
A Some Concepts in Linear Algebra

In the interest of self-containedness, we provide a brief review of some concepts from linear algebra
utilized in this work that might potentially be considered more advanced. Presented results are all
standard; a very thorough reference is [24].

Hilbert Spaces: To us, a Hilbert space — often denoted by H — is a vector space over the complex
numbers which also has an inner product — often denoted by x¨, ¨yH. Prototypical examples are

given by the Euclidean spaces Cd with inner product xx, yyCd :“ řd
i“1

xiyi. Associated to an inner

product is a norm, denoted by } ¨ }H and defined by }x}H :“
a

xx, xyH for x P H.

Direct Sums of Spaces: Given two potentially different Hilbert spaces H and pH, one can form

their direct sum H ‘ pH. Elements of H ‘ pH are vectors of the form pa, bq, with a P H and b P pH.
Addition and scalar multiplication are defined in the obvious way by

pa, bq ` λpc, dq :“ pa` λc, b` λdq

for a, c P H, b, d P pH and λ P C. The inner product on the direct sum is defined by

xpa, bq, pc, dqy
H‘ pH :“ xa, cyH ` xb, dy pH.

As is readily checked, this implies that the norm } ¨ }
H‘ pH on the direct sum is given by

}pa, bq}2
H‘ pH :“ }a}2H ` }b}2pH.

Standard examples of direct sums are again the Euclidean spaces, where one has Cd “ Cn ‘ Cm if
m`n “ d, as is easily checked. One might also consider direct sums with more than two summands,
writing Cd “ ‘d

i“1
C for example. In fact, one might also consider infinite sums of Hilbert spaces:

The space ‘8
i“1

Hi is made up of those elements a “ pa1, a2, a3, ...q with ai P Hi for which the
norm

}a}2‘8
i“1

Hi
:“

8ÿ

i“1

}ai}2Hi

is finite. This means for example that the vector p1, 0, 0, 0, ...q is in ‘8
i“1

C, while p1, 1, 1, 1, ...q is
not.

Direct Sums of Maps: Suppose we have two collections of Hilbert spaces tHiuΓi“1
, t rHiuΓi“1

with
Γ P N or Γ “ 8. Suppose further that for each i ď Γ (resp. i ă Γ) we have a (not necessarily linear)

map Ji : Hi Ñ rHi. Then the collection tJiuΓi“1
of these ’component’ maps induce a ’composite’

map

J : ‘Γ

i“1Hi ÝÑ ‘Γ

i“1
rHi

between the direct sums. Its value on an element a “ pa1, a2, a3, ...q P ‘Γ
i“1

Hi is defined by

J paq “ pJ1pa1q, J2pa2q, J3pa3q, ...q P ‘Γ

i“1
rHi.

Strictly speaking, one has to be a bit more careful in the case where Γ “ 8 to ensure that
}J paq}‘8

i“1
rHi

‰ 8. This can however be ensured if we have }Jipaiq} rHi
ď C}ai}Hi

for all

1 ď i and some C independent of all i, since then }J paq}‘8
i“1

rHi
ď C}a}‘8

i“1
Hi

ď 8. If each Ji is

a linear operator, such a C exists precisely if the operator norms (defined below) of all Ji are smaller
than some constant.

Operator Norm: Let J : H Ñ rH be a linear operator between Hilbert spaces. We measure its
’size’ by what is called the operator norm, denoted by } ¨ }op and defined by

}J}op :“ sup
ψPH,}ψ}H“1

}Aψ} rH
}ψ}H

.
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Adjoint Operators Let J : H Ñ rH be a linear operator from the Hilbert space H to the Hilbert

space rH. Its adjoint J˚ : rH Ñ H is an operator mapping in the opposite direction. It is uniquely
determined by demanding that

xJf, uy rH “ xf, J˚uyH
holds true for arbitrary f P H and u P rH.

Normal Operators: If a linear operator ∆ : H Ñ H maps from and to the same Hilbert space,
we can compare it directly with its adjoint. If ∆∆˚ “ ∆˚∆, we say that the operator ∆ is normal.
Special instances of normal operators are self-adjoint operators, for which we have the stronger
property ∆ “ ∆˚. If an operator is normal, there are unitary maps U : H Ñ H diagonalizing ∆ as

U˚∆U “ diagpλ1, ...λnq,
with eigenvalues in C. We call the collection of eigenvalues the spectrum σp∆q of ∆. If dimH “ d,

we may write σp∆q “ tλudi“1
. It is a standard exercise to verify that each eigenvalue satisfies

|λi| ď }∆}op. Associated to each eigenvalue is an eigenvector φi. The collection of all (normalized)
eigenvectors forms an orthonormal basis of H. We may then write

∆f “
dÿ

i“1

λi xφi, fyHφi.

Resolvent of a (normal) Operator: Given a normal operator ∆ on some Hilbert space H, we have
that the operator p∆ ´ zq : H Ñ H is invertible precisely if z ‰ σp∆q. In this case we write

Rpz,∆q “ p∆ ´ zq´1

and call this operator the resolvent of ∆ at z. It can be proved that the norm of the resolvent satisfies

}Rpz,∆q}op “ 1

distpz, σp∆qq ,

where distpz, σp∆qq denotes the minimal distance between z and any eigenvalue of ∆.

Functional Calculus: Given a normal operator ∆ : H Ñ H on a Hilbert space of dimension d and
a complex function g : C Ñ C, we can define another normal operator obtained from applying the
function g to ∆ by

gp∆qf “
fÿ

i“1

gpλiqxφi, fyHφi.

For example if gp¨q “ | ¨ |, we obtain the absolute value |∆| of ∆ by specifying for all f P H that

|∆|f “
dÿ

i“1

|λi|xφi, fyHφi.

Similarly we find (if z R σp∆q and for f P H)

1

∆ ´ z
“

dÿ

i“1

1

λi ´ z
xφi, fyHφi “ p∆ ´ zq´1 “ Rpz,∆q

where we think of the left-hand-side as applying a function to ∆, while we think of the right-hand-side
as inverting the operator p∆ ´ zq. This now allows us to apply tools from complex analysis also to
operators: If a function g is analytic (i.e. can be expanded into a power series), we have

gpλq “ ´ 1

2πi

¿

S

gpzq
λ´ z

dz

for any circle S Ď C encircling λ by Cauchy’s integral formula. Thus, if we chose S large enough to
encircle the entire spectrum σp∆q, we have

gp∆qf “ ´
dÿ

i“1

1

2πi

¿

S

gpzq
λi ´ z

dzxφi, fyHφi “ ´ 1

2πi

¿

S

gpzqRpz, λqdz.
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Frobenius Norm: Given a finite dimensional Hilbert space H with inner product x¨, ¨yH, and an

orthonormal basis tφiudi“1
, we define the trace of an operator A : H Ñ H as

TrpAq :“
dÿ

k“1

xφk, AφkyH.

It is a standard exercise to show that this is independent of the choice of orthonormal basis. The
associated Frobenius inner product on the space of operators is then given as

xB,AyF :“ TrpB˚Aq
dÿ

k“1

xφk, B˚AφkyH.

Hence the Frobenius norm of an operator is determined by

}A}2F “ TrpA˚Aq “
dÿ

k“1

xφk, A˚AφkyH.

It is a standard exercise to verify that we have }A}op ď }A}F . Since the trace is independent of the
choice of orthonormal basis, the Frobenius norm is invariant under unitary transformations. More
precisely, if U, V : H Ñ H are unitary, we have

}UAV }2F “ }A}2F .

