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A Proofs of Propositions1

Proof of Group-Equivariance of (3.1). The equivariance of the ground truth EMMP and the invari-2

ance of g proves the proposition as follows:3

Zh·τ = g(Mh·τ , h · τ) = g(
⋃

x∈Mτ

h · (x, τ)) = g(
⋃

x∈Mτ

(x, τ)) = g(Mτ , τ) = Zτ . (1)

4

Proof of Group-Equivariance of (3.2). The equivariance of f and invariance of g proves the propo-5

sition as follows:6

M̂h·τ = f(Zh·τ , h · τ) =
⋃

z∈Zτ

[
h · (f(z, τ), τ)

]
x
=

⋃
x∈M̂τ

[
h · (x, τ)

]
x
= {

[
h · (x, τ)

]
x
| x ∈ M̂τ}. (2)

7

Proof of Group-Equivariance of (3.3). Invariance of gϕ can be seen by the equivariance of h̄, as8

follows:9

gϕ(h · (x, τ)) = Gϕ(h̄(h · τ)−1 · (h · (x, τ))) = Gϕ((hh̄(τ))
−1

h) · (x, τ)) = Gϕ(h̄(τ))
−1 · (x, τ)) = gϕ(x, τ) (3)

Equivariance of fθ can be seen as follows:10

fθ(z, h · τ) =
[
h̄(h · τ) · (Fθ(z, h̄(h · τ)−1 · (h · τ)), h̄(h · τ)−1 · (h · τ))

]
x

=
[
h · h̄(τ) · (Fθ(z, h̄(τ)

−1
(τ)), h̄(τ)

−1 · τ)
]
x

= [h · (fθ(z, τ), τ)]x (4)

11

B Related Works12

In this section, we provide an overview of areas related to our work.13

B.1 Movement Primitives14

In this section, we consider any form of mathematical representation that describes motions (e.g.,15

trajectories) as movement primitives.16

Motion primitives as generative models that output motion trajectories in any form, given a param-17

eter that specifies the task, which we refer to as a task parameter. The goal of motion primitives18

is to generate motion trajectories similar to demonstration trajectories given by humans. One stan-19

dard way @@ The generated trajectories of movement primitives can be parameterized and repre-20

sented in various forms. One standard way is to represent the trajectories using a stable dynamical21

system. A dynamical system can be seen as a movement primitive since it can output a solution22

trajectory given an initial state. Dynamic movement primitives represent trajectories in the form23

of time-dependent nonlinear dynamical systems which consist of mass-spring-damper systems with24
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additional force term [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Stable dynamical system-based approaches encode25

demonstration trajectories into state-dependent dynamical systems that are globally asymptotically26

stable [11, 12, 13, 14, 15, 16, 17, 18, 19].27

However, the task parameters of most movement primitives are strictly restricted to the initial and28

final configurations. This limits the range of tasks that can be parameterized. In the case of water29

pouring, the cup’s position and the amount of water can not be represented by the initial and final30

configurations. By adopting conditional variational autoencoder’s structure, MMPs and EMMPs31

provide freedom of defining task parameters.32

B.2 Autoencoder-Based Manifold Learning33

Autoencoders have gained prominence in recent years for identifying and generating samples from34

a given data distribution’s underlying low-dimensional manifold structure. The main reason autoen-35

coders are frequently adopted for manifold learning is that they learn the latent space coordinates36

along with the manifolds. To learn more accurate manifolds, researchers have introduced addi-37

tional regularization terms [20, 21, 22, 23, 24]. For a specific structure of conditional variational38

autoencoder, where the decoder gets an additional conditional parameter, the need to disentangle the39

conditional inputs and latent values has risen. [25] introduced a regularization term to disentangle40

input spaces of its decoder, by solving adding an auxiliary neural network to estimate conditional41

inputs from latent values, and regularizing the autoencoder by making it harder for the auxiliary42

network to estimate. However, unlike the independence regularization term that we introduced, the43

regularization term does not necessarily guarantee independence between the two spaces.44

