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A ADDITIONAL QUANTITATIVE RESULTS AND CLARIFICATIONS

A.1 COMPARISON OF DIFFERENT PRE-TRAINED VISUAL MODELS

In our proposed pipeline (Figure 1), CLIP’s image encoder is not the only candidate of pre-trained
models. To further justify the generalizability of CPP, we evaluate the clustering performance of CPP
leveraging visual representations from MAE (He et al., 2022) and DINO (Caron et al., 2021). For
each model, CPP significantly improved the clustering performance and NMI score when compared
with KMeans. Empirically, we find that both DINO and CLIP give good initializations for CPP;
while MAE features are not suitable for image clustering, i.e. 12.3% accuracy via KMeans and 24.2%
accuracy via CPP pipeline on ImageNet-1k, which is aligned with the discussion by Oquab et al.
(2023) that MAE as a backbone are great for finetuning with labels, while less competent directly
learn a discriminative representation.

CPP Pipeline KMeans
pre-train Backbone ACC NMI ACC NMI

MAE ViT L/16 24.2 69.8 12.3 60.6
DINO ViT B/16 59.0 84.5 53.5 81.6
DINO ViT B/8 61.9 86.8 56.0 85.2

CLIP ViT L/14 66.2 86.8 49.2 81.3

Table 3: Benchmarking various models on ImageNet-1k with CPP and KMeans. MAE and
DINO models are pre-trained on ImageNet-1k; CLIP model is pre-trained on external data from their
official implementation.

A.2 COMPARISON WITH MORE DEEP CLUSTERING METHODS

In addition to Table 1, we list other state-of-the-art deep clustering methods and report the quantitative
performance. The primary purpose of showing Table 1 and Table 4 is not to compete with or surpass
other deep clustering methods. Instead, we aim to probe the boundaries of image clustering. We
clearly list the backbones for reference.

CIFAR-10 CIFAR-20 CIFAR-100 ImageNet-1k
Method Backbone ACC NMI ACC NMI ACC NMI ACC NMI

MLC (Ding et al., 2023) ResNet-18 86.3 76.3 52.2 54.6 49.4 68.3 - -
SCAN (Van Gansbeke et al., 2020) ResNet-18 88.3 79.7 50.7 48.6 34.3 55.7 39.9 -
IDFD (Yaling Tao, 2021) ResNet-18 81.5 71.1 42.5 42.6 - - - -
IMC-SWAV (Ntelemis et al., 2022) ResNet-18 89.7 81.8 51.9 52.7 45.1 67.5 - -
RUC+SCAN (Park et al., 2021) ResNet-18 90.3 - 54.3 - - - - -
SPICE (Niu & Wang, 2021) ResNet-34 91.7 85.8 58.4 58.3 - - - -
NMCE (Li et al., 2022) ResNet-34 88.7 81.9 53.1 52.4 - - - -
TCL (Yunfan et al., 2022) ResNet-34 88.7 81.9 53.1 52.9 - - - -
C3 (Sadeghi et al., 2022) ResNet-34 83.8 74.8 45.1 43.4 - - - -
CC (Li et al., 2021) ResNet-34 79.0 70.5 42.9 43.1 - - - -
ConCURL (Deshmukh et al., 2021) ResNet-50 84.6 76.2 47.9 46.8 - - - -
Single-Noun Prior (Cohen & Hoshen, 2021) ViT-B/32 93.4 85.9 48.4 51.5 - - - -
TEMI* (Adaloglou et al., 2023) ViT L/14 96.9 92.6 61.8 64.5 73.7 79.9 64.0 -

CPP* ViT L/14 97.4 93.6 64.2 72.5 74.0 81.8 66.2 86.8

Table 4: Comparison with more state-of-the-art deep clustering models. Methods marked with (*)
use pre-training from OpenAI CLIP, method use (#) use pre-training from OpenCLIP LAION-2B.

B ABLATION STUDY

In this subsection, we conduct ablation studies on 2 components of CPP: pre-train datasets and
diversified initialization.

