
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

A Deferred proofs: Smoothing preliminaries

Recall the definitions of our smoothing operators.

Let Bη(x) be the ball of radius η around x. For any function f : R → R and real-valued η > 0,
define the function Sη[f] : Rn → R as Sη[f](x) = Ey∈Bη(x)[f(y)].
Definition 3 (Smoothing). The smoothing operator S on input f : Rn → R outputs the function

S[f] = Sβ/2p [Sβ/2p−1 [· · ·Sβ/22 [Sβ/21 [f]] · · ·]]. (12)

We claimed the following about S.
Lemma 1. For the smoothing operator S defined above, the following statements hold true.

1. For any functions f, g : Rn → R for which S[f],S[g] are well-defined, S[f + g] =
S[f] + S[g].

2. The value S[f](x) only depends on the values of f within a (1− 2−p)β radius of x.

3. The gradient and higher order derivatives of S[f] at x depend only on the values of f within
Bβ(x).

4. If ∇pf is L-Lipschitz in a ball of radius β around x, then∇pS[f] is also L-Lipschitz at x.

5. Let f be G-Lipschitz in a ball of radius β around x. Then S[f] is p-times differentiable, and
for any i ≤ p,∇iS[f] is L-Lipschitz in a β/2p-ball around x with L ≤ ni2i(i+1)/2

βi G.

6. Let f be G-Lipschitz in a ball of radius β around x. Then |S[f](x)− f(x)| ≤ βG.

7. If f is a convex function, then S[f] is also a convex function.

While most of the above statements are proven below from first principles, a couple of them follow
from [AH18, Corollary 2.4]. For these statements, we only detail the main ideas involved in their
proofs.

Proof. We prove the above statements in order.

1. This is a simple consequence of the linearity of expectation.

2. By expanding the expectations in the definition of S, we get that S[f](x) = Ey∼µx [f](x)
where µx is a distribution supported in B(1−2−p)β(x).

3. The gradient and higher order derivatives of S[f] at x depend only on the values of S[f]
in an open ball around x, say B2−pβ(x). For any y ∈ B2−pβ(x), S[f](y) depends only on
values of f in B(1−2−p)β(y) ⊆ Bβ(x).

4. This follows from the proof of [AH18, Corollary 2.4]. It is easy to see that if f is L-Lipschitz
then Sη[f] is also L-Lipschitz. ∇f being L-Lipschitz is equivalent to saying that for any
unit vector v ∈ Rn, gv(x) := ∇f(x)[v] is an L-Lipschitz function. However by linearity
of Sη, Sη[gv](x) = ∇Sη[f](x)[v]. Hence ∇Sη[f] is L-Lipschitz. A repeated usage of this
argument as done in [AH18] proves the statement.

5. The proof of this is via a repeated usage of [AH18, Lemma 2.3] as done in [AH18, Corol-
lary 2.4]. They argue via Stoke’s theorem that Sη[f] is differentiable even when f may not
be differentiable in a set of measure 0, and that ∇Sη[f] is n

ηG-Lipschitz. They then use
directional derivatives to inductively show via the same argument the Lipschitzness of the
higher-order derivatives.

6. This is a simple consequence of the fact that S[f](x) is a convex combination of the values
f(y) for y ∈ Bβ(x).

7. For y ∈ Bβ(~0), let fy be defined as fy(x) = f(x + y). Since f is convex, it follows that
each fy is convex. Also S[f] = Ey∈Bβ(~0)[fy]. Since S[f] is a convex combination of
convex functions, it follows that S[f] is convex.

13

Recall the definition of the softmax function.
Definition 4 (Softmax). For a real number ρ, the softmax function smaxρ : Rn → R is defined as

smaxρ(x) = ρ ln
(∑
i∈[n]

exp(xi/ρ)
)
. (13)

Let us also define, for m ≤ n, smax≤mρ : Rn → R as

smax≤mρ (x) = smaxρ(x≤m), or equivalently, smax≤mρ (x) = ρ ln
(∑
i∈[m]

exp(xi/ρ)
)
. (14)

We claimed the following about the softmax function.
Lemma 2. The following are true of the function smaxρ for any ρ > 0.