B.2.1 Autoencoder-Based Motion Manifold primitive45

In this section, we introduce an existing motion manifold primitive framework called TC-VAE [26].46

TC-VAE aims to parameterize the motion manifold given a task parameter based on autoencoder47

frameworks. As TC-VAE adopts the structure of [25], the decoder of it takes additional task param-48

eter inputs other than the latent value inputs. TC-VAE also adopts the regularization term of [25]49

for disentangling the task parameters and the latent values, which still shares the shortcoming of not50

guaranteeing independence between latent space and the conditional input space.51

B.3 Equivariant Models in Robotics52

Invariance and equivariance properties have played a role in deep learning models as an inductive53

bias to generalize well and be trained data efficiently [27]. Translation equivariance in convolu-54

tional neural networks (CNNs) has been effective for image recognition tasks [28]. Group equiv-55

ariant CNNs have expanded the equivariance in CNNs to more complex equivariance, e.g. SO(3)-56

equivariance achieved by spherical CNNs [29, 30]. In robot manipulation tasks, [31] proposed an57

SE(3)-equivariant object representation, and [32] introduced a SE(2)-equivariant dynamics model58

learning for pushing manipulation. Most of the existing equivariant models in robotics are restricted59

to certain types of groups, whereas our work can be applied to tasks with arbitrary group symmetries.60

C Experimental and Implementation Details61

Throughout the experiments, we have used RTX 2080 Ti, RTX 3080 Ti, RTX 3090 for training the62

models, and each experiment takes a few hours to 10 hours depending on the model.63

C.1 Evaluation Metrics64

Recontruction Error: We measure reconstruction error in the test dataset using following equation:65

Reconstruntion loss =

√√√√ 1

N

N∑
i=1

1

Mi

Mi∑
j=1

1

T
d2X (fθ(gϕ(xij , τi), τi), xij). (5)
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Latent-Task Dataset: To calculate mutual information and negative log-likelihood, we define a66

dataset of (z, τ) paired dataset. To build the dataset large enough, we first randomly augment (x, τ)67

pairs in the training dataset 100 times. Then, the every z is the encoded values from (x, τ); z =68

gϕ(x, τ).69

Mutual Information: Mutual information between z and τ is measured using Mutual Informa-70

tion Neural Estimator (MINE) [33]. MINE estimates by, which estimates mutual information by71

maximizing its lower bound, using the Donsker-Varadhan representation:72

DKL(Z||T ) ≥ sup
F∈F

EZ [F ]− log (ET e
F ), (6)

where F is any class of functions F : Ω → R. In our case, Ω = Z × T . By replacing F by73

parametric family FΘ, the mutual information is estimated as follows:74

IΘ(Z, T ) = sup
θ∈Θ

Ep(z,τ)Fθ − log (Ep(z)p(τ)e
Fθ ). (7)

We train MINE using the latent-task dataset for 1,500 iterations with a batch size of 5,000 equally75

for all models.76

Negative Log-Likelihood: Given (z, τ) from the latent-task dataset, we calculate negative log-77

likelihood − log(pMτ (gϕ(z))) in trajectory space X , using the following equation:78

pMτ (gϕ(z, τ)) = pZτ (z)|det [JT
gϕ
Jgϕ ]|−

1
2 , (8)

where Jgϕ denotes ∂gϕ
∂z (z, τ).79

C.2 Planar Mobile Robot Experiment80

C.2.1 Formulas and Proofs81

Task Parameter Space: Recall that the configuration space is Q = R2, the trajectory space is82

X = R2T . The task parameter τ consists of the initial position of the mobile robot, denoted by83

(q1r , q
2
r), and the rotated angle of the wall axis x̂w with respect to x̂s, denoted by ωw.84

To uniformly sample from T we make T compact by restricting the initial position of the motile85

robot to be on a disk whose center is the origin, the inner radius is 5, and the outer radius is 10.86