The main results of our proposed methods leverage pre-training from OpenAI CLIP (Radford et al.,
2021). To validate the generalizability of CPP, we additionally conduct experiments using ViT-L/14
from OpenCLIP (Ilharco et al., 2021), which is pre-trained on LAION-2B (Schuhmann et al., 2022).
We report the results on Table 5.
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CIFAR-10 CIFAR-20 CIFAR-100 ImageNet-1k
Backbone Pretraining CPP KMeans CPP KMeans CPP KMeans CPP KMeans

ViT-L/14∗ LAION-2B 96.5 94.0 70.2 58.7 76.7 62.3 66.8 50.2

ViT-L/14# OpenAI 97.4 83.5 64.2 47.3 74.0 52.3 66.2 49.2

Table 5: Ablation study on pre-training. We report the clustering accuracy and observe that CPP
consistently outperforms KMeans on two different pretrained models. (*) leverages open source
pretraining from OpenCLIP, (#) leverages pretraining from official CLIP.

We then conduct an ablation study on the contribution of diversified initialization (described in
Section 3.2). We diversify the representation via optimizing the objective in equation (4). This
procedure improves the clustering performance on various datasets with results reported in Table 6.

CIFAR-10 CIFAR-20 CIFAR-100 ImageNet-1k
Initialization ACC NMI ACC NMI ACC NMI ACC NMI

Random 87.6 90.6 57.4 69.9 67.9 78.3 63.7 84.7

Diversified 97.4 93.6 64.2 72.5 74.0 81.8 66.2 86.8

Table 6: Ablation study on the contribution of diversified initialization. We randomly initialize pre-
feature layer, cluster head and feature head (Top) and compare the performance with the diversified
initialization (Bottom) in equation (4).

C TRAINING DETAILS

This section provides the training details - network architecture, datasets, optimization and hyperpa-
rameters.

Datasets. CIFAR contains 50, 000 training and 10, 000 test images, which are divided evenly into 10,
20 or 100 ground-truth classes, which we refer to as CIFAR-10, -20 or -100; note that the classes of
CIFAR-20 are given by merging those of CIFAR-100. ImageNet incorporates around 1.2 million
training images and 100, 000 test images, spread across 1, 000 classes, called ImageNet-1k. We
process data in a manner identical to that used in CLIP (Radford et al., 2021), which involves resizing
and center cropping images to dimensions of 224× 224.

Network Architecture. We use a ViT L/14 model (Dosovitskiy et al., 2020) pre-trained via CLIP
(Radford et al., 2021), with checkpoint from OpenAI1. As shown in Figure 1, we freeze the backbone
during training and add a pre-feature layer composed of Linear-BatchNorm-ReLU-Linear-ReLU after
the backbone. For feature head and cluster head, we use a Linear layer with mapping from the hidden
dimension to feature dimension d respectively. Unified architecture is applied on all the experiments
across different datasets except adjusted hidden dimension and feature dimension d. Finally, to learn
a ideal representation that spans a union of orthogonal subspaces as in §3.1, note that the feature
dimension d should be larger than or equal to the expected number of clusters. We leave more details
in the Appendix C.

Details of Added Layers. For all datasets, we utilize a simple architecture composed of three
parts: pre-feature layer, feature head and cluster head. Pre-feature layer has a structure with Linear-
BatchNorm-ReLU-Linear-ReLU, with detailed setting in Table 7a. For feature head and cluster head,
we use a linear layer respectively as is described in Table 7b.

Dimensions. Dimension d and dhidden for each dataset are provided in Table 8a, note that d should be
larger than or equal to the expected number of clusters to satisfy the orthogonal subspace assumption.

Optimizers. We specify two independent optimizers to simultaneously optimize the MLC objective
with detailed parameters in Table 8b.

1https://github.com/openai/CLIP
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(a) Pre-feature layer

Linear: R768 −→ Rdhidden

BatchNorm1d(dhidden)

ReLU

Linear: Rdhidden −→ Rdhidden

ReLU

(b) Feature head and cluster head

Feature head Linear: Rdhidden −→ Rd

Cluster head Linear: Rdhidden −→ Rd

Table 7: Network Architecture

Sinkhorn Distance. The doubly stochastic membership matrix Π is computed by a sinkhorn distance
projection on C⊤C, where the parameters γ regulate the sparsity of the membership matrix as is
described in Section 3.1. Details with this parameter are recorded in Table 8c.