1. The first derivative of smax can be computed as

∂smaxρ(x)

∂xi
=

exp(xi/ρ)∑
i exp(xi/ρ)

. (15)

2. smaxρ is 1-Lipschitz and convex.

3. The higher-order derivatives of smax satisfy

‖∇psmaxρ(x)−∇psmaxρ(y)‖ ≤

(
p+1

ln(p+2)

)p+1

p!

ρp
‖x− y‖. (16)

Proof. We prove the statements in order.

1. This is straightforward.

2. We can conclude the 1-Lipschitzness by looking at the norm of the gradients.

‖∇smaxρ(x)‖ =
‖(exp(x1/ρ), . . . , exp(xn/ρ))‖∑

i exp(xi/ρ)
≤
∑
i |exp(xi/ρ)|∑
i exp(xi/ρ)

= 1. (34)

The convexity follows from analyzing the Hessian. We get the following as the Hessian.

∇2smaxρ(x)i,j =


1

ρ

(
exp(xi/ρ)∑
t∈[n] exp(xt/ρ)

− exp(2xi/ρ)

(
∑
t∈[n] exp(xt/ρ))2

)
if i = j

1

ρ

(
− exp((xi + xj)/ρ)

(
∑
t∈[n] exp(xt/ρ))2

)
otherwise

(35)
Let v ∈ Rn denote the column vector∇smaxρ(x). Then∇2smaxρ(x) = 1

ρ (diag(v)−vvT).
The convexity of smaxρ is equivalent to ∇2smaxρ(x) being positive semidefinite for all x.
Since ρ > 0, it suffices to prove that M = ρ∇2smaxρ(x) is positive semidefinite. To this
end, let y ∈ Rn be any column vector.

yTMy =
∑
i∈[n]

y2i vi − 〈y, v〉2 (36)

=

∑
i∈[n]

y2i vi

∑
i∈[n]

vi

−
∑
i∈[n]

yivi

2

(since
∑
i∈[n] vi = 1)

≥ 0. (37)

The last inequality follows by using the Cauchy-Schwarz inequality on the vectors
(yi
√
vi)i∈[n] and (

√
vi)i∈[n]. Here we use the fact that each vi is nonnegative.

14

3. This is proven in [Bul20, Theorem 7].

Lemma 3. Let x ∈ Rn and m < n. If

smaxρ(x)− smax≤mρ (x)

ρ
= δ < 1, (17)

Then
‖∇smaxρ(x)−∇smax≤mρ (x)‖ ≤ 4δ. (18)

Proof.
smaxρ(x)−smax≤mρ (x)

ρ = δ implies that

δ = ln

∑n
i=1 exp

(
xi
ρ

)
∑m
i=1 exp

(
xi
ρ

)
 = ln

1 +

∑n
i=m+1 exp

(
xi
ρ

)
∑m
i=1 exp

(
xi
ρ

)
 (38)

Let c =
∑n
i=m+1 exp(xi/ρ)∑m
i=1 exp(xi/ρ)

. Since δ = ln(1 + c) ≥ c/2 for δ < 1, an upper bound of 2c would suffice
to prove the lemma.

Using the equation for the gradient of smax from Lemma 2, we get ‖∇smaxρ(x)−∇smax≤mρ (x)‖
to be equal to

(exp
(
x1

ρ

)
, . . . , exp

(
xn
ρ

)
)∑n

i=1 exp
(
xi
ρ

) −
(exp

(
x1

ρ

)
, . . . , exp

(
xm
ρ

)
, 0, . . . , 0)∑m

i=1 exp
(
xi
ρ

) (39)

=
(exp

(
x1

ρ

)
, . . . , exp

(
xn
ρ

)
)∑n

i=1 exp
(
xn
ρ

) −
(1 + c)(exp

(
x1

ρ

)
, . . . , exp

(
xm
ρ

)
, 0, . . . , 0)