Also, we have limited the wall rotation axis to −π
4 ≤ ωw < π

4 to make the problem easier for87

non-equivariant methods e.g. TC-VAE. since the wall’s geometries are identical every 90 degrees,88

the wall still can span all possible geometrical configurations.89

Trajectory Space and Distance Measure: We set the length of trajectories T = 201, which makes90

the trajectory space X = R402. The distance measure is defined as: dX (x1, x2) := ||x1, x2||2.91

Group Operations: Recall that the symmetry group H is H := p4m × SO(2), where p4m is92

a specific type of wallpaper group and SO(2) is the group of 2 × 2 rotation matrices. We de-93

note p4m := {(i, j)|i ∈ {0, 1}, j ∈ {0, 1, 2, 3}}, where i ∈ {0, 1} represents flipping and94

j ∈ {0, 1, 2, 3} represents nπ/2 rotation. Throughout this section, we represent an SO(2) element95

R =

[
cosα − sinα
sinα cosα

]
∈ SO(2) simply as α.96

Given two group elements ((a, b), α), ((c, d), β) ∈ p4m× SO(2), the group operation is defined as:97

((a, b), α)((c, d), β) = ((mod(a+ c, 2),mod(b+ (−1)ad, 4)), α+ β), (9)

where mod(x, y) denotes the remainder of x
y .98

Group Actions: The procedure of the group actions of H = p4m × SO(2) can be explained as99

follows: (i) flip the robot over the wall axis (ii) rotate the robot around the origin nπ
2 , and finally,100

(iii) rotated the robot and the wall. Given a task parameter τ = (q1r , q
2
r , ωw) and a group element101

h = ((a, b), α), the group action h · τ is then defined as:102

h · τ = (Rot(α+ ωw +
bπ

2
) ∗ flip(a) ∗ Rot(−ωw) ∗ (q1r , q2r), α+ ωw) (10)
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where ∗ denotes matrix multiplication, flip(a) :=
[
1 0
0 −1

]a
, and Rot(α) :=

[
cosα − sinα
sinα cosα

]
.103

Given a trajectory x = {(q1i , q2i )}Ti=1, a task parameter τ = (q1r , q
2
r , ωw) and a group element104

h = ((a, b), α), the group action h · (x, τ) is defined as :105

h · (x, τ) = ({Rot(α+ ωw +
bπ

2
) ∗ (q1i , q2i )}Ti=1, h · τ). (11)

Group-Equivariant Module h̄: Given a task parameter τ , h̄(τ) can be divided into two elements,106

h̄(τ) = (h̄1(τ), h̄2(τ)), where h̄1(τ) = (h̄1
1(τ), h̄

2
1(τ)) ∈ p4m and h̄2(τ) ∈ SO(2). Figure 1107

illustrates h̄(τ), and its equivariance for h̄1 using two group actions hflip = (1, 0, 0) and hrot90 =108

(0, 1, 0). It can be seen by the commutative diagram that h̄(hflip · τ) = hfliph̄(τ) and h̄(hrot90 ·109

τ) = hrot90h̄(τ). The rest cases of flipping and rotating 90, 180, 270 degrees can be shown in the110

same way. As shown, h̄2(τ) is defined as h̄2(τ) = ωw. The equivariance of h̄2 can be shown by111

hrot = (0, 0, α) and τ = (q1r , q
2
r , ωw):112

h̄(hrot · τ) = (q1r , q
2
r , ωw + α) = (0, 0, α)(q1r , q

2
r , ωw) = hch̄(τ). (12)

Equivariance for the case where h = (a, b, α) is then simply shown by dividing it into h =113

(0, 0, α)(a, b, 0):114

h̄((a, b, α) · τ) = h̄(((0, 0, α)(a, b, 0)) · τ)

= h̄((0, 0, α) · (a, b, 0) · τ)

= (0, 0, α)h̄((a, b, 0) · τ)

= (a, b, 0)(0, 0, α)h̄(τ)

= (a, b, α)h̄(τ). (13)