Optimization. As describe in §3.2, we first warmup our network by 1-2 epochs by training R(Z; ε)
alone, then simultaneously optimize both feature head and cluster head using (MLC). For both the
feature head and cluster head, we train with SGD optimizer, learning rate set to 0.0001, momentum
set to 0.9 and weight decay set to 0.0001 and 0.005 respectively.

Initialization and Training Epochs. Details in initialization (simply optimize R(Z; ε)) epochs and
total training epochs are recorded in Table 8d.

(a) Model Parameters. We adjust the dimension of
learned features for the different expected numbers
of clusters.

Datasets/Parameters d dhidden

CIFAR-10 128 4096
CIFAR-20 128 4096
CIFAR-100 128 4096

ImageNet-1k 1024 2048

MS-COCO 128 4096
LAION-Aesthetics 1024 2048

(b) Optimizers. We optimize the objective function
using SGD optimizer with unified parameters as
below:

Optimizers Type lr wd momentum

Feature SGD 0.0001 0.0001 0.9
Cluster SGD 0.0001 0.005 0.9

(c) Sinkhorn Distance Parameters while Training

Datasets γ Iter

CIFAR-10 0.175 5
CIFAR-20 0.13 5
CIFAR-100 0.1 5

ImageNet-1k 0.12 5
COCO 0.12 5
LAION 0.09 5

(d) Initialization epoch, total training epoch, batch
size. Batch size doesn’t affect too much on the
performance. All experiments can be conducted
on a single A100.

Datasets epochinit epochtotal bs

CIFAR-10 1 5 1024
CIFAR-20 1 15 1024

CIFAR-100 1 50 1500
ImageNet-1k 2 20 1024

COCO 1 20 1200
LAION 2 20 1024

Table 8: Core hyperparameters selected in experiments.
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D SUBSPACE CLUSTERING PARAMETERS

We conduct subspace clustering methods on CLIP features and report the highest accuracy after
searching for optimal parameters.

EnSC. Both EnSC and SSC-OMP2 estimate a membership matrix via solving some convex op-
timizations that depend only on CLIP features, and then run spectral clustering on the resulting
membership. For EnSC, we use the efficient active-set solvers from (You et al., 2016a) to solve the
convex optimization. EnSC has two parameters γ, τ . Roughly speaking, τ ∈ [0, 1] balances between
an ℓ1 and an ℓ2 penalty on the membership, with larger τ giving sparser affinity; γ > 0 is the weight
of the data fidelity error, aside from the regularizing term.

SSC-OMP. (kmax, ϵ) We use the OMP solver for SSC (You et al., 2016b). kmax is the maximum
number of non-zero entries of each row of the membership, while ϵ controls the allowed data fidelity
error.

Spectral Clustering. γ denotes the parameter for sink horn distance projection, which is the same
as the one mentioned in previous sections. For a given batch of CLIP’s feature C′ ∈ Rd×n, we first
normalize each feature vector and then do inner production plus sink horn distance projection, i.e.
ΠCLIP = projΩ,γ(C′⊤C′). We then do spectral clustering on this membership matrix ΠCLIP .

Table 9: Parameter search with the following parameters for EnSC, SSC-OMP and spectral clustering.
We report the highest performance on Table 2.

Datasets Parameters

EnSC γ ∈ [1, 5, 10, 50, 100], τ ∈ [0.9, 0.95, 1.0]
SSC-OMP kmax ∈ [3, 5, 10], ϵ ∈ [1e− 4, 1e− 5, 1e− 6, 1e− 7]

Spectral Clustering γ ∈ [0.2, 0.18, 0.16, 0.1, 0.09, 0.08, 0.07, 0.06]

E EVALUATION ON IMBALANCED DATASETS

We evaluate CPP on imbalanced CIFAR-10 and imbalanced CIFAR-100, where images of odd
classes (i.e. 1, 3, ...) are reduced to half of the original. Additionally, some large, uncurated datasets,
like LAION-Aesthetic, exhibit natural imbalance. To demonstrate CPP’s proficiency in identifying
minority groups, we also present visualizations of clusters with fewer members in Figure 7.