(1 + c)
∑m
i=1 exp

(
xi
ρ

) (40)

=
−c(exp

(
x1

ρ

)
, . . . , exp

(
xm
ρ

)
) + (0, · · · , 0, exp

(
xm+1

ρ

)
, . . . , exp

(
xn
ρ

)
, 0, . . . , 0)

(1 + c)
∑m
i=1 exp

(
xi
ρ

) (41)

The norm of this is at most

‖ − c(exp
(
x1

ρ

)
, . . . , exp

(
xm
ρ

)
)‖+ ‖(exp

(
xm+1

ρ

)
, . . . , exp

(
xn
ρ

)
)‖

(1 + c)
∑m
i=1 exp

(
xi
ρ

) (42)

≤ c

1 + c

∑m
i=1

∣∣∣exp
(
xi
ρ

)∣∣∣∑m
i=1 exp

(
xi
ρ

) +
1

1 + c

∑n
i=m+1

∣∣∣exp
(
xi
ρ

)∣∣∣∑m
i=1 exp

(
xi
ρ

) (43)

≤ c

1 + c
+

c

1 + c
< 2c.

B Deferred proofs: Function construction and properties

Here we prove Lemmas 5 and 6.
Lemma 5. Fix any t ∈ [0, . . . , k − 1]. Let V be distributed Haar randomly. Conditioned on any
fixing of {vi}i≤t, any query x in the unit ball will satisfy Qg(x) = Qgt+1

(x) with probability at least
1− 1/n10.
Lemma 6. Let V be distributed Haar randomly. Conditioned on any fixing of {vi}i≤k−1, any point
x in the unit ball will be ε-optimal for g with probability at most 1/n10.

The proofs of both of these use the following lemma.
Lemma 7. Fix any t ∈ [0, . . . , k − 1]. Conditioned on any fixing of {vi}i≤t, any query x in the unit

ball will, with probability 1− 1/n10, satisfy ∀i > t |〈vi, x〉| ≤ 10
√

lnn
n .

15

Proof. Note that for i > t, vi is distributed uniformly at random from a unit sphere in Rn−t. The
following useful concentration statement about random unit vectors follows from [Bal97, Lemma
2.2].

Proposition 3. Let x ∈ B(~0, 1). Then for a random unit vector v, and all c > 0,

Pr
v

(|〈x, v〉| ≥ c) ≤ 2e−nc
2/2. (44)

Using Proposition 3 and the fact that n− t > n/2 we have that for any x in the unit ball,

Pr

[
|〈vi, x〉| ≥ 10

√
lnn

n

]
≤ 2e

−n/2
(
10
√

lnn
n

)2
/2

≤ 2e−25 lnn ≤ n−24.
Applying a union bound for each of the vectors vt+1, . . . , vk, we have that with probability at least

1−1/n23, ∀i > t |〈vi, x〉| ≤ 10
√

lnn
n . (We use the constant 10 in the lemma statement only because

it is a nicer constant than 23.)

Proof of Lemma 5. To show that g(x) = gt+1(x), we will show that for all y ∈ Bβ(x), h(y) =

ht+1(y). Let Ex be the event that x satisfies ∀i > t |〈vi, x〉| ≤ 10
√

lnn
n . We will show that

Ex =⇒ g(x) = gt+1(x). Hence let us assume Ex holds.

We know that x satisfies 〈vj , x〉 − 〈vt+1, x〉 ≤ 20
√

lnn
n for all j > t+ 1. Hence for any y ∈ Bβ(x),

〈vj , y〉 − 〈vt+1, y〉 ≤ 20
√

lnn
n + 2β. To show that h(y) = ht+1(y), it is sufficient to show that

ft+1(y) ≥ fj(y) for all j > t+ 1.