Below equation is the formal definition of h̄ given a τ = (q1r , q
2
r , ωw):115

h̄1
1(τ) =

{
0, if kπ

2 ≤ atan2(q2r , q
2
r)− ωw < kπ

2 + π
4

1, otherwise
,

h̄2
1(τ) =



0, if − π
4 ≤ atan2(q2r , q

2
r)− ωw < π

4

1, if π
4 ≤ atan2(q2r , q

2
r)− ωw < 3π

4

2, if 3π
4 ≤ atan2(q2r , q

2
r)− ωw < π

or − π ≤ atan2(q2r , q
2
r)− ωw < − 3π

4

3, if − 3π
4 ≤ atan2(q2r , q

2
r)− ωw < −π

4

,

h̄2(τ) = ωw,

(14)

where k ∈ {−2,−1, 0, 1} and (atan2(q2r , q
2
r) − ωw) is assumed to be satisfying −π ≤116

atan2(q2r , q
2
r)− ωw < π.117

C.2.2 Experimental Details118

Datasets: For dataset generation, we first uniformly sample from the smallest space that can span119

T by symmetry transformations, in which the robot’s initial position qr satisfies 5 ≤ ||qr|| < 10120

and 0 ≤ atan2(q2r , q
1
1) < π/4, and the wall axis angle is 0. We collect trajectory data by generating121

B-splines given via points labeled by humans. The B-splines are then reparameterized so that the122

time length of the splines becomes 5 seconds, where the splines accelerate for the first second and123

decelerate for the last second. We finally sample 201 points from the splines.124

For the training dataset, we have gathered 6 trajectories for 75 randomly given task parameters, a125

total of 300 trajectories for training. For the validation dataset, we have gathered a trajectory for 80126

randomly given task parameters and randomly augmented them using symmetry transformations 100127

times. For the test dataset, we have gathered a trajectory for 40 randomly given task parameters and128

randomly augmented them using symmetry transformations 1000 times. The number of validation129

and test datasets are then 8,000 and 40,000 repectively.130

Network Architectures and Training Details: A task parameter τ is represented as (q1r , q
2
r , ωw),131

where (q1r , q
2
r) is the mobile robot’s initial position and ωw is the wall’s axis angle. In practical132
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Figure 1: Illustration of h̄ and its equivariance. hflip := (1, 0, 0) is the flipping motion of the
mobile robot over the wall axis, and hrot90 := (0, 1, 0) is the rotation of the mobile robot 90 degrees
around the origin. It can be seen that hfliph̄(τ) = (1, 0, 0)(0, 1, ωw) = (1,mod(0 − 1, 4), ωw) =
(1, 3, ωw) = h̄(hflip ·τ) and hrot90h̄(τ) = (0, 1, 0)(0, 1, ωw) = (0,mod(1+1, 4, ωw) = (0, 2, ωw) =
h̄(hrot90 · τ).

implementation, we use (q1r , q
2
r , cosωw, sinωw) ∈ R4 as an input parameter vector. Since T = 201,133

the output space is R402.134

We use two-layer fully connected neural networks of 512 nodes for MMPs and EMMPs with elu135

as their activation function. TC-VAE’s encoder includes a fully connected network and a temporal136

convolutional network, and the decoder includes two fully connected networks for z and τ , a tem-137

poral convolutional network, and a fully connected network. All four fully connected networks used138

in TC-VAE are of two layers with size 434. The output sizes of fully connected networks for z and139

τ in the decoder are 36 and 72 respectively. The two temporal convolutional layers in TC-VAE are140

both with channel sizes (18, 36, 72) and kernel size 3. More details on the structure of TC-VAE are141

in [26]. All models in the experiments have similar number of parameters (≈ 9.4× 105).142

Success Criterion: We consider a trajectory successful if it is consistent with the task parameter and143

reaches the goal without colliding with the wall. More specifically, we check (i) collision avoidance,144