Frobenius norms can be used to transfer Lipschitz continuity properties of complex functions to the
setting of functions applied to normal operators:

Lemma A.1. Let g : C Ñ C be Lipschitz continuous with Lipschitz constant Dg . This implies

}gpXq ´ gpY q}F ď Dg ¨ }X ´ Y }F .

for normal operators X,Y on H.

Proof. This proof is taken (almost) verbatim from [37]. For an operator A : H Ñ H denote by Aij
its matrix representation with respect to the orthonormal basis tφiudi“1

:

Aij :“ xφi, AφjyH.

We then have

}A}2F “
dÿ

i,j“1

|Aij |2

as a quick calculation shows. Let now U,W be unitary (with respect to the inner product x¨, ¨yH)
operators diagonalizing the normal operators X and Y as

V ˚XV “ diagpλ1, ...λnq “: DpXq
W˚YW “ diagpµ1, ...µnq “: DpY q.
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Since the Frobenius norm is invariant under unitary transformations we find

}gpXq ´ gpY q||2F “ ||gpV DpXqV ˚q ´ gpWDpY qW˚q}2F
“ }V gpDpXqqV ˚ ´WgpDpY qqW˚}2F
“ }W˚V gpDpXqq ´ gpDpY qqW˚V }2F

“
dÿ

i,j“1

|pW˚V gpDpXqq ´ gpDpY qqW˚V qij |2

“
dÿ

i,j“1

ˇ̌
ˇ̌
ˇ
nÿ

k“1

rW˚V sikrgpDpXqqskj ´ rgpDpY qqsikrW˚V skj

ˇ̌
ˇ̌
ˇ

2

“
dÿ

i,j“1

|rW˚V sij |2 |gpλjq ´ gpµiq|2

ď
dÿ

i,j“1

|rW˚V sij |2D2

g |λj ´ µi|2

“ D2

g

dÿ

i,j“1

ˇ̌
ˇ̌
ˇ
nÿ

k“1

rW˚V sikrDpXqskj ´ rDpY qsikrW˚V skj

ˇ̌
ˇ̌
ˇ

2

“ D2

g}X ´ Y }2F .

B Proof of Theorem 2.1

Theorem B.1. Let ∆ : ℓ2pGq Ñ ℓ2pGq be normal. If the family tgip¨quiPI of bounded functions
satisfies A ď ř

iPI |gipcq|2 ď B for all c in the spectrum σp∆q, we have (@f P ℓ2pGq)

A}f}2ℓ2pGq ď
ÿ

iPI

}gip∆qf}2ℓ2pGq ď B}f}2ℓ2pGq.

Proof. Writing the normalized eigenvalue-eigenvector sequence of ∆ as pλi, φiq|G|
i“1

, we simply note

ÿ

iPI

|G|ÿ

k“1

|xgipλkqφk, fyℓ2pGq|2 “
|G|ÿ

k“1

˜
ÿ

iPI

|gipλkq|2
¸

|xφk, fyℓ2pGq|2.

Now under the assumption, we can estimate the sum in brackets by A from below and by B from
above. Then we need only use Bessel’s (in)equality to prove

A||f ||2 ď
ÿ

iPpI

|G|ÿ

k“1

|xgipλkqφk, fyℓ2pGq|2 ď B||f ||2.

C Proof of Theorem 4.1

Theorem C.1. With the notation of Section 3 and setting B0 “ 1, we have:

}ΦN pfq ´ ΦN phq}2FN
ď
˜
1 `

Nÿ

n“1

maxtrBnpL`
nR

`
n q2 ´ 1s, 0u

n´1ź

k“0

BkpR`
k L

`
k q2

¸
}f ´ h}2ℓ2pGq

To streamline the argumentation let us first introduce some notation:
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Notation C.2. Let us denote paths in ΓN as q :“ pγN , ..., γ1q. For f P ℓ2pGq let us write

fq :“ U rγN s ˝ ... ˝ U rγ1spfq.

Proof. By Definition, we have

}ΦN pfq ´ ΦN pgq}2FN
“

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}Vnpfqq ´ Vnphqq}2ℓ2pGnq

˛
‚

“
Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}χnp∆nqρnpPnpfqqq ´ χnp∆nqρnpPnphqqq}2ℓ2pGnq

˛
‚

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon
“:an

.

We proceed in two steps:
Our initial goal is to upper bound an as

an ď BnpL`
nR

`
n q2 ¨ bn´1 ´ bn ” pbn´1 ´ bnq `

“
BnpL`

nR
`
n q2 ´ 1

‰
¨ bn´1 (5)

for bn :“ ř
qPΓn }fq ´ hq}2ℓ2pGnq with b0 “ }f ´ h}2

ℓ2pGq. To achieve this we note that (5) is

equivalent to

an ` bn ď BnpL`
nR

`
n q2 ¨ bn´1

which upon unraveling definitions may be written as
ÿ

qPΓn´1

}χnp∆nqρnpPnppfqqqq ´ χnp∆nqρnpPnphqq}2ℓ2pGnq `
ÿ

pqPΓn

}fpq ´ hpq}2ℓ2pGnq

ďBnpL`
nR

`
n q2

ÿ

qPΓn´1

}fq ´ hq}2ℓ2pGn´1q.
(6)

To establish (6), we note, that in the sum over paths of length n, any pq P Γn can uniquely be written
as pq “ pγn, qq, with the path q P Γn´1 of length pn´ 1q determined by

pq “ pγn, γn´1, ..., γ1looooomooooon
“:q

q.

With this we find
ÿ

pqPΓn

}fpq ´ hpq}2ℓ2pGnq “
ÿ

γnPΓn

ÿ

qPΓn´1

}gγnp∆nqρnpPnppfqqqq ´ gγnp∆nqρnpPnphqqq}2ℓ2pGnq.

Thus we can rewrite the left hand side of (6) as
ÿ

qPΓn´1

}χnp∆nqρnpPnppfqqqq ´ χnp∆nqρnpPnphqq}2ℓ2pGnq `
ÿ

pqPΓn

}fpq ´ hpq}2ℓ2pGnq

“
ÿ

qPΓn´1

ˆ
}χnp∆nqρnpPnpfqq ´ χnp∆nqρnpPnphqq}2ℓ2pGnq

`
ÿ

γnPΓn

}gγnp∆nqρnpPnppfqqqq ´ gγnp∆nqρnpPnphqqq}2ℓ2pGnq

¸

“:‹

The fact that in each layer the function tχnp¨quŤtgγnp¨quγnPΓn
form a generalized frame with upper

frame constant Bn implies by Theorem 2.1, that we can further bound this as

‹ ď Bn
ÿ

qPΓn´1

}ρnpPnpfqq ´ ρnpPnphqq}2ℓ2pGnq.

Using the Lipschitz continuity of ρn and Pn, we arrive at the desired expression (6).
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Having established that

an ď pbn´1 ´ bnq `
“
BnpL`

nR
`
n q2 ´ 1

‰
¨ bn´1

holds true, we note that we can establish

bn´1 ď
n´1ź

k“1

BkpL`
k R

`
k q2bn´2

arguing similarly as in the case of (6) by using (for f P ℓ2pGn´1q)
ÿ

γn´1PΓn´1

}gγn´1
p∆n´1qf}2ℓ2pGn´1q ď }χn´1p∆n´1qf}2ℓ2pGn´1q `

ÿ

γPΓ

}gγn´1
p∆n´1qf}2ℓ2pGn´1q

together with the frame property and Lipschitz continuities. We then iterate this inequality and recall
that b0 “ }f ´ h}2

ℓ2pGq. Using the fact that

Nÿ

n“1

pbn´1 ´ bnq “ b0 ´ bN ď b0,

we finally find

}ΦN pfq ´ ΦN phq}2FN
ď
˜
1 `

Nÿ

n“1

maxtrBnpL`
nR

`
n q2 ´ 1s, 0u

n´1ź

k“0

BkpR`
k L

`
k q2

¸
}f ´ h}2ℓ2pGq.

