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This supplementary appendix presents additional experiments to support our responses to reviewers.
These experiments will be incorporated into future revisions of our paper.

A UPDATED DEFENSE RESULTS

Since the time of our original submission, we have verified to the best of our abilities significantly
stronger CIFAR-10 defense results than reported in our original paper. The framework remains
completely consistent with our original results, and the only difference comes from a more effective
natural classifier and better selection of EBM checkpoints. We were aware at the time of submission
that our method could produce such results, but a last minute uncertainty with our implementation
caused us to report a more conservative result that had our full confidence. Since the time of
submission, we have re-verified our best CIFAR-10 defense and report our updated defense results in
Table[T] Our new results show that the EBM defense can surpass the defense for SOTA adversarial
training.

Table 1: Defense vs. whitebox attacks with [, perturbation ¢ = 8/255 for CIFAR-10.

Defense f(x) TrainIms.  T'(x) Method Attack Nat. Adv.
Ours Natural Langevin BPDA+EOT 0.8664  0.6760
(Hill et al., 2021) Natural Langevin BPDA+EOT 0.8412  0.5490
(Song et al., [2018) Natural Gibbs Update BPDA 0.95 0.09
(Srinivasan et al.|[2019) Natural Langevin PGD - 0.0048
(Yang et al.|[2019) Transformed Mask + Recon. BPDA+EOT 0.94 0.15
(Carmon et al., [2019) Adversarial - PGD 0.897 0.625
(Zhang et al.||2019) Adversarial - PGD 0.849 0.5643
(Shatahi et al.,[2019) Adversarial - PGD 0.859 0.4633
(Madry et al.; 2018) Adversarial - PGD 0.873 0.458

B UPDATED LONGRUN RESULTS

We have updated our longrun sampling experiments with new results on CIFAR-10 that exhibit
significantly more stable trajectories. The original CIFAR-10 results were trained using a midrun
EBM as the prior distribution rather than a shortrun EBM as used for the Celeb-A and ImageNet
experiments. We trained the CIFAR-10 model using a shortrun EBM as the prior distribution and
got much better results. We believe this is because the shortrun prior EBM will oversaturate quickly
so that the new EBM can immediately learn to patch the defects of the prior EBM. This will be
discussed in more detail in future paper versions. The new result for CIFAR-10 longrun sampling is
shown in Figure

We also computed FID scores for 5000 samples at both 100K steps (as in the original submission)
and at 1 million steps. Due to the computational cost of longrun sampling, we were unable to use a
large sample set and the scores are significantly higher (worse) than they would be with a full FID
evaluation of 50K samples. The FID score remains relatively stable between 100K and 1 million steps,
which is evidence that the samples have approximately reached the steady-state. This is consistent
with the expected behavior of a well-formed probability density. Our CIFAR-10 results are from
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Figure 1: Longrun samples from our new CIFAR-10 longrun model. The new results have significantly
better appearance at the extremely long trajectory of 1 million steps. Image realism is quite consistent
from 100K to 1M steps, indicating that the samples have approximately converged to the steady-state.

Table 2: FID for 5K samples after 100K Langevin and 1M Langevin steps.

FID
Data Resolution 100K Steps 1M Steps
CIFAR-10 32x32 49.2 51.7
Celeb-A 64x64 374 459
ImageNet 64 x64 82.3 77.8

a new model, while the Celeb-A and ImageNet result use the models from the original paper. The
results are reported in Table 2} Our new CIFAR-10 results are slightly worse at 100K steps but much
more stable at 1M steps.

C LONGRUN SAMPLES OF NORMALIZING FLOW AND DIFFUSION MODELS

To underscore our claims about the difficulty of calibrating the probability mass of a density model,
we investigate longrun MCMC samples from a normalizing flow and diffusion model. We observed
in Appendix G of our original submission that the density implied by the gradients of a score model
have a misaligned steady-state, similar to a misaligned shortrun EBM. A recent work shows that the
problem of steady-state misalignment has gone mostly unnoticed even for the Restricted Boltzmann
Machines (Decelle et al},[202T). We further find that the normalizing flow from the GLOW model
(Kingma & Dhariwall, [2018)) and the recovery likelihood diffusion model have
misaligned steady-states as well. This shows that the problem of improper density estimation extends
well beyond the EBM. Tractable density modeling with a normalizing flow does not prevent steady-
state misalignment. These experiments corroborate our claim that log likelihood experiments in
previous works are not able to detect the misaligned probability mass of many prior models. We
believe that the calibration of the model steady-state is currently best diagnosed with longrun MCMC
sampling because the distribution of longrun MCMC samples represents the probability mass of the
model.