(ii) the robot’s initial position, and the robot’s final position. We consider the trajectory satisfies (ii)145

and (iii) if the initial configuration and the final configuration are within a radius of 0.3 at the initial146

position specified in the task parameter and origin, respectively. The number of sample (z, τ) we147

use for success rate calculation is 50,000.148

C.2.3 Additional results149

Architecture Comparison: We compare MMPs and EMMPs of fully connected autoencoders (de-150

noted as AE), fully connected variational autoencoders (denoted as VAE), and variational autoen-151

coders of the same structure with TC-VAE (denoted as TC-VAE). Table 1 shows the four evaluation152

metrics. Overall, as shown in the success rate scores, regardless of network architecture and autoen-153

coder method, EMMPs without regularization perform the best, and MMPs without regularization154

perform the worst. Although EMMP (TC-VAE) excels in most measures (MI and NLL) its success155

rate (91.2%) is still lower than EMMP (AE)’s (92.40%) and EMMP (VAE)’s (95.72%), which is156

caused by the tendency of (TC-VAE) that it violates the initial and final condition in about 6% of157

trials, whereas EMMP (AE) only violates them and EMMP (VAE) almost never violate them (0%158

∼ 0.01%).159
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Figure 2: Equivariance comparison between MMP (AE) and EMMP (AE). If the decoder f is equiv-
ariant, f(z, h·τ) (blue lines in the figure) and [h·(f(z, τ), τ)]x (grey lines in the figure) must overlap.
It can be seen that the decoder of MMP is not equivariant, whereas the EMMP’ decoder is equivari-
ant.

Equivariance Comparison: Here, we qualitatively compare the equivariance performance of ran-160

dom data augmentation and equivariant learning method by comparing MMP (AE) and EMMP161

(AE). Figure 5 shows trajectories generated by τ and h · τ , with same z. If the decoder f is equivari-162

ant, f(z, h · τ) (blue lines in the figure) and [h · (f(z, τ), τ)]x (grey lines in the figure) must overlap.163

However, as shown in the Figure 5 Left, trajectories of the MMP do not , whereas trajectories of the164

EMMP perfectly overlap as shwon in Figure 5 Right.165

C.3 Water-Pouring Experiment166

C.3.1 Formulas and Proofs167

Task Parameter Space: The input space Q = R2 × SE(3)× [0.2, 0.41]. A task parameter τ can be168

represented as ((q1c , q
2
c ), (q

1
b , q

2
b , q

3
b , Rb)),mw), where (q1c , q

2
c ) is the cup’s position, (q1b , q

2
b , q

3
b , Rb))169

is the bottle’s initial position and orientation, and mw is the weight of water in the bottle. To170

construct compact T , we limit (q1c , q
2
c ) to be inside a square at the origin with edge length of 0.5,171

i.e., −0.25 ≤ q1c , q
2
c ≤ 0.25, and limit the distance between (q1c , q

2
c ) and (q1b , q

2
b ) to satisfy 0.3 ≤172

||q1b − q1c , q
2
b − q2b ||2 ≤ 0.78. Since the bottle is on the table upright, q3b is a constant.173

Trajectory Space and Distance Measure: We set the length of trajectories T to be 480, which174

makes trajectory space X = SE(3)480. Given x1 = {xi
1}480i=1 and x2 = {xi

2}480i=1, where each xi
j can175

be represented by (Rij ∈ SO(3), pij ∈ R3), the distance measure on X is defined as:176

dX (x1, x2) :=

√∑
i

(||R−1
i1 ∗Ri2 − I||2F + γ||pi1 − pi2||22), (15)

where γ = 5 is a constant.177

Table 1: Reconstruction Error (RE), Mutual Information (MI), and Negative Log-Likelihood (NLL);
the lower, the better. Success Rate (SR); the higher, the better.