D Proof or Theorem 4.2

Theorem D.1. Let ΦN and rΦN be two scattering transforms based on the same module sequence

ΩN and operator sequences DN , rDN with the same connecting operators (Pn “ rPn) in each
layer. Assume R`

n , L
`
n ď 1 and Bn ď B for some B and n ď N . Assume that the respective

normal operators satisfy }∆n ´ r∆n}F ď δ for some δ ą 0. Further assume that the functions
tgγnuγnPΓn

and χn in each layer are Lipschitz continuous with associated Lipschitz constants

satisfying L2
χn

` ř
γnPΓn

L2
gγn

ď D2 for all n ď N and some D ą 0. Then we have

}rΦN pfq ´ ΦN pfq}FN
ď
b
2p2N ´ 1q ¨

b
pmaxtB, 1{2uqN´1 ¨D ¨ δ ¨ }f}ℓ2pGq

for all f P ℓ2pGq. If B ď 1{2, the stability constant improves to
a
2p1 ´BN q{p1 ´Bq ¨D ď 2 ¨D.

Notation D.2. Let us denote scattering propagators based on operators ∆n and connecting operators

Pn by Un and scattering propagators based on operators r∆n by rUn. Similarly, to Notation C.2, let us
then write (with q “ pγN , ..., γ1q)

rfq :“ rUnrγns ˝ ... ˝ rU1rγ1spfq.

Proof. By definition we have

}ΦN pfq ´ rΦN }2FN
“

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}χnp∆nqρnpPnppfqqqq ´ χnpr∆nqρnpPnp rfqqq}2ℓ2pGnq

˛
‚

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon
“:an

.

We define bn :“ ř
qPΓn }fq ´ rfq}2ℓ2pGnq, with b0 “ }f ´ h}2

ℓ2pGq “ 0 and note

an ` bn “
ÿ

qPΓn´1

ˆ
}χnp∆nqρnpPnpfqq ´ χnpr∆nqρnpPnp rfqq}2ℓ2pGnq

`
ÿ

γnPΓn

}gγnp∆nqρnpPnppfqqqq ´ gγnpr∆nqρnpPnp rfqqq}2ℓ2pGnq

¸
.
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Using (with |a` b|2 ď 2p|a|2 ` |b|2q)

1

2
}gγnp∆nqρnpPnpfqqq ´ gγnpr∆nqρnpPnp rfqqq}2ℓ2pGnq

ď}rgγnp∆nq ´ gγnpr∆nqsρnpPnpfqqq}2ℓ2pGnq

`}gγnpr∆nqrρnpPnppfqqqq ´ ρnpPnp rfqqqs}2ℓ2pGnq

ď}rgγnp∆nq ´ gγnpr∆nqs}28 ¨ }ρnpPnpfqqq}2ℓ2pGnq

`}gγnpr∆nqrρnpPnpfqqq ´ ρnpPnp rfqqqs}2ℓ2pGnq,

and
}rgγnp∆nq ´ gγnpr∆nqs}28 ď }rgγnp∆nq ´ gγnpr∆nqs}2F ď L2

gγ
¨ δ2

(c.f. Lemma A.1 ), we find

an ` bn ď2
ÿ

qPΓn´1

˜
L2

χn
`

ÿ

γnPΓn

Lg2γn

¸
pL`

nR
`
n q2δ2||ρnpPnpfqqq||2ℓ2pGnq

`2
ÿ

qPΓn´1

Bn||ρnpPnpfqqq ´ ρnpPnp rfqqq||2ℓ2pGnq.

Using L2
χn

` ř
γnPΓn

L2
γn

ď D2, we then infer (using the assumption L`
n , R

`
n ď 1)

an ď pbn´1 ´ bnq ` r2B ´ 1sbn´1 `Bn´12D2δ2||f ||ℓ2pGq.

Now if B ď 1

2
, we have

an ď pbn´1 ´ bnq `Bn´12D2δ2||f ||ℓ2pGq

and results of geometric sums leads to the desired bound after summing over n.
Hence let us assume B ą 1

2
. Using similar arguments as before, we find

bn´1 ďBn´22D2δ2||f ||2ℓ2pGq ` 2Bbn´2 ď Bn´22D2δ2||f ||2ℓ2pGq `Bn´24D2δ2||f ||2ℓ2pGq ` 4bn´3

ďBn´2

˜
n´1ÿ

k“1

2k

¸
D2δ2||f ||2ℓ2pGq “ Bn´2p2n ´ 2qD2δ2||f ||2ℓ2pGq.

Thus we now know

an ď 2D2δ2Bn´1||f ||2ℓ2pGq ` r2B ´ 1sp2n ´ 2qD2δ2Bn´2||f ||2ℓ2pGq ` pbn´1 ´ bnq
In total we find gffe

Nÿ

n“1

an ď
b
2p2N ´ 1q ¨

?
BN´1 ¨D ¨ δ ¨ }f}ℓ2pGq,

where we have estimated the sum over pbn´1 ´ bnq by zero from above again. This establishes the
claim.

Remark D.3. To see that this also holds for our Architecture I of Fig. 2, we note that the critical step
is establishing that Lemma A.1 also applies to δ0 and cos, as defined in Section 2. Here we establish
that

}δ0p∆q ´ δ0pr∆q}F “ 0

and
}cosp∆q ´ cospr∆q}F ď Dcos}∆ ´ r∆}F .

Indeed, since ∆ and r∆ are (possibly) rescaled graph Laplacians on the same graph, the spectral
projections to their lowest lying eigen space, associated to the eigenvalue λmin “ 0 agree. Denoting
this spectral projection by P , we have

cosp∆q ´ cospr∆q “ rcosp∆q ´ Ps ´ rcospr∆q ´ Ps “ cosp∆q ´ cospr∆q
and we can apply Lemma A.1. Similar considerations apply to δ0.
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E Prototypical Example illustrating ω-δ Closeness and δ-Unitary

Equivalence

To investigate the example of Figure 3, we label the vertices of
the respective graphs as depicted in Figure 6. We denote the left

graph by G and the right graph by rG. The node-weights on rG are
given as rµi “ 1 for 1 ď i ď 7, while on G the weights are given
as µi “ 1 for 1 ď i ď 5 while µ6 “ 2. We then consider the
respective un-normalized graph Laplacians ∆ : ℓ2pGq Ñ ℓ2pGq and
r∆ : ℓ2p rGq Ñ ℓ2p rGq, which for a given adjacency matrix W on a
graph signal space ℓ2pGq with node weights tµiui is given as

p∆fqi “ 1

µi

ÿ

j

Wijpfi ´ fjq.

Such operators are positive and hence |∆| “ ∆ (similarly for r∆).

We now need to find operators J : ℓ2pGq Ñ ℓ2p rGq and rJ : ℓ2p rGq Ñ
ℓ2pGq satisfying the conditions of Definition 4.3. To construct J , we

define a family tψiu6i“1
of vectors on ℓ2p rGq as

ψ1 “ p1, 0, 0, 0, 0, 0, 0q, ψ2 “ p0, 1, 0, 0, 0, 0, 0q,
ψ3 “ p0, 0, 1, 0, 0, 0, 0q, ψ4 “ p0, 0, 0, 1, 0, 0, 0q,
ψ5 “ p0, 0, 0, 0, 1, 0, 0q, ψ6 “ p0, 0, 0, 0, 0, 1, 1q.