Note that ft+1(y) ≥ fj(y) if and only if

(j − t− 1)n−α ≥ ln

∑j
`=1 exp

(
〈y,v`〉+(k−`)γ

ρ

)
∑t+1
`=1 exp

(
〈y,v`〉+(k−`)γ

ρ

)


= ln

1 +

∑j
`=t+2 exp

(
〈y,v`〉+(k−`)γ

ρ

)
∑t+1
`=1 exp

(
〈y,v`〉+(k−`)γ

ρ

)


Since c ≥ ln(1 + c), the following statement which we will show is in fact stronger.

n−α ≥
kmaxt+2≤`≤j exp

(
〈y,v`〉+(k−t−2)γ

ρ

)
exp

(
〈y,vt+1〉+(k−t−1)γ

ρ

) .

This can be rewritten as −ρα lnn ≥ ρ ln k + maxt+2≤`≤j〈y, v`〉 − 〈y, vt+1〉 − γ, or γ ≥ ρ(ln k +
α lnn) + maxt+2≤`≤j〈y, v`〉 − 〈y, vt+1〉.

We know this last statement is true because the RHS is at most ρ(1 + α) lnn+ 20
√

lnn
n + 2β which

is smaller than γ, which is 40
√

lnn
n (recall that β = γ/ lnn and ρ = γ/100α lnn).

Since Ex is true with probability 1− 1/n10 Lemma 7, the lemma follows.

Proof of Lemma 6. Again, let Ex be the event that x satisfies ∀i > t |〈vi, x〉| ≤ 10
√

lnn
n . Let us

assume Ex holds.

The value of g(x) can be lower bound as follows. Since 〈x, vk〉 ≥ −10
√

lnn
n , h(x) ≥ fk(x) ≥

ρ ln exp

(
−10
√

lnn
n

ρ

)
= −10

√
lnn
n . Since h is 1-Lipschitz, g(x) ≥ −10

√
lnn
n − 2β ≥ −11

√
lnn
n

(because β < 40/
√
n lnn).

16

For x∗ = 1√
k

∑
−vi, we know each fi(x∗) is at most ρ ln

(
k exp

(
−1/
√
k+kγ
ρ

))
+ kn−α. This is

at most
ρ ln k − 1√

k
+ kγ + kn−α.

This in turn is at most −0.8/
√
k since kγ ≤ 0.1/

√
k, n ≥ Ω(k3), α > 1 and ρ < 1/k. So

g(x∗) ≤ −0.8/
√
k + 2β < −0.7/

√
k.

Since
√

lnn
n � 1/

√
k, g(x) > g(x∗) + 0.1/

√
k and so x does not optimize g.

Since Ex holds with probability 1− 1/n10, the lemma follows.

C Parallel Randomized and Quantum Lower Bounds

Our randomized lower bound follows from two important properties satisfied by our hard class of
functions. We abstract out these properties and define a generic class of hard functions. A class of
functions F is an information-hiding class of functions if there is a sequence of ‘partially-informed’
functions that reveal very little new information, with F containing the ‘fully-informed’ functions.

An example the reader may want to keep in mind is the following ‘Guess the numbers’ problem.
For a sequence of numbers A = (a1, . . . , am) ∈ [N]m, consider the function fA that takes as input
a sequence B ∈ [N]m and returns the sequence A≤i0m−i where i ∈ [m] is the maximum number
such that A<i = B<i. The task is to learn A. An example ‘partially-informed’ function would
be fA≤i0m−i . This hides information in the sense that if one doesn’t know A≤i (say A is chosen
uniformly at random), then for most inputs the output of fA would be the same as the output of
fA≤i0m−i , and of course, for no input does the output of fA≤i0m−i reveal any more information than
A≤i.

Definition 6 (Information-Hiding Class of Functions). LetR = (R1, . . . ,Rm) be a random variable
defining a sequence of functions f1, . . . , fm in the sense that setting a value ofR≤i fixes the function
fi. The class of functions {fm} obtained by ranging over the various values of R is an m-step
(δ1, δ2)-information-hiding class of functions (under the distributionR) if the sequence satisfies the
following properties.

