
376

Appendix377

Results are better shown visually in videos. Please refer to our website for video results.378

Table of Contents379
380

A Full FlowBot++ Manipulation Policy 12381

B Ablations 12382

B.1 Controller H Values (Replanning Frequency) 12383

B.2 Mean Aggregation with Segmentation Masks 13384

C Baselines 13385

D Metrics 14386

E Simulation and Training Details 15387

E.1 Datasets . 15388

E.2 Network Architecture . 15389

E.3 Ground Truth Labels Generation . 15390

E.4 Using Segmentation Masks . 16391

E.5 Hyperparameters . 16392

F Real-World Experiments 16393

F.1 Experiments Details . 16394

F.2 Robotic System Implementation . 17395

F.3 Reducing Unwanted Movements . 18396

F.4 Failure Case . 19397
398
399
400

A Full FlowBot++ Manipulation Policy401

Given an articulated object, we first observe an initial observation O0, which is used to classify the402

object’s articulation type. We then predict the initial flow f0 and projection r0, where f0 is used to403

select a contact pose and grasp object. Then the system infers the articulation parameters based on404

Eq. 5 or 6 and follows the first H steps. This process repeats in a low-frequency if re-planning is405

needed until the object has been fully-articulated, a max number of steps has been exceeded, or the406

episode is otherwise terminated. See Algorithm 1 for a full description of the generalized policy.407

The while loop runs in a much lower frequency compared to FlowBot3D, which further bypasses408

the potential error from heavy occlusions.409

B Ablations410

We document a variety of Ablation Studies in this section. Specifically, we investigate the effect of411

using different H values (i.e. replanning frequency), Gram-Schmidt Correction, and mean aggrega-412

tion using part segmentation masks.413

B.1 Controller H Values (Replanning Frequency)414

H values represent how many steps of the interpolated trajectory we aim to execute after each415

prediction. Thus, it also represents the replanning frequency, where s higher H value means a lower416

replanning frequency, and vice versa. As shown in Fig. 7 and Table 2, when the replanning417

12

https://sites.google.com/view/flowbotpp/home

Algorithm 1 The FlowBot++ articulation manipulation policy
Require: ✓ parameters of a trained flow-projection prediction network, H controller look-

ahead horizon, articulation type classifier parameters
O0 Initial observation
artType f (O0), Classify articulation type
f0, r0 f✓(O0), Predict the initial flow and projection
g0 = SelectContact(O0, f0), Select a contact pose and grasp object as shown in [6]
done False
while not done do
Ot Observation
ft, rt f✓(Ot), Predict the current articulation flow and articulation projection
⌧t TrajCalculation(ft, rt), Calculate trajectory using Eq. 5 or 6 based on artType
Follow the first H steps in ⌧t (MPC)
done EpisodeComplete()

Figure 7: Ablation Studies on Lookahead Horizon. The plot shows the normalized distance performances of
different H values on both train and testing objects.

frequency is too low or too high, the performance becomes suboptimal. When H = 1, the system418

effectively reduces to FlowBot 3D, which replans every step. Another interesting comparison in419

this experiment is that when we do not use this MPC controller (i.e. we do not replan and trust the420

one-shot open-loop plan), the performance degrades by a lot. This suggest that we do need to replan421

at a certain frequency to correct ourselves. Experiments suggest that the optimal H value here is422

H = 7 and we use this value in our final system.423

B.2 Mean Aggregation with Segmentation Masks424

We also ablate on the choice of using a segmentation mask to aggregate the articulation parameters425

estimates in Table 3. Results suggest the effectiveness of using segmentation masks to aggregate426

multiple results for a robust estimate. Such effectiveness is better shown on revolute objects as flow427

directions alone suffice to produce a good motion for prismatic objects.428

C Baselines429

Baseline Comparisons: We compare our proposed method with several baseline methods:430