F MORE RESULTS ON OPTIMAL NUMBER OF CLUSTERS

We additionally measure the coding length for ImageNet as is shown in Figure 8. For all datasets,
we compute the coding length with ϵ2 = 0.1, which is consistent with the one in MLC objective
function.

G IMAGE-TO-IMAGE SEARCH

Pipeline. Figure 9 demonstrates the pipeline of image-to-image search. In practice, the image
repository is composed of 1.2M images from ImageNet’s training split while the target image is
randomly picked from ImageNet’s validation split. We search the images in the repository via
measuring the Euclidean distance and plot the 64 most similar images.

Results. Here, we provide 10 more image-to-image search results in Figure 10. We observe from
these results that CPP learned better representation that facilitates image-to-image search.

2The implementations are provided by the authors at https://github.com/ChongYou/
subspace-clustering.
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(a) Imb. CIFAR-10

Jacket: 5.71; 

(b) LAION-Aesthetic Cluster (i)

restaurant, eating house, eating place, eatery: 1.73; 

(c) LAION-Aesthetic Cluster (ii)

Figure 7: Performance of CPP on imbalanced datasets. CPP achieved 97.3% and 71.3% clustering
accuracy on Imb. CIFAR-10 and Imb. CIFAR-100 respectively; The confusion matrix demonstrates
the prediction results on Imb. CIFAR-10 validation set (Left). LAION-Aesthetic is also a natural
imbalanced dataset, where two clusters with few members are visualized, each composed of 0.73%
and 0.47% images respectively from the dataset (clustering on 30k random samples from LAION-
Aesthetic) (Middle, Right)
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Figure 8: ImageNet (200)

H MORE RESULTS ON CLUSTERING AND LABELLING WITH TEXT

Text Candidates Selection. Ideally, an open vocabulary source with tons of highly reliable labels
best suits our needs. However, text candidates of this quality and scale are usually hard to be obtained.
In practice, In practice, we leverage powerful LLMs, such as GPT-4, to generate text candidates as an
economical substitute. More specifically, we employ prompts like “generate 2000 names of real-world
objects/creatures, generate 100 words of art styles, give me 100 words describning the content of
paintings...” during the generation process. To guarantee the diversity and reliability, we furtherly mix
them up with 1000 ImageNet class labels to construct the final 3000+ text candidates. It is noteworthy
to mention that we did not utilize any label information from MS-COCO, LAION-Aesthetic or
WikiArt.

Pipeline. We introduce a cluster-labeling algorithm after we obtain a well-trained CPP. First, we do
spectral clustering upon the membership matrix given by CPP and get clusters of images. Then, for
images in each cluster, we conduct weighted voting for the common labels. The voting algorithm is
described in Algorithm 2.

Results. In this section, we visualize more cluster-captioning results for datasets including CIFAR-
100, ImageNet-1k, COCO and LAION-Aesthetics. We also follow the optimal number of clusters
measured in Section 4.3 for each dataset.
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Figure 9: Image-to-Image Search Pipeline.

Figure 10: Searching for similar images in ImageNet’s training split. Left: Target image from
validation split in ImageNet.Middle: searched images via CPP’s representation; Right: searched
images via CLIP’s representation.
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Algorithm 2: Captioning one cluster

Input: Images from one learned cluster X ∈ RN×3×224×224, M text candidates, 0 initialized
voting result vector V ∈ RM

Zimg ← CLIP: encode images(X )
Ztxt ← CLIP: encode texts (text candidates)

For i← 1, . . . , N :

Scores4labels← Cosine Similarity for(Zi
img,Ztxt) (8)

Valid Score← Score4labels[top5] (9)
V ← V + Valid Score (10)

Output: Caption for this cluster: text candidates[argmaxV ]

tricycle, trike, velocipede: 27.37; 

(a) tricycle.

brown bear, bruin, Ursus arctos: 55.89; 

(b) brown bear.

goblet: 63.35; 

(c) goblet

steel arch bridge: 18.14; 

(d) steel arch bridge
crib, cot: 75.10; 

(e) crib

baby: 33.45; 

(f) baby

streetcar, tram, tramcar, trolley, trolley car: 95.31; 

(g) streetcar.

poppy: 36.12; 

(h) poppy
sweet_pepper: 83.25; 

(i) sweet pepper

agaric: 53.12; 

(j) agaric

killer whale, killer, orca, grampus, sea wolf, Orcinus orca: 54.92; 

(k) whale.