Figure 6: Indexing on the re-
spective graphs

The map J : ℓ2pGq Ñ ℓ2p rGq is then defined as

Jf :“
6ÿ

i“1

fiψi,

for any f P ℓ2pGq. We take rJ : ℓ2p rGq Ñ ℓ2pGq to be its adjoint ( rJ :“ J˚), which determined
explicitly by

p rJuqi “ 1

µi
xψi, uy

ℓ2p rGq

for any u P ℓ2p rGq We shall now first check the conditions for δ-quasi unitary equivalence, which we
list again for convenience; now adapted to our current setting:

}Jf}
ℓ2p rGq ď 2}f}ℓ2pGq, }pJ ´ rJ˚qf}

ℓ2p rGq ď δ}f}ℓ2pGq,

}f ´ rJJf}2ℓ2pGq ď δ2
´

}f}2ℓ2pGq ` xf,∆, fyℓ2pGq

¯
, }u´ J rJu}2

ℓ2p rGq
ď δ2

´
}u}2

ℓ2p rGq
` xu, r∆ uy

ℓ2p rGq

¯
.

We first note that since rJ “ J˚, we have }pJ ´ rJ˚qf}
ℓ2p rGq “ 0. Next we note

}Jf}2
ℓ2p rGq

“
7ÿ

i“1

|pJfqi|2 “ |f6|2 `
6ÿ

i“1

|fi|2 “
6ÿ

i“1

µi “ }f}2ℓ2pGq.

Furthermore we note

p rJJfqi “
6ÿ

k“1

fk
1

µi
xψi, ψky

ℓ2p rGqloooooooomoooooooon
“δik

“ fi

and hence }f ´ rJJf}2
ℓ2pGq “ 0. It remains to control }u´ J rJu}2

ℓ2p rGq
. We note

rJu “ pu1, u2, u3, u4, u5, pu5 ` u6q{2qJ

and thus

J rJu “ pu1, u2, u3, u4, u5, pu6 ` u7q{2, pu6 ` u7q{2qJ,

22



Which implies

u´ J rJu “ p0, 0, 0, 0, 0, pu7 ´ u6q{2, pu6 ´ u7q{2qJ,

and thus

}u´ J rJu}2
ℓ2p rGq

“ 2
|u6 ´ u7|2

4
“ |u6 ´ u7|2

2
.

We have

xu, r∆ uy
ℓ2p rGq “ 1

2

dÿ

i,j“1

ĂWij |ui ´ uj |2.

Since ĂW67 “ 1{δ2 by assumption, we have

}u´ J rJu}2
ℓ2p rGq

“ 1

2
|u6 ´ u7|2 “ 1

2

δ2

δ2
|u6 ´ u7|2 “ 1

2
δ2ĂW67|u6 ´ u7|2

ď 1

2
δ2

dÿ

i,j“1

ĂWij |ui ´ uj |2 “ δ2xu, r∆ uy
ℓ2p rGq

ď δ2
´

}u}2
ℓ2p rGq

` xu, r∆ uy
ℓ2p rGq

¯
.

Thus we have proven δ-unitary-equivalence and it remains to establish p´1q-12δ closeness. Com-

bining Proposition 4.4.12. and Theorem 4.4.15 of [29], instead of bounding }p rRJ ´ JRqf}
ℓ2p rGq ď

12δ}f}ℓ2pGq directly, we may instead establish that there are operators J1 : ℓ2pGq Ñ ℓ2p rGq,

ĂJ1 : ℓ2p rGq Ñ ℓ2pGq satisfying

}J1f ´ Jf}
ℓ2p rGq ď δ2

`
}f}ℓ2pGq ` xf,∆, fyℓ2pGq

˘
, (7)

}ĂJ1u´ rJu}ℓ2pGq ď δ2
´

}u}
ℓ2p rGq ` xf, r∆, uy

ℓ2p rGq

¯
, (8)

and

xJ1f, r∆ uy
ℓ2p rGq “ xf,∆ ĂJ1uyℓ2pGq. (9)

We chose J1 “ J and determine ĂJ1 by setting (for (1 ď i ď 6))

pĂJ1uqi “ ui.

Thus (7) is clearly satisfied. For (8) we note that we have

p rJu´ ĂJ1uq “ p0, 0, 0, 0, 0, pu7 ´ u6q{2q.
Thus we have

}ĂJ1u´ rJu}ℓ2pGq “ 1

2
|u6 ´ u7|2 ď δ2

´
}u}2

ℓ2p rGq
` xu, r∆ uy

ℓ2p rGq

¯

as before. It remains to establish (9). We have

xf,∆ ĂJ1uyℓ2pGq “
6ÿ

i,j“1

fiWijpui ´ ujq,

while we have

xJ1f, r∆ uy
ℓ2p rGq “

6ÿ

i“1

fi ¨ xψi, r∆ uy
ℓ2p rGq

“
5ÿ

i,j“1

fiWijpUj ´ uiq ` f6 ¨ xψ6, r∆ uy
ℓ2p rGq.
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We have (with all node-weights on ℓ2pGq equal to unity)

xψ6, r∆ uy
ℓ2p rGq “ p∆ uq6 ` p∆ uq7 “

˜
ÿ

j

W6jpf6 ´ fjq ` 1

δ2
pf6 ´ f7q

¸
`
ˆ

1

δ2
pf7 ´ f6q

˙

“
˜
ÿ

j

W6jpf6 ´ fjq ` 1

δ2
pf6 ´ f7q

¸

And thus

xJ1f, r∆ uy
ℓ2p rGq “

6ÿ

i,j“1

fiWijpui ´ ujq “ xf,∆ ĂJ1uyℓ2pGq

which proves the claim.

F Proof of Lemma 4.4

Lemma F.1. In the setting of Definition 4.3 let ∆ and r∆ be ω-δ-close and satisfy }∆}op, }r∆}op ď K
for some K ą 0. If g : C Ñ C is holomorphic on the disk BK`1p0q of radius pK ` 1q, there is a
constant Cg ě 0 so that

}gpr∆qJ ´ Jgp∆q}op ď Cg ¨ δ
with Cg depending on g , ω and K.

Proof. Without loss of generality, let us assume that K ą |ω|. Let us denote the circle of radius r in
C by Sr. For any holomorphic function g and (normal) operator ∆ whose spectrum is enclosed by
the circle Sr, we can express the operator gp∆q as

gp∆q “ ´ 1

2πi

¿

Sr

gpzq
∆ ´ z

dz

as discussed in Appendix A (see also [7] for more details). Note that in our case the resolvent
Rpz,∆q “ p∆ ´ zq´1 is well defined for |z| ě K, since with our assumptions all eigenvalues are
within the circle of radius K. Additionally note that we have

distpz, σp∆qq ě distpz, SKq “ |z| ´K

if |z| ě K. The same holds true after replacing ∆ with r∆. Since for any normal operator ∆ we have

}Rpz,∆q}op “ 1{distpz, σp∆qq,
we find

|Rpz, r∆q}op, }Rpz,∆q}op ď 1{p|z| ´Kq.
To quantify the difference }Rpz, r∆qJ ´ JRpz,∆q}op in terms of the difference } rRpωqJ ´
JRpωq}op ď δ, we define the function

γ0pzq :“ 1 ` |z ´ ω|
|z| ´K

,

for which
}Rpz, r∆qJ ´ JRpz,∆q}op ď γ0pzq2}Rpω, r∆qJ ´ JRpω, r∆q}op

holds, as proved (in more general form) in Lemma 4.5.9 in [29]. Since on SK`1 we have and
|z ´ ω| ď 2K ` 1 hence γ0pzq ď 2pK ` 1q, we find

}gpr∆qJ ´ Jgp∆q}op “

›››››››

1

2πi

¿

SK`1

gpzq
´
Rpz, r∆q ´Rpz,∆q

¯
dz

›››››››
op

ď 1

2π

¿

SK`1

|gpzq|
›››Rpz, r∆q ´Rpz,∆q

›››
op
dz

ď2
pK ` 1q2

π

¨
˚̋

¿

SK`1

|gpzq|dz

˛
‹‚¨ }Rpω, r∆qJ ´ JRpω, r∆q}op.
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Thus we may set

Cg :“ 2
pK ` 1q2

π

¿

SK`1

|gpzq|dz.