• UMP-DI: We implement UMPNet’s Direction Inference network (DistNet) [12], where431

instead of bootstrapping an action scoring function from interaction, we learn the scoring432

function by regressing the cosine distance between a query vector and the ideal flow vector433

for a contact point. At test time, we select the contact point based on ground-truth 3DAF,434

and after contact has been achieved we use CEM to optimize the scoring function to predict435

the action direction at every timestep.436

13

Novel Instances in Train Categories Test Categories

AVG. AVG.
FlowBot++ (H=1) 0.10 0.06 0.09 0.09 0.09 0.02 0.01 0.17 0.20 0.17 0.15 0.02 0.15 0.00 0.10 0.12 0.00 0.33 0.12 0.22 0.17 0.18 0.25
FlowBot++ (H=3) 0.11 0.03 0.10 0.06 0.09 0.00 0.24 0.19 0.18 0.21 0.09 0.03 0.16 0.15 0.14 0.14 0.00 0.34 0.04 0.21 0.20 0.19 0.27
FlowBot++ (H=5) 0.10 0.06 0.08 0.06 0.09 0.01 0.23 0.17 0.17 0.12 0.11 0.02 0.14 0.12 0.09 0.15 0.00 0.27 0.01 0.16 0.18 0.18 0.22
FlowBot++ (H=7) 0.07 0.04 0.01 0.04 0.08 0.02 0.19 0.17 0.14 0.07 0.09 0.02 0.10 0.00 0.11 0.09 0.00 0.23 0.02 0.09 0.09 0.20 0.18
FlowBot++ (H=9) 0.11 0.06 0.05 0.05 0.27 0.03 0.17 0.19 0.25 0.06 0.07 0.02 0.15 0.13 0.09 0.22 0.00 0.14 0.22 0.11 0.21 0.17 0.16

FlowBot++ (no MPC) 0.22 0.25 0.24 0.20 0.50 0.04 0.22 0.32 0.37 0.10 0.09 0.07 0.24 0.31 0.14 0.35 0.00 0.21 0.32 0.22 0.18 0.22 0.40

Table 2: Ablation Studies of Lookahead Horizon (H) via Normalized Distance (#). The lower the better.

Novel Instances in Train Categories Test Categories

AVG. AVG.
FlowBot++ 0.07 0.04 0.01 0.04 0.08 0.02 0.19 0.17 0.14 0.07 0.09 0.02 0.10 0.00 0.11 0.09 0.00 0.23 0.02 0.09 0.09 0.20 0.18

FlowBot++ No Seg 0.10 0.06 0.01 0.12 0.08 0.09 0.21 0.18 0.14 0.09 0.09 0.08 0.13 0.15 0.15 0.09 0.00 0.25 0.02 0.12 0.09 0.19 0.25

Table 3: Ablation Studies of Mean Aggregation with Segmentation via Normalized Distance (#). The lower
the better.

• Normal Direction: We use off-the-shelf normal estimation to estimate the surface normals437

of the point cloud using Open3D [33]. To break symmetry, we align the normal direction438

vectors to the camera. At execution time, we first choose the ground-truth maximum-flow439

point and then follow the direction of the estimated normal vector of the surface.440

• Screw Parameters: We predict the screw parameters for the selected joint of the articulated441

object. We then generate 3DAF from these predicted parameters and use the FlowBot3D442

policy on top of the generated flow.443

• DAgger E2E: We also conduct behavioral cloning experiments with DAgger [31] on the444

same expert dataset as in the BC baseline. We train it end-to-end (E2E), similar to the BC445

model above.446

• FlowBot3D: We also call this AF Only, since it only uses the articulation flow fp during447

planning) [6],448

• Without Gram-Schmidt Correction: Also called AP Only. This is our model but without449

Gram-Schmidt correction via fp, hence the name AP Only, since it only uses the inferred450

articulation parameters during planning without fp correction).451

Novel Instances in Train Categories Test Categories

AVG. AVG.
UMP-DI [12] 0.52 0.60 0.33 0.65 0.73 0.29 0.67 0.80 0.50 0.11 1.00 0.00 0.45 0.83 0.03 0.50 1.00 0.31 0.29 0.78 0.33 0.31 0.20

Normal Direction 0.31 0.40 0.00 0.51 0.71 0.00 0.00 0.80 0.50 0.00 0.00 0.50 0.31 0.00 0.00 0.50 1.00 0.00 0.55 0.00 0.00 0.10 0.64
Screw Parameters [1] 0.50 0.50 0.53 0.51 0.80 0.21 0.55 0.60 0.17 0.37 0.43 0.80 0.67 0.17 0.63 0.67 0.92 0.69 0.92 0.83 0.75 0.50 0.72