Arabian camel, dromedary, Camelus dromedarius: 68.92; 

(l) Arabian camel.
lion, king of beasts, Panthera leo: 50.23; 

(m) lion.

tank, army tank, armored combat vehicle, armoured combat vehicle: 66.10; 

(n) armored vehicle.

chimpanzee, chimp, Pan troglodytes: 53.34; 

(o) chimp.

maple_tree: 101.27; 

(p) maple tree
dial telephone, dial phone: 57.36; 

(q) dial telephone.

lawn_mower: 41.23; 

(r) lawn mower

sunflower: 30.26; 

(s) sunflower

bee: 24.04; 

(t) bee

Figure 11: Clustering CIFAR-100 into 20 clusters and relabeling them using our pipeline.
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head cabbage: 10.25; 

(a) head cabbage

parking meter: 15.03; 

(b) parking meter

manhole cover: 15.77; 

(c) manhole cover

gibbon, Hylobates lar: 15.49; 

(d) gibbon

Rhodesian ridgeback: 13.10; 

(e) Rhodesian ridgeback

snorkel: 14.18; 

(f) snorkel

lorikeet: 19.46; 

(g) lorikeet

keeshond: 14.00; 

(h) keeshond

weevil: 13.41; 

(i) weevil

buckeye, horse chestnut, conker: 15.56; 

(j) buckeye

guenon, guenon monkey: 18.28; 

(k) guenon

geyser: 20.95; 

(l) geyser

Urutu (a type of viper): 22.19; 

(m) Urutu

guacamole: 16.84; 

(n) guacamole

pill bottle: 12.45; 

(o) pill bottle

French horn, horn: 11.01; 

(p) French horn

entertainment center: 19.16; 

(q) entertainment center

African grey, African gray, Psittacus erithacus: 13.55; 

(r) African grey

EntleBucher: 12.64; 

(s) EntleBucher

hip, rose hip, rosehip: 16.39; 

(t) rose hip

Figure 12: Clustering ImageNet (15k random samples from train split) into 200 clusters and relabeling
them using our pipeline. (Randomly selected 20 clusters) Non-square figures represent that images
within that cluster are not enough to fulfill the 8× 8 grid.
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(a) ballplayer (b) joystick (c) stove (d) Giraffe

(e) motor scooter (f) trailer truck (g) groom (h) church

(i) cellular phone (j) Police car (k) Windsor tie (l) Vegetable garden

(m) desktop computer (n) surfboard (o) Tennis racket (p) Vase

(q) Fire extinguisher (r) Sun umbrella (s) soccer ball (t) dock

Figure 13: Clustering COCO (30k random samples) into 150 clusters and labeling them using our
pipeline. (Randomly selected 20 clusters)
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Dollhouse kit: 19.42; 

(a) Dollhouse kit

web site, website, internet site, site: 1.67; 

(b) website

seashore, coast, seacoast, sea-coast: 11.84; 

(c) seashore

cocktail shaker: 36.42; 

(d) cocktail

Loaf pan: 21.27; 

(e) Loaf pan

Vegetable garden: 5.36; 

(f) Vegetable garden

Needle felting kit: 18.09; 

(g) needle fitting kit

fountain: 3.89; 

(h) fountain

Dollhouse kit: 29.57; 

(i) Dollhouse kit

Quilted tablecloth: 8.10; 

(j) Quiltered tablecloth

suit, suit of clothes: 5.13; 

(k) suit

gown: 41.42; 

(l) gown

accordion, piano accordion, squeeze box: 6.75; 

(m) accordion

suit, suit of clothes: 4.74; 

(n) suit

gown: 60.27; 

(o) gown

Quilted tablecloth: 8.59; 

(p) Quiltered tablecloth

Egg: 14.74; 

(q) Egg

Model T: 23.56; 

(r) Model T

mosque: 4.83; 

(s) mosque

pickup, pickup truck: 99.93; 

(t) pickup truck

Figure 14: Clustering LAION-Aesthetic into 300 clusters and labeling them using our pipeline.
(Randomly selected 20 clusters)
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