Method RE (↓) MI (↓) NLL (↓) SR (↑)
MMP (AE) 0.223 0.487 1.49 × 104 50.08%
MMP (VAE) 0.233 0.687 1.57 × 104 42.98%
MMP (AE) + indep 0.225 0.329 1.48 × 104 52.39%
MMP (VAE) + indep 0.229 0.652 1.56 × 104 44.28%
EMMP (AE) 0.223 0.082 1.25 × 104 92.40%
EMMP (AE) + indep 0.229 0.077 1.24 × 104 86.66%
EMMP (VAE) 0.231 0.066 1.23 × 104 95.72%
EMMP (VAE) + indep 0.225 0.167 1.28 × 104 82.02%
EMMP (TC-VAE) 0.227 0.065 1.00 × 104 91.20%
EMMP (TC-VAE) + indep 0.247 0.071 1.15 × 104 88.22%
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Figure 3: Task parameters for demonstration. The cup is always at the origin, and the bot-
tle is at (0, r ∈ 0.3, 0.38, 0.54, 0.62, 0.78, 0.145). The mass of water in the bottle is mw ∈
0.2, 0.27, 0.305, 0.34, 0.41.

Group Operations: The symmetry group H = R2 × SO(2)× SO(2), each is for translation of the178

cup and the bottle, rotation of the bottle around the cup, and rotation of the bottle around itself. Given179

two group elements (a, b, Rc1, Rb1), (c, d,Rc2, Rb2) ∈ R2 × SO(2) × SO(2), the group operation180

is defined as follows:181

(a, b, Rα, Rβ)(c, d,Rγ , Rδ) = (a+ c, b+ d,Rα ∗Rγ , Rβ ∗Rδ). (16)

Group Actions: The procedure of group actions of h ∈ H can be explained as follows: (i)182

translate the cup and the bottle, (ii) rotate the bottle around the cup, and (iii) rotate the bottle183

around itself. Given a task parameter τ = ((q1c , q
2
c ), (q

1
b , q

2
b , q

3
b , Rb)),mw), and a group element184

h = (a, b, Rα, Rβ), the group action h · τ is defined as:185

h · τ =
(
(q

1
c + a, q

2
c + b), ((q

1
c + a, q

2
c + b, 0) + (Rα ∗ (q

1
b − q

1
c , q

2
b − q

2
c , q

3
c)), Rα ∗ Rb ∗ Rβ),mw

)
. (17)

Group-Equivariant Module h̄: Given a task parameter τ = ((q1c , q
2
c ), (q

1
b , q

2
b , q

3
b , Rb)),mw),186

h̄(τ) = (h̄1(τ), h̄2(τ), h̄2(τ)) is defined as follows:187

h̄1(τ) = (q1c , q
2
c ) ∈ R2, (18)

h̄2(τ) = Rot(ẑ, θ1), (19)

h̄3(τ) = Rot(ẑ, (θ2 − θ1)), (20)

where θ1 := atan2(q2b − q2c , q
1
b − q1c ), θ2 := atan2(x̂2

b , x̂
1
b), and x̂b denotes the first column of Rb.188

Given an arbitrary h = (a, b, Rα, Rβ), where Rα = Rot(ẑ, α) and Rβ = Rot(ẑ, β), the equivariance189

of h̄ is shown by the following equation:190

h̄(h · τ) = h̄((q
1
c + a, q

2
c + b), ((q

1
c + a, q

2
c + b, 0) + (Rα ∗ (q

1
b − q

1
c , q

2
b − q

2
c , q

3
c)), Rα ∗ Rb ∗ Rβ),mw)

= ((q
1
c + a, q

2
c + b), Rot(ẑ, α + θ1), Rot(θ2 − θ1 + β)

= ((q
1
c + a, q

2
c + b), Rα ∗ Rot(ẑ, θ1), Rot(ẑ, θ2 − θ1) ∗ Rβ)

= ((q
1
c + a, q

2
c + b), Rα ∗ Rot(ẑ, θ1), Rβ ∗ Rot(ẑ, θ2 − θ1))

= (a, b, Rα, Rβ)((q
1
c , q

2
c), Rot(ẑ, θ1), Rot(ẑ, (θ2 − θ1)))

= hh̄(τ). (21)