DAgger E2E [31] 0.14 0.60 0.00 0.26 0.09 0.28 0.00 0.00 0.00 0.00 0.25 0.00 0.04 0.00 0.00 0.00 0.20 0.00 0.17 0.02 0.00 0.00 0.00
FlowBot3D (AF Only) [6] 0.77 0.57 0.56 0.88 0.82 0.86 1.00 0.80 0.50 0.78 0.75 1.00 0.69 1.00 0.56 1.00 1.00 0.38 0.43 0.84 0.83 0.43 0.44

AP Only (Ours) 0.77 0.58 0.59 0.90 0.81 0.83 0.80 0.78 0.46 0.79 0.72 1.00 0.68 1.00 0.54 0.82 1.00 0.41 0.44 0.79 0.87 0.41 0.45
FlowBot++ (Ours - Combined) 0.79 0.61 0.59 0.89 0.82 0.96 0.86 0.78 0.52 0.78 0.75 1.00 0.74 1.00 0.68 1.00 1.00 0.43 0.63 0.88 0.81 0.45 0.52

Table 4: Success Rate Metric Results ("): Fraction of success trials (normalized distance less than 0.1) of
different objects’ categories after a full rollout across different methods. The higher the better.

D Metrics452

We specify the metrics we used for our simulated experiments. First, shown in Table 1, we use453

Normalized Distance, which is defined as the normalized distance traveled by a specific child link454

through its range of motion. The metric is computed based on the final configuration after a policy455

rollout (jend) and the initial configuration (jinit):456

Egoal =
||jend � jgoal||
||jgoal � jinit||

14

We also conduct experiments using the Success Rate: we define a binary success metric, which is
computed by thresholding the final resulting normalized distance at �:

Success = (Egoal �)
We set � = 0.1, meaning that we define a success as articulating a part for more than 90%.457

We show the success rate performance of our method and baselines in Table 4. Similar to the results458

using Normalized Distance, FlowBot++ outperforms previous methods.459

E Simulation and Training Details460

In simulation, the suction is implemented using a strong force between the robot gripper and the461

target part. During training step t, we randomly select an object from the dataset, randomize the462

object’s configuration, and compute a new training example which we use to compute the loss using463

Eq. 7. During training, each object is seen in 100 different randomized configurations.464

E.1 Datasets465

To evaluate our method in simulation, we implement a suction gripper in the PyBullet environment,466

which serves as a simulation interface for interacting with the PartNet-Mobility dataset [10]. The467

PartNet-Mobility dataset contains 46 categories of articulated objects; following UMPNet [12], we468

consider a subset of PartNet-Mobility containing 21 classes, split into 11 training categories (499469

training objects, 128 testing objects) and 10 entirely unseen object categories (238 unseen objects).470

Several objects in the original dataset contain invalid meshes, which we exclude from evaluation. We471

train our models (FlowProjNet and baselines) exclusively on the training instances of the training472

object categories, and evaluate by rolling out the corresponding policies for every object in the473

dataset. Each object starts in the “closed” state (one end of its range of motion), and the goal is474

to actuate the joint to its “open” state (the other end of its range of motion). For experiments in475

simulation, we include in the observation Ot a binary part mask indicating which points belong to476

the child joint of interest.477

E.2 Network Architecture478

FlowProjNet, the joint Articulation Flow and Articulation Projection prediction model in Flow-479

Bot++, is based on the PointNet++ [34, 30] architecture. The architecture largely remains similar480

to the original architecture except for the output head. Instead of using a segmentation output head,481

we use a regression head. The FlowProjNet architecture is implemented using Pytorch-Geometric,482

a graph-learning framework based on PyTorch. Since we are doing regression, we use standard L2483

loss optimized by an Adam optimizer [35].484

The articulation type classifier model in FlowBot++, which is used to predict prismatic vs. revolute485

objects, is also based on the PointNet++ architecture. The architecture now uses a classification486

head, which outputs a global binary label representing the articulation label. We use standard Binary487

Cross Entropy loss optimized by an Adam optimizer [35] and we achieve 97% accuracy on test488

objects.489

E.3 Ground Truth Labels Generation490

E.3.1 Ground Truth Articulation Flow491

We implement efficient ground truth Articulation Flow generation. At each timestep, the system492

reads the current state of the object of interest in simulation as an URDF file and parses it to obtain493

a kinematic chain. Then the system uses the kinematic chain to analytically calculate each point’s494

location after a small, given amount of displacement. In simulation, since we have access to part-495

specific masks, the calculated points’ location will be masked out such that only the part of interest496

will be articulated. Then we take difference between the calculated new points and the current time497