1. For all 1 ≤ i < m and any setting ofR<i,

∀x ∈ Rn : Pr
R≥i|R<i

(Ofm(x) = Ofi(x)) ≥ 1− δ1

where Of (x) is the information about f that the model allows us to query at x (for example
the function value, gradient and perhaps higher order derivatives if our queries provide
them).

2. For any setting ofR<m,

∀x ∈ Rn : Pr
Rm|R<m

(x is a correct output for fm) ≤ δ2.

As a corollary of Lemmas 5 and 6, we see that our class of hard functions were indeed information-
hiding functions.

Corollary 1. Let V = (v1, . . . , vk) be the random variable that is distributed Haar randomly from
the possible choices of k orthonormal vectors from Rn. The sequence of functions g1, . . . , gk is a
k-step (n−10, n−10)-information-hiding class of functions when the allowed queries are function
values and derivatives up to the pth order derivative.

We now prove the hardness of information-hiding classes of functions. We start with the setting of
parallel randomized algorithms.

Theorem 4. Let F be anm-step (δ1, δ2)-information-hiding class of functions under the distribution
R. Then for any parallel query algorithm A making K queries per round and using less than m
rounds, the probability that the algorithm outputs a correct output for f distributed according toR is
at most δ2 +mKδ1.

17

Proof. Let the success probability of A be psucc when V is distributed Haar randomly. We can fix
the randomness of A to get a deterministic algorithm B with success probability at least psucc on the
same distribution.

Let us denote the transcript of B as T = (S1, S2, . . . , Sm−1, xout) where Si is the set of queries
made in the ith round and xout is the output of the algorithm. Note that these are random variables
that depend only on R. We now create hybrid transcripts T (i) for 0 ≤ i ≤ m − 1. The hybrid
transcript T (i) = (S

(i)
1 , · · · , S(i)

m−1, x
(i)
out) is defined as the transcript of B when, for all j ≤ i, the

oracles calls in round j (which are supposed to be to Qfm) are replaced with oracle calls to Qfj . Note
that

• For any V , T = T (0).

• T (m−1) is a function ofR≤m−1.

• For any V , if the answers of Qfm on S(i−1)
i are the same as the answers of Qfi on S(i)

i then
T (i−1) = T (i). This is because they have queried the same oracles in their first i− 1 calls,
given the same inputs in the ith call and gotten the same output, and have been querying the
same oracles thereafter.

We start with the observation that

Pr
R

[x
(m−1)
out is ε-optimal] = E

R<m

[
Pr

Rm|R<m
[x

(m−1)
out is ε-optimal]

]
(45)

≤ δ2. (by property 2 in Definition 6)

Next we show that PrR[x
(m−1)
out = xout] ≥ 1−mKδ1 which will complete the proof.

Pr
R

[xout 6= x
(m−1)
out] ≤

∑
i∈[m−1]

Pr
R

[x
(i−1)
out 6= xiout] (46)

≤
∑

i∈[m−1]

Pr
R

[T (i−1) 6= T (i)] (47)

≤
∑

i∈[m−1]

Pr
R

[Qfm(S
(i−1)
i) = Qfi(S

(i)
i)] (48)

≤
∑

i∈[m−1]

E
R<i

[
Pr

R≥i|R<i
[Qfm(S

(i−1)
i) = Qfi(S

(i)
i)]

]
(49)

≤ mKδ1, (50)

since S(i−1)
i = S

(i)
i , and using property 1 in Definition 6 with a union bound over the inputs in each

Si.

We now turn to quantum query algorithms. In our quantum query model a t-query quantum query
algorithm is a quantum circuit that uses a query oracle t times. The query oracle is implemented by a
unitary so that it supports queries in superposition. We allow arbitrarily high precision for the real
numbers involved, and our lower bound is independent of the algorithm maker’s choice of number of
bits of precision. This is the same model used by and described in more detail in [GKNS21, Section
4.3].

