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The second and third term go to 0 as t ! 1 by the assumptions and Lemma 3 with Lemma 13. The492
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Theorem 22 (Self-AIXI is Self-optimizing). Let µ be some environment. If there is a policy496

⇡ and a sequence of policies ⇡1,⇡2 . . . all contained within P such that for all t, h<t we have497
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Equation 6 comes from adding positive terms. Equations 7 and 10 comes from the linearity of the502

value function. Equation 8 comes from ⇡S being one step optimal then following ⇣ and . Equation 9503

comes from the assumptions. Lastly, 11 comes from Equation 4 and [14, Lem.5.28ii].504

w(µ|h<t) 9 0 as h<t is generated from µ
⇡ (for more details see Self-Optimizing proof in [14]).505
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