step’s points to obtain the ground truth Articulation Flow.498

15

E.3.2 Ground Truth Articulation Projection499

We also implement efficient ground truth Articulation Projection generation. For each object, the500

system reads the current state of the object of interest in simulation as an URDF file and parses it501

to obtain the origin v and direction ! of the axis of articulation. The system then uses Eq. 2 to502

calculate the Articulation Projection label. Since we have access to part-specific masks in PyBullet,503

the calculated points’ location will be masked out such that only the points on part of interest will504

be articulated.505

E.4 Using Segmentation Masks506

As mentioned above, we use part-specific segmentation masks to define tasks. Specifically, we507

follow the convention in [12, 6, 13], where a segmentation mask is provided to give us the part of508

interest. Thus, it is possible that an object (e.g. a cabinet) could have multiple doors and drawers at509

the same time. By the construction of the dataset [12, 6, 13], in each data point (object), a mask is510

used to define which part on the object needs to be articulated. For the cabinet example, if the mask511

is provided for a drawer, then the cabinet is classified as a prismatic object. If the mask is provided512

for a door, then it is classified as a revolute object. We use segmentation masks in the following513

steps of the FlowBot++ pipeline:514

1. Articulation Flow Ground Truth: During the generation of articulation flow labels, we515

use segmentation masks to mask out irrelevant parts on objects so that those parts’ articula-516

tion flow values will be zeroed out. In this way, FlowProjNet will learn to predict all-zero517

on irrelevant parts.518

2. Articulation Projection Ground Truth: Similar to how we use the mask in Articulation519

Flow Ground Truth generation, we only produces the projection vectors for the relevant520

masked points.521

3. Articulation Flow and Articulation Projection Prediction: During the learning step of522

FlowProjNet, we use segmentation masks as an additional per-point channel into the net-523

work, where 1 represents relevant points and 0 represents irrelevant points. In this way, the524

network output learns to be conditioned on this extra channel such that it does not output525

values on irrelevant parts.526

4. Articulation Parameters Estimation: When estimating ! and v, we first obtain a per-527

point estimate. To make the estimate more robust, we aggregate all points on the relevant528

part, which is masked using the segmentation mask, and average them out to get a robust529

estimate.530

E.5 Hyperparameters531

We use a batch size of 64 and a learning rate of 1e-4. We use the standard set of hyperparameters532

from the original PointNet++ paper.533

F Real-World Experiments534

F.1 Experiments Details535

We experiment with 6 different objects in the real world. Specifically, we choose 5 revolute objects:536

Oven, Fridge, Toilet, Trashcan, and Microwave, where the predicted trajectories are generated using537

Eq. 5, and we choose 1 prismatic object: Drawer, where the predicted trajectories are generated via538

Eq. 6. For each object in this dataset, we conducted 5 trials of each method. For each trial, the object539

is placed in the scene at a random position and orientation. For each trial, we visualize the point540

clouds beforehand and hand-label the segmentation masks using bounding boxes. We then pass the541

segmentation masks as the auxiliary input channel to FlowProjNet and use them to aggregate the542

final output to improve robustness. We then qualitatively assess the prediction by visualizing the543

16

Real World Objects Input Point Cloud &
Mask

Trajectory Prediction Another View

Figure 8: Successful Predictions on 6 Real-World Objects. We show FlowBot++’s prediction quality of 6
different real-world objects. For better readability, we provide an alternative view for each prediction. From
top to bottom, the objects are: Oven, Fridge, Toilet, Trashcan, Microwave, and Drawer.

points belonging to the segmented part under the predicted trajectory’s transformation. We show544

some examples of the predictions in Fig. 8.545

F.2 Robotic System Implementation546

We provide the details of the physical robot system implementation of FlowBot++. The setup re-547

mains straightforward and largely similar to previous works [28, 6].548

17

F.2.1 Hardware549

In all of our real-world experiments, we deploy our system on a Rethink Sawyer Robot and the550

sensory data (point cloud) come from an Intel RealSence depth camera. The robot’s end effector551

is an official Saywer Parallel-Jaw Gripper. We set up our workspace in a 1.2 m by 1.00 m space552

put together using the official Sawyer robot mount and a regular desk. We set up the RealSense553

camera such that it points toward the center of workspace and has minimal interference with the554

robot arm-reach trajectory.555

F.2.2 Solving for the Robot’s Trajectory556

The choice of the contact point is similar to the procedures described in Eisner et al. [6]. When the557

contact point’s full trajectory is predicted using Eq. 5 or 6 based on the part’s articulation type, the558

robot should just plan motions in order to make its end-effector follow the predicted trajectory. Once559

a successful contact is made, the robot end-effector is rigidly attached to the action object, and we560

then use the same predicted trajectory waypoints as the end positions of the robot end effector, and561

then feed the end-effector positions to MoveIt! to get a full trajectory in joint space using Inverse562