G Proof of Theorem 4.5

We state and prove a somewhat more general theorem, incorporating also the case where the identifi-
cation operators only almost commute with connecting operators or non-linearities. We also would
like to point out that the constant 2 in Definition 4.3 is arbitrary and any constant larger than one
would suffice. Much more details are provided in Chapter IV of [29].

Theorem G.1. Let ΦN , rΦN be scattering transforms based on a common module sequence ΩN and

differing operator sequences DN , rDN . Assume R`
n , L

`
n ď 1 and Bn ď B for some B and n ě 0.

Assume that there are identification operators Jn : ℓ2pGnq Ñ ℓ2p rGnq, rJn : ℓ2p rGnq Ñ ℓ2pGnq
(0 ď n ď N ) so that the respective signal spaces are δ-unitarily equivalent, the respective normal

operators ∆n, r∆n are ω-δ-close as well as bounded (in norm) by K ą 0 and the connecting

operators satisfy } rPnJn´1f ´ JnPnf}
ℓ2p rGnq ď δ}f}ℓ2pGn´1q. For the common module sequence

ΩN assume that the non-linearities satisfy }ρnpJnfq ´ Jnρnpfq}
ℓ2p rGnq ď δ}f}ℓ2pGnq and that the

constants Cχn
and tCgγn uγnPΓN

associated through Lemma 4.4 to the functions of the generalized

frames in each layer satisfy C2
χn

` ř
γnPΓN

C2
gγn

ď D2 for some D ą 0. Denote the operator

that the family tJnun of identification operators induce on FN through concatenation by JN :

FN Ñ ĂFN . Then we have with KN “
a

p8N ´ 1qp2D2 ` 12Bq{7 ¨BN´1 if B ą 1{8 and

KN “
a

p2D2 ` 12Bq ¨ p1 ´BN q{p1 ´Bq if B ď 1{8 that

}rΦN pJ0fq ´ JNΦN pfq} ĂFN
ď KN ¨ δ ¨ }f}ℓ2pG, @f P ℓ2pGq.

If additionally } rPnJn´1f ´ JnPnf}
ℓ2p rGnq “ 0 or }ρnpJnfq ´ Jnρnpfq}

ℓ2p rGnq “ 0 holds in

each layer, then we have KN “
a

p4N ´ 1qp2D2 ` 4Bq{3 ¨BN´1 if B ą 1{4 and KN “a
p2D2 ` 4Bq ¨ p1 ´BN q{p1 ´Bq if B ď 1{4. If both additional equations hold, we have

KN “
a

p2N ´ 1q2D2 ¨BN´1 if B ą 1{2 and KN “
a
2D2 ¨ p1 ´BN q{p1 ´Bq if B ď 1{2.

Notation G.2. Let us denote scattering propagators based on operators ∆n and Pn by Un and

scattering propagators based on operators r∆n and rPn by rUn. Similarly, to Notation D.2 and , let us
then write (with q “ pγN , ..., γ1q)

rfq :“ rUnrγns ˝ ... ˝ rU1rγ1spJ0fq.

Proof. By definition we have

}JΦN pfq ´ rΦN pJ0fq}2ĂFN
“

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}Jnχnp∆nqρnpPnpfqqq ´ χnpr∆nqρnpPnp rfqqq}2
ℓ2p rGnq

˛
‚

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
“:an

.

We define bn :“ ř
qPΓn }Jnfq ´ rfq}2

ℓ2p rGnq
, with b0 “ }J0f ´ J0f}2

ℓ2p rGq
“ 0 and note

an ` bn “
ÿ

qPΓn´1

ˆ
}Jnχnp∆nqρnpPnpfqq ´ χnpr∆nqρnpPnp rfqq}2

ℓ2p rGnq

`
ÿ

γnPΓn

}Jngγnp∆nqρnpPnppfqqqq ´ gγnpr∆nqρnpPnp rfqqq}2
ℓ2p rGnq

¸
.
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Using

1

2
}Jngγnp∆nqρnpPnppfqqqq ´ gγnpr∆nqρnpPnp rfqqq}2

ℓ2p rGnq

ď}rJngγnp∆nq ´ gγnpr∆nqJnsρnpPnpfqqq}2
ℓ2p rGnq

`}gγnpr∆nqrJnρnpPnppfqqqq ´ ρnpPnp rfqqqs}2
ℓ2p rGnq

ď}rJngγnp∆nq ´ gγnpr∆nqJns}op ¨ }ρnpPnpfqqq}2
ℓ2p rGnq

`}gγnpr∆nqrJnρnpPnppfqqqq ´ ρnpPnp rfqqqs}2
ℓ2p rGnq

,

and }rgγnp∆nq ´ gγnpr∆nqs}8 ď C2
gγ

¨ δ2 (c.f. Lemma 4.4), we find

an ` bn ď2
ÿ

qPΓn´1

˜
C2

χn
`

ÿ

γnPΓn

Cg2γn

¸
pL`

nR
`
n q2δ2||ρnpPnp rfqqq||2

ℓ2p rGnq

`2
ÿ

qPΓn´1

Bn||JnρnpPnpfqqq ´ ρnpPnp rfqqq||2
ℓ2p rGnq

ď2
ÿ

qPΓn´1

δ2

˜
C2

χn
`

ÿ

γnPΓn

Cg2γn

¸
pL`

nR
`
n q2||ρnpPnp rfqqq||2

ℓ2p rGnq

`4B ¨Bn´1||f ||2ℓ2pGqδ
2 ` 8B ¨Bn´1||f ||2ℓ2pGqδ

2 ` 8Bbn´1,

where the second inequality arises from permuting the identification operator Jn through non-linearity
and connecting operator. Using C2

χn
` ř

γnPΓn
C2
γn

ď D2, we then infer

an ď pbn´1 ´ bnq ` r8B ´ 1sbn´1 ` p2D2 ` 12BqBn´1δ2||f ||2ℓ2pGq.

If B ď 1

8
, summing over n and using a geometric sum argument yields the desired stability constant.

Hence let us assume B ą 1

8
. Using similar arguments as before, we find

bn´1 ďp2D2 ` 12Bqδ2Bn´2||f ||2ℓ2pGq ` 8Bbn´2

ď
˜
n´1ÿ

k“1

8k´1

¸
Bn´2p2D2 ` 12Bqδ2||f ||2ℓ2pGq “ 1

56
p8n ´ 8qp2D2 ` 12qδ2||f ||2ℓ2pGq.

In total we find

Nÿ

n“1

an

ď pb0 ´ bN qloooomoooon
ď0

`p2D2 ` 12BqBn´1δ2||f ||2ℓ2pGq ` p8B ´ 1qp8n´1 ´ 1q{7Bn´2 ¨ p2D2 ` 12Bqδ2||f ||2ℓ2pGq

ďp8N ´ 1qp2D2 ` 12Bq{7 ¨BN´1||f ||2ℓ2pGq.