C.3.2 Experimental Details191

Datasets: The water-pouring demonstration trajectories are collected by recording videos of water-192

pouring motions of a human demonstrator for 8 seconds (intended for 3.5 seconds of reaching mo-193

tion and 4.5 seconds of pouring motion) at 60fps, with three AprilTags, resulting in 480 frames.194

Then we extract the SE(3) trajectories of the bottle, whose length T = 480. We perform trajectory195

smoothing and transform task parameters and the trajectories using group actions of H for the cup’s196

position to be the origin, and the bottle to be initially in the x̂s-direction from the bottle, and x̂b to197

be aligned with x̂s. The resulting task parameters are in the form of ((0, 0), (r, 0, h,R, 0)),mw).198
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Assuming the bottle to be initially on the table upright, r = 0.145 is constant, and R = I . We gather199

5 trajectories for 7 different r and 5 different mw in a total of 175 trajectories. As shown in Figure 3200

Left, we choose r at every 8cm, from 30cm to 78cm, i.e., r ∈ {0.3, 0.38, 0.46, 0.54, 0.62, 0.7, 0.78},201

and as shown in Figure 3 Right we choose mw ∈ {0.2, 0.27, 0.305, 0.34, 0.41}. The dimensions of202

the cup and the bottle, and the position of the bottle frame are as illustrated in Figure 3 right. The203

five demonstrations of each task parameter are intended to pour water gradually from the left side of204

the cup and the right side of the cup.205

We use 125 trajectories of r ∈ 0.3, 0.38, 0.54, 0.62, 0.78 as the training dataset, and we randomly206

split the other 50 trajectories into half for validation and test dataset. We randomly augment the207

dataset 100 and 1,000 times for validation and test dataset respectively, resulting in 2,500 validation208

trajectories and 25,000 test trajectories.209

Network Architectures and Training Details: The space of the task parameters is210

R2 × SE(3) × [0.2, 0.41], where a task parameter can be represented in the form of211

((q1c , q
2
c ), (q

1
b , q

2
b , q

3
b , Rb)),mw). Assuming that the bottle is initially on the table upright, since212

q3b is a constant variable and Rb can be represented as Rotẑ, θb, in practical implementation, we use213

(q1c , q
2
c , q

1
b , q

2
b ,mw, cos θb, sin θb) ∈ R7 for input of the decoder.214

The output of the model is an element in SE(3)480 which is not a vector space. A naive parame-215

terization or SE(3) element (e.g. as a 12-dimensional vector) does not enforce the model outputs to216

satisfy SE(3) constraints. To constraint the model output space to be SE(3)480, we first set all model217

output sizes to be 480×6 = 2880, and add an additional layer Vec2SE3 at the end of every decoder.218

Given a vector v = (v1, . . . , v6) ∈ R6, Vec2SE3 is defined as:219

Vec2SE3 : v 7→

exp(
[

0 −v3 v2
v3 0 −v1
−v2 v1 0

]
)

v4

v5

v6

0 1

 ∈ SE(3).

We finally vectorize the first three rows of the SE(3) matrix, since the last row is constant at220

(0, 0, 0, 1).221

We use two-layer fully connected neural networks of 168 nodes for the EMMP with elu as its activa-222

tion function. TC-VAE’s encoder includes a fully connected network and a temporal convolutional223

network, and the decoder includes two fully connected networks for z and τ , a temporal convolu-224

tional network, and a fully connected network. All four fully connected networks used in TC-VAE225

are of two layers with size 512. The output sizes of fully connected networks for z and τ in the226

decoder are 40 and 80 respectively. The two temporal convolutional layers in TC-VAE are both with227

channel sizes (36, 72, 144) and kernel size 3. More details on the structure of TC-VAE are in [26].228

All models in the experiments have a similar number of parameters, where EMMP contains (1.51×229