We show that an information-hiding class of functions would be hard even for quantum query
algorithms to compute. We can’t use the above proof since we can’t use a union bound on all queried
points; a single quantum query may query exponentially many points in superposition. However,
we know that a large fraction of this superposition is on points that don’t reveal much information.
The small fraction of points that do reveal information will not be noticeable to the quantum query
algorithm since they are only a small fraction of the superpositioned points. We can then use the
hybrid argument again to give a quantum query lower bound analogous to the classical one proved
above.

18

Theorem 5. Let F be anm-step (δ1, δ2)-information-hiding class of functions under the distribution
R. Then for any quantum query algorithm making less than m queries, the probability that the
algorithm outputs a correct output for f distributed according toR is at most δ2 + 4m

√
δ1.

The proof of this goes via what is commonly called the hybrid argument. Fix any quantum algorithm
Amaking at most m−1 queries, specified by the unitaries Um−1OfmUm−2Ofm · · ·U1OfmU0. Now
we define a sequence of unitaries starting with A0 = A as follows:

A0 := Um−1OfmUm−2Ofm · · ·OfmU1OfmU0

A1 := Um−1OfmUm−2Ofm · · ·OfmU1Of1U0

A2 := Um−1OfmUm−2Ofm · · ·Of2U1Of1U0 (51)
...

Am−1 := Um−1Ofm−1Um−2Ofm−2 · · ·Of2U1Of1U0

Property 1 provides us with the following lemma.

Lemma 8 (At and At−1 have similar outputs). Let A be a m − 1 query algorithm and let At for
t ∈ [m− 1] be the unitaries defined in eq. (51). Then

E
R

(
‖At|0〉 −At−1|0〉‖2

)
≤ 4δ1. (52)

Proof. From the definition of the unitaries in eq. (51) and the unitary invariance of the spectral norm,
we see that ‖At|0〉 −At−1|0〉‖ = ‖(Oft −Ofm)Ut−1Oft−1 · · ·Of1U0|0〉‖. Let us prove the claim
for any fixed choice of vectors R≤t−1, which will imply the claim for any distribution over those
vectors. Once we have fixed these vectors, the state Ut−1Oft−1 · · ·Of1U0|0〉 is a fixed state, which
we can call |ψ〉. Thus our problem reduces to showing for all quantum states |ψ〉,

E
R≥t|R<t

(
‖(Oft −Ofm)|ψ〉‖2

)
≤ 4δ1. (53)

Now we can write an arbitrary quantum state as |ψ〉 =
∑
x αx|x〉|φx〉, where x is the query made to

the oracle, and
∑
x |αx|2 = 1. Thus the LHS of eq. (53) is equal to

E
R≥t|R<t

∥∥∥∥∥∑
x

αx(Oft −Ofm)|x〉|φx〉

∥∥∥∥∥
2
 ≤∑

x

|αx|2 E
R≥t|R<t

(
‖(Oft −Ofm)|x〉|φx〉‖2

)
.

(54)

Since |αx|2 defines a probability distribution over x, we can again upper bound the right hand side for
any x instead. Since Oft and Ofm behave identically for some inputs x, the only nonzero terms are
those where the oracles respond differently, which can only happen if Oft(x) 6= Ofm(x). When the
response is different, we can upper bound ‖(Oft −Ofm)|x〉|φx〉‖2 by 4 using the triangle inequality.
Thus for any x ∈ Rn, we have

E
R≥t|R<t

(
‖(Oft −Ofm)|x〉|φx〉‖2

)
≤ 4 Pr

R≥t|R<t
(Oft(x) 6= Ofm(x)) ≤ 4δ1, (55)

where the last inequality follows from Property 1.

And Property 2 provides us with the following.

Lemma 9 (Am−1 does not solve the problem). LetA be am−1 query algorithm and letAm−1 be de-
fined as above. Let pR be the probability distribution over x ∈ B(~0, 1) obtained by measuring the out-
put stateAm−1|0〉 when the randomnessR is fixed toR. Then PrR∼R,x∼pR(x is a correct output) ≤
δ2.