Kinematics. For prismatic objects, this is convenient because the robot gripper does not need to563

change its orientation throughout the predicted trajectory. For revolute objects, we propose a method564

to efficiently calculate the robot’s orientations in tandem with the positions in the planned trajectory.565

Concretely, the trajectory of Eq. 5 gives us the end-effector’s xyz positions in the trajectory; it is566

rigidly attached to the contact point, so we could treat their xyz positions to be the same in this567

trajectory. Now, we are interested in obtaining the orientation of the end-effector for each step.568

Assume the end-effector’s orientation (obtained via Forward Kinematics, in the form of rotation569

matrix in SO(3)) is q0 when making a successful contact with the part of interest. By definition,570

each step in ⌧revolute corresponds to a unique rotation matrix R(�g/K), representing the difference of571

rotation due to the increase of opening angle in each step. We then calculate the robot end-effector’s572

orientation at each step i:573

qi = R(
�g
K

)qi�1 (8)

by applying the difference of rotation onto the orientation’s rotation matrix itself iteratively. Thus,574

in this case, the robot’s end-effector’s full SE(3) trajectory is obtained:575

⌧ee =
�
⌧ irevolute,qi

8i2[0,K]

(9)

We then obtain the robot’s joint-space trajectory using Inverse-Kinematics (IK):576

⌧joint = IK(⌧ee) (10)

F.3 Reducing Unwanted Movements577

With the ability to control the full 6D pose of the robot end-effector in the trajectory, we are also578

able to reduce the unwanted movements of the object itself. In FlowBot3D [6], the suction gripper’s579

rotation is controlled using a heuristic based on the flow direction prediction, which is often off.580

Thus, incorrect rotation could cause the gripper to yank the object too hard in a wrong direction,581

causing unwanted motion of the articulated object or even detaching the gripper from the object582

surface. With the full 6D gripper trajectory produced by FlowBot++ as a byproduct, the relative pose583

between the gripper and the articulated part remains the same as when a contact is made throughout584

the trajectory. This largely eliminates the unwanted movement problem in [6]. We illustrate this585

property in Fig. 9. A disadvantage of deploying FlowBot3D in the real world is that each step is586

prone to error, causing the gripper to move to wrong directions, which would unexpectedly move the587

object, potentially causing damage. Using the full gripper trajectory derived from Eq. 9, FlowBot++588

is more likely to be more compliant with respect to the object’s kinematic constraints without using589

hand-designed heuristics based on Articulation Flow predictions. The position and pose of the body590

of the articulated object are then able to remain unchanged. In contrast, FlowBot3D has more points591

of failure due to its closed-loop nature. When a single step’s Articulation Flow prediction is off -592

namely, non-parallel to the ground-truth flow direction, the gripper would move against the object’s593

18

FlowBot++ (Ours)

FlowBot3D

Figure 9: FlowBot++ Reducing Unwanted Movements of the Object. Top: FlowBot++ opens the left door of
the fridge. The position and pose of the body of the fridge remain unchanged. Bottom: FlowBot3D opens the
right door of the fridge. Due to wrong flow prediction at intermediate steps, the gripper yanks the fridge too
hard that it tips over, causing unwanted motions of the fridge and opening the wrong door by accident.

kinematic constraint, moving the other parts of the object unexpectedly. Please note that this is better594

understood by watching the video comparisons on our website.595

F.4 Failure Case596

We illustrate a failure case of FlowBot++ deployed in the real world here. The failure is caused by597

predictions that are off, which results in off-axis rotation. The failure case is shown in Fig. 10. In

Figure 10: Failed FlowBot++ Prediction on a Microwave. Imperfect articulation parameter prediction caused
the rotation to be off-axis.

598

this prediction, the prediction result in incorrect articulation parameters. From the visualization, the599

predicted axis is off, causing the rotated part to go “off the hinge.” If a real robot were to execute600

this, the planned motion would either be infeasible or make the robot lose contact with the grasp601

point.602

603

19