If one of the additional equations holds, we find

an ` bn ď pbn´1 ´ bnq ` r4B ´ 1sbn´1 ` p2D2 ` 4Bqδ2||f ||2ℓ2pGq.

and

bn´1 ďp2D2 ` 4Bqδ2Bn´2||f ||2ℓ2pGq ` 4Bbn´2

ď
˜
n´1ÿ

k“1

4k´1

¸
Bn´2p2D2 ` 4qδ2||f ||2ℓ2pGq “ 1

12
p4n ´ 4qBn´2p2D2 ` 4qδ2||f ||2ℓ2pGq.

Arguing as previously yields the desired stability bounds.
If both additional equations are satisfied the proof is virtually the same as the one for Theorem
4.2.
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H Details on Energy Decay and Truncation Stability

We first prove the statement made about the relation between truncation stability and energy:

Lemma H.1. Given the energy WN :“ ř
pγN ,...,γ1qPΓN }U rγN s ˝ ... ˝ U rγ1spfq}2

ℓ2pGN q stored in

the network at layer N , we have after extending ΦN pfq by zero to match dimensions with ΦN`1pfq
that

}ΦN pfq ´ ΦN`1pfq}2FN`1
ď
`
R`
N`1

L`
N`1

˘2
BN`1 ¨WN .

Proof. We note

}ΦN pfq ´ ΦN`1pfq}2FN`1
“

ÿ

pγN´1,...,γ1qPΓN

}VN`1 ˝ U rγN s ˝ ... ˝ U rγ1spfq}2ℓ2pGN`1q

ď
`
R`
N`1

L`
N`1

˘2
BN`1

ÿ

pγN´1,...,γ1qPΓN´1

}U rγN s ˝ ... ˝ U rγ1spfq}2ℓ2pGN`1q.

In fact one can prove even more:

Lemma H.2. The energy WN stored in layer N satisfies

C´
N }f}2ℓ2pGq ď }ΦN pfq}FN

`WN pfq ď C`
N }f}2ℓ2pGq,

with constants C´
N :“

Nś
i“1

min
 
1, AipL´

i R
´
i q2

(
and C`

N :“
Nś
i“1

max
 
1, BipL`

i R
`
i q2

(
.

Proof.

min
 
1, A1pL´

1
R´

1
q2
(

||f ||2ℓ2pGq

“A1pL´
1
R´

1
q2||f ||2ℓ2pGq

“A1||ρ1pP1pfqq||2ℓ2pG1q

ď
ÿ

γ1PΓ1

||gγ1p∆1qρ1pP1pfqq||2ℓ2pG1q ` ||χ1p∆1qρ1pP1pfqq||2ℓ2pG1q

“
ÿ

qPΓ1

||U rqspfq||2ℓ2pG1q ` ||χ1p∆1qρ1pP1pfqq||2ℓ2pG1q

“||χ1p∆1qρ1pP1pfqq||2ℓ2pG1q `W1pfq,

and similarly

||χ1p∆1qρ1pP1pfqq||2ℓ2pG1q `W1pfq
“

ÿ

qPΓ1

||U rqspfq||2ℓ2pG1q ` ||χ1p∆1qρ1pP1pfqq||2ℓ2pG1q

ďB1pL`
1
R`

1
q2||f ||2ℓ2pGq.

This yields the starting point for our induction. Now for the inductive step assume the claim holds up
until layer N ´ 1. Then we have

C´
N´1

||f ||2ℓ2pGq ď
N´1ÿ

n“1

¨
˝ ÿ

qPΓn´1

||χnp∆nqfq||2ℓ2pGnq

˛
‚`WN´1pfq ď C`

N´1
||f ||2ℓ2pGq.
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using Notation C.2. We note

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

||χnp∆nqρnpPnpfqqq||2ℓ2pGnq

˛
‚`WN

“
N´1ÿ

n“1

¨
˝ ÿ

qPΓn´1

||χnp∆nqρnpPnpfqqq||2ℓ2pGnq

˛
‚`

ÿ

qPΓN´1

||χN p∆N qρN pPN pfqqq||2ℓ2pGN q

`
ÿ

qPΓN

||fq||2ℓ2pGN q.

Every path rq P ΓN may be written as q “ pγn, qq, for some γn P Γn and q P ΓN´1. Thus we have

ÿ

qPΓN

||fq||2ℓ2pGN q “
ÿ

qPΓN´1

ÿ

γNPΓN

||gγN p∆N qPN pρN pfqqq||2ℓ2pGN q

Inserting this in the above equation yields

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

||χnp∆nqρnpPnpfqqq||2ℓ2pGnq

˛
‚`WN

“
N´1ÿ

n“1

¨
˝ ÿ

qPΓn´1

||χnp∆nqρnpPnpfqqq||2ℓ2pGnq

˛
‚

`
ÿ

qPΓN´1

˜
||χN p∆N qρN pPN pfqqq||2ℓ2pGn´1q `

ÿ

γnPΓN

||gγN p∆N qPN pρN pfqq||2ℓ2pGN q

¸

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon
“:βpfqq

.

We have

pL´
NR

´
N q2AN ||fq||2ℓ2pGn´1q ď βpfqq ď pL`

NR
`
N q2BN ||fq||2ℓ2pGn´1q,

by the operator frame property. With this we find:

mint1, pL´
NR

´
N q2ANu

¨
˝
N´1ÿ

n“1

¨
˝ ÿ

qPΓn´1

||χnp∆nqρnpPnpfqqq||2ℓ2pGnq

˛
‚`WN´1

˛
‚

ď
Nÿ

n“1

ÿ

qPΓn´1

||χnp∆nqρnpPnpfqqq||2ℓ2pGnq `WN

ďmaxt1, pL´
NR

´
N q2BNu

˜
N´1ÿ

n“1

˜
ÿ

qPΓn

||χnp∆nqU rqspfq||2ℓ2pGnq

¸
`WN´1

¸
,

after unravelling the definition

WN´1pfq ”
ÿ

qPΓN

||fq||2ℓ2pGn´1q.

The induction hypothesis together with the definition of C˘
N now yields the claim.

With this we now prove our main theorem concerning energy decay.

Theorem H.3. Let Φ8 be a generalized graph scattering transform based on a an operator sequence
D8 “ pPn,∆nq8

n“1 and a module sequence Ω8 with each ρnp¨q ě 0. Assume in each layer
n ě 1 that there is an eigenvector ψn of ∆n with solely positive entries; denote the smallest
entry by mn :“ miniPGn

ψnris. Denote the eigenvalue corresponding to ψn by λn. Quantify the
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’spectral-gap’ opened up at this eigenvalue through neglecting the output-generating function by
ηn :“ ř

γnPΓn
|gγnpλnq|2 and assume Bnmn ě ηn. We then have

WN pfq ď C`
N ¨

«
Nź

n“1

ˆ
1 ´

ˆ
m2

n ´ ηn

Bn

˙˙ff
¨ }f}2ℓ2pGq.

Proof. Denote the spectral projection (i.e. the orthogonal projection projecting to the space of
eigenvectors) onto the eigenspace corresponding to λn by Pnc .

Then we have

WN pfq “
ÿ

qPΓN´1

ÿ

γNPΓN

||gγN p∆N qρN pPN pfqqq||2ℓ2pGN q

“
ÿ

qPΓN´1

ÿ

γNPΓN

||gγN p∆N qp1 ´ PNc qρN pPN pfqqq||2ℓ2pGN q

`
ÿ

qPΓN´1

ÿ

γNPΓN

||gγN p∆N qPNc ρN pPN pfqqq||2ℓ2pGN q

ď
ÿ

qPΓN´1

BN ||p1 ´ PNc qρN pPN pfqqq||2ℓ2pGN q

`
ÿ

qPΓN´1

ηN ||PNc ρN pPN pfqqq||2ℓ2pGN q

ď
ÿ

qPΓN´1

BN ||p1 ´ PNc qρN pPN pfqqq||2ℓ2pGN q

`
ÿ

qPΓN´1

ηN ||ρN pPN pfqqq||2ℓ2pGN q.