Figure 2] (left) displays initial and final states from a GLOW model density after 100K sampling
steps. Despite the fact that the GLOW model has a fully tractable density, it is unable to learn a
valid distribution of probability mass. Figure [2] (right) shows initial and final samples from the
Recovery Likelihood T6 model after 100K steps of the conditional model at the lowest noise value.
We observe the same oversaturation for the conditional density as for the unconditional density of
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Figure 2: Left: MCMC samples after 100K steps using a GLOW model (Kingma & Dhariwal,

trained on CIFAR-10. Right: MCMC samples after 100K steps using a conditional recovery
likelihood model trained on CIFAR-10. MCMC samples were initialized from data
samples. Neither model can correctly approximate the distribution of probability mass for the data
density. The problem of steady-state misalignment extends beyond EBMs to many other generative
density models. We tried several different temperatures close to 1 for the GLOW model and found
equivalent results.

a standard EBM. Code for the T1K model that the authors evaluate in their longrun experiments is
not released so we have not yet been able to directly test their results. The T1K model is equivalent
to an EBM version of the score model that we test in Appendix G which we have shown has a
misaligned steady-state. Further, we note the longrun experiments with the T1K model are very
misleading because the experiments use 100 steps with 1000 distinct conditional models and claim
this is a longrun evaluation of 100K steps. The correct evaluation is to use 100K steps on a single
conditional model. We strongly believe that the Recovery Likelihood model as originally presented
has a misaligned steady-state like many other methods. We hope that the observations in our work
can lead to efforts to stabilize the sampling trajectories of many existing models.

D SHORTRUN SYNTHESIS WITHOUT LANGEVIN GRADIENT CLIPPING

Beyond what is discussed in the initial submission, we use gradient clipping on Langevin chain
gradients and network update gradients for shortrun experiments only. No gradient clipping is used
for midrun or longrun experiments. While we find that gradient clipping for network update gradients
improve learning stability, we find that removing the Langevin gradient clipping has negligible effect.
Nearly equivalent results can be obtained with no Langevin gradient clipping, as shown in Table[3] In
the original implementation, the Langevin gradient clipping was set to a high value so that it rarely
interfered with the dynamics. In future revisions we will report the scores without Langevin gradient
clipping to remove this unnecessary hyperparameter.

Table 3: Comparison of FID Scores for Shortrun Synthesis for learning with and without Langevin
gradient clipping.

FID
Dataset Resolution Lang. Clip No Lang. Clip
CIFAR-10 32x32 22.9 22.12
Celeb-A 64x64 15.3 16.3
ImageNet 128x128 40.6 38.9

E IMPORTANCE OF LEARNING RATE ANNEALING

This section demonstrates the importance of learning rate annealing for learning a robust energy
landscape. We repeat the midrun and longrun learning experiments for CIFAR-10 except that we
never anneal the learning rate. We then sample with the models for 1500 steps for the model trained
with the midrun method and 100K steps for the model trained with the longrun method. The results
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in Figure [3] show that learning rate annealing is essential for stabilizing both midrun and longrun
trajectories.
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Figure 3: Ablation study showing the importance of annealing. Left: Samples from a non-annealed
model trained with the midrun method after 1500 MCMC steps. Right: Samples from a non-annealed
model trained with the longrun method ater 100K MCMC steps. MCMC samples were initialized
from data. This shows that rejuvenation of the midrun trajectories from data and the separation of
longrun samples into burn-in and update banks alone is not enough. Annealing ensures that samples
from past EBMs function as approximate samples from the current EBM, since the weights are
changing very slowly.

The importance of annealing can be understood as follows. If the EBM is being updated with a very
low learning rate, then samples from recent EBM snapshots can function as samples from the current
EBM. In the case of midrun trajectory, annealing allows the model to robustify trajectories that are
approximately as long as the lifetime of a persistent sample between rejuvenation. In the case of
longrun learning, annealing allows the burnin samples to approximately reach the model steady-state
before they are included in the update bank. This allows the persistent samples in the update bank to
function as approximate steady-state samples from the current EBM, leading to proper modeling of
probability mass.
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