Proof. Let us establish the claim for any fixed choice ofR<m, since if the claim holds for any fixed
choice of these vectors, then it also holds for any probability distribution over them. For a fixed choice
of vectors, this claim is just PrRm,x∼pR(x is a correct output) ≤ δ2. Now since the algorithm Am−1
only has oracles Ofi for i < m, the probability distribution pR only depends on R<m. Since these

19

are fixed, this is just a fixed distribution p. So we can instead establish our claim for all x ∈ B(~0, 1),
which will also establish it for any distribution.

So what we need to establish is that for any x ∈ Rn, PrRm (x is a correct output) ≤ δ2 which is
what Property 2 gives us.

Finally we can put these two lemmas together to prove our lower bound.
Lemma 10 (A does not solve the problem). Let A be an m − 1 query algorithm. Let pR be the
probability distribution over x ∈ B(~0, 1) obtained by measuring the output state A|0〉 when the
randomnessR is fixed to R. Then PrR∼R,x∼pR(x is a correct output) ≤ δ2 + 4m

√
δ1.

Proof. Let PR be the projection operator that projects a quantum state |ψ〉 onto the space spanned
by vectors |x〉 for x such that x is a correct output when R = R. Then ‖PRA |0〉 ‖2 =
Prx∼pR(x is a correct output). We know from Lemma 9 that ER∼R

(
‖PRAm−1 |0〉‖2

)
≤ δ2.

We prove our upper bound on the probability by showing that it is approximately the same as
ER∼R

(
‖PRAm−1 |0〉‖2

)
.

Lemma 8 states that for all 1 ≤ t < m, ER
(
‖At|0〉 −At−1|0〉‖2

)
≤ 4δ1. Using telescoping sums

and the Cauchy-Schwarz inequality, we see that

E
R

(
‖Am−1|0〉 −A|0〉‖2

)
≤ E
R


 ∑
t∈[m−1]

‖At|0〉 −At−1|0〉‖

2
 (56)

≤ E
R

 ∑
t∈[m−1]

‖At|0〉 −At−1|0〉‖2
 ∑

t∈[m−1]

12

 ≤ 4δ1 ·m ·m.

(57)

For all R, |‖PRAm−1 |0〉‖ − ‖PRA |0〉‖| ≤ ‖PRAm−1 |0〉 − PRA |0〉‖ =
‖PR(Am−1 |0〉 −A |0〉)‖ ≤ ‖Am−1 |0〉 −A |0〉‖. Hence

E
R∼R

((
‖PRAm−1 |0〉‖ − ‖PRA |0〉‖

)2) ≤ 4m2δ1. (58)

We want an upper bound on ER∼R
(
‖PRA |0〉‖2 − ‖PRAm−1 |0〉‖2

)
, which is no larger than

2ER∼R
(
‖PRA |0〉‖ − ‖PRAm−1 |0〉‖

)
since ‖PRA |0〉‖ + ‖PRAm−1 |0〉‖ ≤ 2. We get such a

bound by applying Jensen’s inequality to eq. (58): ER∼R
(
‖PRA |0〉‖ − ‖PRAm−1 |0〉‖

)
≤ 2m

√
δ1,

and so ER∼R
(
‖PRA |0〉‖2 − ‖PRAm−1 |0〉‖2

)
≤ 4m

√
δ1.

We can now use linearity of expectation and upper bound our required probability as

Pr
R∼R,x∼pR

(x is a correct output) = E
R∼R

(
‖PRA |0〉‖2

)
≤ δ2 + 4m

√
δ1. (59)

The proofs of the quantum lower bound in Theorem 1 and the highly parallel lower bound alluded to
after that now follow from Theorems 4 and 5 and Corollary 1.
Corollary 2. The complexity of ε-optimizing the class of functions g is:

• k rounds in the parallel randomized setting where in each round K parallel queries are
allowed, and Kn−9 � 1. (Note that by modifying the constants in the definition of the
function, we can support K being any polynomial in n.)

• k queries in the quantum setting to get success probability larger than n−4.

20