By orthogonality of the spectral projection, we then have

||p1 ´ PNc qρN pPnpfqqq||2ℓ2pGN q “ ||ρN pPN pfqqq||2ℓ2pGN q ´ ||PNc ρN pPnpfqqq||2ℓ2pGN q.

Furthermore, we have

|xψN , ρN pPnpfqqqyℓ2pGN q|2 ď ||PNc ρN pPnpfqqq||2ℓ2pGN q

with equality if the multiplicity of λN is exactly one. With this we find

||p1 ´ PNc qρN pPN pfqqq||2ℓ2pGN q “ ||ρN pPN pfqqq||2ℓ2pGN q ´ ||PNc ρN pPN pfqqq||2ℓ2pGN q

ď ||ρN pPN pfqqq||2ℓ2pGN q ´ |xψN , ρN pPN pfqqqyℓ2pGN q|2.

Since the image of ρN is contained in R` by assumption, we have

|xψN , ρN pPN pfqqqyℓ2pGN q|2 “

ˇ̌
ˇ̌
ˇ̌
|GN |ÿ

i“1

ρN pPN pfqqqipψN qiµi

ˇ̌
ˇ̌
ˇ̌

2

ě

ˇ̌
ˇ̌
ˇ̌
|GN |ÿ

i“1

|ρN pPN pfqqqi|µi

ˇ̌
ˇ̌
ˇ̌

2

¨m2

N

ě

ˇ̌
ˇ̌
ˇ̌
|GN |ÿ

i“1

|ρN pPN pfqqqi|2µ2

i

ˇ̌
ˇ̌
ˇ̌ ¨m2

N

ě

ˇ̌
ˇ̌
ˇ̌
|GN |ÿ

i“1

|ρN pPN pfqqqi|2µi

ˇ̌
ˇ̌
ˇ̌ ¨m2

N

ě ||ρN pPN pfqqq||2ℓ2pGN q ¨m2

N
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Here the second to last inequality follows since in any finite dimensional vector space, the 1-norm is
larger than the 2-norm (||f ||1 ě ||f ||2) and all weights are assumed to satisfy µi ě 1. Thus we now
know

||p1 ´ PNc qρN pPN pfqqq||2ℓ2pGN q ď
`
1 ´m2

N

˘
||ρN pPN pfqqq||2ℓ2pGN q.

Inserting this in our estimate for WN pfq we find

WN pfq ď
ˆ
1 ´

ˆ
m2

N ´ ηn

Bn

˙˙
L`
NR

`
NBN ¨WN´1pfq

ď C`
N

Nź

n“1

ˆ
1 ´

ˆ
m2

N ´ ηn

Bn

˙˙
||f ||2ℓ2pGq.

Taking N to infinity, we know that C`
N converges to something larger than zero by assumption.

For products of the form
Nś
n“0

p1 ´ qnq with 0 ď qn ă 1 it is a standard exercise to prove that the limit

is non-zero precisely if the sum over the qn converges. Combining the above result with Lemma H.2,
we obtain as an immediate Corollary:

Corollary H.4. In the setting of Theorem 4.6, the generalized scattering transform satisfies Φ´1
8 p0q “

t0u if C˘
N Ñ C˘ for some positive constants C˘ and

řN
n“1

pmn ´ ηn{Bnq Ñ 8 as N Ñ 8.

I Stability of Graph Level Feature Aggregation

I.1 General non-linear feature aggregation:

Our main stability theorem for non-linear feature aggregation is as follows:

Theorem I.1. We have

}ΨN pfq´ΨN pgq}RN
ď
˜
1 `

Nÿ

n“1

maxtrBn ´ 1s, rBnpL`
nR

`
n q2 ´ 1s, 0u

n´1ź

k“1

Bk

¸ 1

2

}f´h}ℓ2pGq.

With the conditions and notation of Theorem 4.2 we have

}ΨN pfq ´ rΨN pfq}RN
ď
b
2p2N ´ 1q ¨

b
pmaxtB, 1{2uqN´1 ¨D ¨ δ ¨ }f}ℓ2pGq.

Additionally, in the setting of Theorem 4.5, assuming that for each n ď N the identification operator
Jn satisfies

ˇ̌
}Jnf}

ℓ1p rGnq{?
µ rGn

´}f}ℓ1pGnq{?
µGn

ˇ̌
,
ˇ̌
}Jnf}

ℓkp rGnq ´}f}ℓkpGnq

ˇ̌
ď δ ¨K ¨}f}ℓ2pGnq

(2 ď k ď pn) implies (@f P ℓ2pGq)

}rΨN pJ0fq ´ ΨN pfq}RN
ď

?
2 ¨

b
K2
N ¨ `K2 ¨ δ ¨ }f}ℓ2pGq.

Furhermore, under the assumptions of Corollary H.4 Ψ8pfq “ 0 implies f “ 0.

Proof. Let f, h P ℓ2pGq. To prove the first two claims, it suffices to prove

}ΨN pfq ´ ΨN phq}RN
ď }ΦN pfq ´ ΦN phq}FN

,

and

}ΨN pfq ´ rΨN pfq}RN
ď }ΦN pfq ´ rΦN pfq}FN

.

Both statements follow immediately, as soon as we have proved

}NG
p pfq ´NG

p phq}Rp ď }f ´ h}ℓ2pGq
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for arbitrary choices of p and G. To this end we note that for p ě 2 we have }f}ℓppGq ď }f}ℓ2pGq

by the monotonicity of p-norms, while we have }f}ℓ1pGq ď ?
µG ¨ }f}ℓ2pGq by Hölder’s inequality.

With this we find

}NG
p pfq ´NG

p phq}2Rp “ 1

p

˜
1

µG
|}f}ℓ1pGq ´ }h}ℓ1pGq|2 `

pÿ

i“2

|}f}ℓipGq ´ }h}ℓipGq|2
¸

ď 1

p

˜
1

µG
|}f ´ h}ℓ1pGq|2 `

pÿ

i“2

|}f ´ h}ℓipGq|2
¸

ď 1

p
¨ p ¨ |}f ´ h}ℓ2pGq|2

“ }f ´ h}ℓ2pGq.

where we have employed the reverse triangle inequality in the first step.

To prove the second claim, we note that we have

}ΨN pfq ´ rΨN pJ0fq}2RN

“
Nÿ

n“1

¨
˚̋ ÿ

qPΓn´1

}NGn
pn

pχnp∆nqρnpPnppfqqqqloooooooooooomoooooooooooon
“:xq

q ´N
rGn
pn

pχnpr∆nqρnpPnp rfqqqloooooooooomoooooooooon
“:rxq

q}2Rpn

˛
‹‚

ď2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}N rGn
pn

pJnxqq ´N
rGn
pn

prxqq}Rpn

˛
‚

`2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}N rGn
pn

pJnxqq ´NGn
pn

pxqq}Rpn

˛
‚

“2}JΦN pfq ´ rΦN pJ0fq}2FN

`2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}N rGn
pn

pJnxqq ´NGn
pn

pxqq}Rpn

˛
‚.

Thus it remains to bound the last expression. We have

}N rGn
p pJnxqq ´NGn

pn
pxqq}Rpn

“ 1

pn

¨
˝
ˇ̌
ˇ̌
ˇ

1
?
µGn

}f}ℓ1pGq ´ 1
?
µ rGn

}Jnf}
ℓ1p rGq

ˇ̌
ˇ̌
ˇ

2

`
pnÿ

i“2

|}f}ℓipGq ´ }Jnf}
ℓip rGq|2

˛
‚

ďK2 ¨ δ2 ¨ }xq}2ℓ2pGnq.

