iv

(
1
u

)
= div(u), multiplying both sides by ρ we

find
0 = ∇̃ρ · v + ρ2div(u) =⇒ ρ2div(u) = −∇̃ρ · v (59)

Derivation of L̃F To derive L̃F , we will start at the end. We multiply the momentum term of the
Euler system

∂u

∂t
+ [Du]u+

∇p

ρ
= 0 =⇒ ρ3

∂u

∂t
+ ρ3[Du]u+ ρ2∇p = 0 (60)

18



we start by applying the product rule to ρu

∂(ρu)

∂t
=

∂ρ

∂t
u+ ρ

∂u

∂t
(61)

multiplying by ρ2 and solving for ρ3 ∂u
∂t yields

ρ3
∂u

∂t
= ρ2

∂(ρu)

∂t
− ρ

∂ρ

∂t
ρu (62)

which can be computed without dividing by ρ. Now we apply the Jacobian scalar product rule

D(ρu) = ∇ρ⊗ u+ ρDu (63)

contracting with ρ2u yields that

D(ρu)ρ2u = [∇p⊗ (ρu)](ρu) + ρ3[Du]u (64)

which gives
ρ3[Du]u = D(ρu)ρ2u− [∇p⊗ (ρu)](ρu) (65)

which can also be computed without invoking division by ρ. Together, equation 62 and equation 65
yield L̃F .

C Implementation Details

C.1 Tori Example Details

For the Tori example, we used the matrix formulation of the NCL model. The matrix was param-
eterized as the output of a 8 layer, 512-wide Multi-Layer Perceptron with softplus activation. We
trained this model for 600,000 steps of stochastic gradient descent using a batch size of 1000. The
weight vector γ was fixed with γF = 3× 10−3, γI = 30, γdiv = 0.01. Instead of choosing a fixed
set of colocation points (as is common in the PINN literature see Raissi et al. [2017]), we sampled
uniformly on the unit square [0, 1]2. For the Finite-Element reference solution, we solved the system
on a 50 x 50 grid with periodic boundary conditions implemented with a mixed Lagrange element
scheme. The splitting scheme used was the inviscid case of Guermond and Quartapelle [2000], with
time step dt = 0.001.

C.2 3d Ball Example Details

For the comparison in Figure 9 we used a 4-layer, 128 wide feed forward network for both the Curl
PINN and the NCL. Stopped training both models after 10000 steps of stochastic gradient descent
with batch size of 1000. While this is much less than Section 5.3, the difference can be explained
by the initial condition being much less complex. For the NCL model, we used γF = 0.1, γdiv =
0.1, γG = 0.1, γI = 30. For the CURL model, we used γF = 0.1, γG = 0.1, γcont = 10, γI = 30

A larger plot of the comparison is shown in Figure 9.

19



Figure 8: Streamplots showing the velocity field from a Physics Informed Neural Network (top),
our method (middle) vs a reference FEM solution (bottom). While both models minimize the loss
effectively and fit the initial conditions, the PINN fails to learn the correct evolution of the velocity.

20



(a) Curl Model: Flow (top) and Density (bottom) at t = 0, 0.25, 0.5

(b) Our model (NCL): Flow (top) and Density (bottom) at t = 0, 0.25, 0.5

Figure 9: Larger version of comparison shown in Section 5.2. While our model fits the initial
conditions and convects the density along the flow lines as expected, the curl model fails to do so.

Figure 10: Training loss for NCL model (ours) plotted against the Curl model, for the 3D unit ball
fluid experiment. Both models achieve a similar order of magnitude loss but exhibit qualitatively
different results.

21