106) parameters and TC-VAE contains (1.56× 106) parameters.230

Task Parameters for Success Rate Measure: We sample five feasible trajectories for four task231

parameters. Throughout the four task parameters, the cup’s position (q1c , q
2
c ) = (−0.2, 0), the232

bottle is initially in the y-direction from the cup, i.e., q1b = −0.2, the bottle is initially aligned233

with the base frame, i.e., Rb = I . The rest parts, (q2b ,mw) for the four task parameters are234

(0.35, 0.25), (0.45, 0.275), (0.40, 0.35), (0.55, 0.400). These task parameters are picked within the235

robot’s workspace.236

Obstacle Avoidance Algorithm: Given a task parameter τ and an obstacle, the obstacle avoidance237

task is performed as follows: (i) we sample z from p(z), (ii) generate the bottle’s trajectories via238

f(z, τ), (iii) check the collision between the bottle and the obstacle and pick collision-free trajecto-239

ries, and (iv) solve the inverse kinematics problem of the robot and choose one that is feasible and240

also collision-free.241

We check collisions between the bottle and the obstacle and between the robot and the obstacle by242

converting the meshes of the bottle and robot to point clouds, and parameterizing the obstacle as243

a superquadric, which represents objects as a sign distance function. As a sign distance function,244

superquadrics have benefits in checking if a point is inside or outside them. We consider a trajectory245

of a point cloud and a superquadric to be collision-free if none of the points in the point cloud gets246

inside the superquadric at every timestep, and consider they collide otherwise.247
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Figure 4: Graphes of bottle angle vs. time. The pouring angle ωb is the angle between the bottle axis
ẑb and the xy-plane. The orange lines are pouring angles for the mw = 0.41 case, and the blue lines
are pouring angles for the mw = 0.20 case. It can be observed that the pouring angle decreases as
the mass of water increases.

C.3.3 Additional results248

Water-Pouring Performance Comparison: The motions of the bottle pouring water near the cup249

are highly dependent on the amount of water in the bottle. A bottle of small water needs to be tilted250

more than a bottle that is almost full to pour the same amount of water into the cup. The amount of251

tilting of the bottle can be captured in the angle between its axis and the table, which we denote as252

the bottle angle.253

Figure 4 illustrates bottle angle mean and standard deviation graphs of demonstration trajectories254

of the training dataset (Left), generated trajectories of EMMP + indep (Middle) and generated tra-255

jectories of TC-VAE (Right) with mw = 200g (blue) and mw = 410g (orange). We randomly256

augment 50 task parameters of validation and test datasets 20 times, and pick 1,000 task parameters257

for mw = 200g and 1,000 task parameters for mw = 410g. We generate 1,000 trajectories for both258

cases using z sampled from p(z).259

Figure 4 Left shows that as the mass of water increases, the pouring angle increases, which means260

the bottle is tilted less. It can be seen that the minimum mean angles of EMMP for mw = 200g261

and mw = 410g (-1.6 degrees and -9.5 degrees) are very much alike that of the demonstration262

trajectories (-1.5 degrees and -8.5 degrees). On the other hand, the minimum mean angles of TC-263

VAE (5.6 degrees and -3.1 degrees) are very much distant from the demonstration trajectories’.264

Equivariance Comparison: For a motion manifold primitive framework to be equivariant, decoded265

trajectories must equivariantly transform as task parameters undergo a symmetry transformation.266

We qualitatively compare the equivariance performance of random data augmentation method and267

equivariant learning method by comparing TC-VAE and EMMP + indep.268

Figure 5 Left visualizes two trajectories generated from τ and h · τ , where h is the rotation of the269

bottle around the cup and itself, without translation. If the model is equivariant, the orange-colored270

bottle and the apricot-colored bottle in the left upper corner should overlap. However, the condition271

is not satisfied for TC-VAE, whereas the orange trajectory of EMMP is equivariantly transformed272

with τ .273

Figure 5: f(z, τ) (blue) and f(z, h · τ) (orange), and [h · (f(z, τ), τ)]x (apricot). [h · (f(z, τ), τ)]x
and f(z, h · τ) should be overlapped if the trajectories are generated equivariantly with the task
parameters.
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