By our results of Appendix C and since we assume admissibility, we have

Nÿ

n“1

ÿ

qPΓn´1

}xq}2ℓ2pGnq ď }f}2ℓ2pGq.

Thus in total

}ΨN pfq ´ rΨN pJ0fq}2FN
ď 2}JΦN pfq ´ rΦN pJ0fq}2FN

` 2Kδ}f}ℓ2pGq,

from which our stability claim follows.

It remains to prove that the assumptions of Corollary H.4 Ψ8pfq “ 0 imply f “ 0. But since
NG
p pfq “ 0 implies f “ 0, this is clear.
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I.2 Low-Pass feature Aggregation

The main assumption we have in this section is that each operator ∆n (and r∆n) has a simple lowest
lying eigenvalue equal to zero. We denote the associated eigenvector (determined up to a complex
phase) by ψ∆n

and the associated spectral projection to the lowest lying eigenvalue by P∆n
. It acts

as
P∆n

f ” ψ∆n
xψ∆n

, fyℓ2pGnq.

Now we are ready to state our main stability result under these circumstances:

Theorem I.2. We have

}Ψ|x¨,¨y|
N pfq´Ψ

|x¨,¨y|
N pgq}CN

ď
˜
1 `

Nÿ

n“1

maxtrBn ´ 1s, rBnpL`
nR

`
n q2 ´ 1s, 0u

n´1ź

k“1

Bk

¸ 1

2

}f´h}ℓ2pGq.

With the conditions and notation of Theorem 4.2 and under the additional assumption }pP∆n
´

P r∆n
q}op ď K ¨ δ for n ď N and some K ě 0, we have

}Ψ|x¨,¨y|
N pfq ´ rΨ|x¨,¨y|

N pfq}CN
ď

?
2 ¨

b
2p2N ´ 1qpmaxtB, 1{2uqN´1 `K2 ¨ δ ¨ }f}ℓ2pGq.

In the setting of Theorem 4.5 and under the additional assumption |}P∆n
f}ℓ2pGnq ´

}P r∆n
Jnf}

ℓ2p rGnq| ď Kδ||f ||ℓ2pGnq for all f P ℓ2pGnq (n ď N ), we have

}rΨ|x¨,¨y|
N pJ0fq ´ Ψ

|x¨,¨y|
N pfq}CN

ď
?
2 ¨

b
K2
N ¨ `K2 ¨ δ ¨ }f}ℓ2pGq.

Proof. Let f, h P ℓ2pGq. To prove the first claim, it suffices to prove

}Ψ|x¨,¨y|
N pfq ´ Ψ

|x¨,¨y|
N phq}CN

ď }ΦN pfq ´ ΦN phq}FN
.

This immediately follows from the fact that for all f P ℓ2pGnq
|xψ∆n

, fyℓ2pGnq|2 ď }ψ∆n
}2ℓ2pGnq ¨ }f}2ℓ2pGnq

by Hölder’s inequality.

The next claim we want to prove is that we have for all f P ℓ2pGq

}Ψ|x¨,¨y|
N pfq ´ rΨ|x¨,¨y|

N pfq}CN
ď

?
2 ¨

b
2p2N ´ 1q `K2 ¨ δ ¨ }f}ℓ2pGq.

We note

}Ψ|x¨,¨y|
N pfq ´ rΨ|x¨,¨y|

N pfq}2CN

“
Nÿ

n“1

¨
˚̋ ÿ

qPΓn´1

ˇ̌
ˇ̌
ˇ̌
ˇ
|xψ∆n

, χnp∆nqρnpPnpfqqqloooooooooomoooooooooon
“:xq

yℓ2pGnq| ´ |xψ r∆n
, χnpr∆nqρnpPnp rfqqqloooooooooomoooooooooon

rxq

yℓ2pGnq|

ˇ̌
ˇ̌
ˇ̌
ˇ

2˛
‹‚

“
Nÿ

n“1

¨
˝ ÿ

qPΓn´1

ˇ̌
ˇ}P∆n

xq}ℓ2pGnq ´ }P r∆n
rxq}ℓ2pGnq

ˇ̌
ˇ
2

˛
‚

ď
Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}P∆n
xq ´ P r∆n

rxq}2ℓ2pGnq

˛
‚

ď2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}P r∆n
pxq ´ rxqq}2ℓ2pGnq

˛
‚` 2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}pP∆n
´ P r∆n

qxq}2ℓ2pGnq

˛
‚

ď2}ΦN pfq ´ ΦN phq}2FN
` 2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}pP∆n
´ P r∆n

qxq}2ℓ2pGnq

˛
‚
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Hence we need to bound the expression "}pP∆n
´ P r∆n

qxq}2ℓ2pGnq". We note

}pP∆n
´ P r∆n

qxq}2ℓ2pGnq ď }pP∆n
´ P r∆n

q}op ¨ }xq}2ℓ2pGnq

ď K2 ¨ δ2 ¨ }xq}2ℓ2pGnq

and thus

}Ψ|x¨,¨y|
N pfq ´ rΨ|x¨,¨y|

N pfq}2CN

ď2}ΦN pfq ´ ΦN phq}2FN
` 2K2 ¨ δ2 ¨

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

}χnp∆nqρnpPnppfqqqq}2ℓ2pGnq

˛
‚

ď2}ΦN pfq ´ ΦN phq}2FN
` 2K2 ¨ δ2 ¨ }f}2ℓ2pGq

and the claim follows.

Finally we want to prove

}rΨ|x¨,¨y|
N pJ0fq ´ Ψ

|x¨,¨y|
N pfq}CN

ď
?
2 ¨

b
K2
N ¨ `K2 ¨ δ ¨ }f}ℓ2pGq.

We note

}Ψ|x¨,¨y|2

N pfq ´ rΨ|x¨,¨y|
N pfq}CN

“
Nÿ

n“1

¨
˚̋ ÿ

qPΓn´1

ˇ̌
ˇ̌
ˇ̌
ˇ
|xψ∆n

, χnp∆nqρnpPnppfqqqqloooooooooooomoooooooooooon
“:xq

yℓ2pGnq| ´ |xψ r∆n
, χnpr∆nqρnpPnp rfqqqloooooooooomoooooooooon

rxq

y
ℓ2p rGnq|

ˇ̌
ˇ̌
ˇ̌
ˇ

2˛
‹‚

“
Nÿ

n“1

¨
˝ ÿ

qPΓn´1

ˇ̌
ˇ}P∆n

xq}ℓ2pGnq ´ }P r∆n
rxq}ℓ2p rGnq

ˇ̌
ˇ
2

˛
‚

ď
Nÿ

n“1

¨
˝ ÿ

qPΓn´1

ˇ̌
ˇ}P∆n

xq}ℓ2pGnq ´ }P r∆n
Jnxq}ℓ2p rGnq ` }P r∆n

Jnxq}ℓ2p rGnq ´ }P r∆n
rxq}ℓ2p rGnq

ˇ̌
ˇ
2

˛
‚

ď2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

ˇ̌
ˇ}P r∆n

Jnxq}ℓ2p rGnq ´ }P r∆n
rxq}ℓ2p rGnq

ˇ̌
ˇ
2

˛
‚

`2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

ˇ̌
ˇ}P∆n

xq}ℓ2pGnq ´ }P r∆n
Jnxq}ℓ2p rGnq

ˇ̌
ˇ
2

˛
‚

ď2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

ˇ̌
ˇ}P r∆n

Jnxq}ℓ2p rGnq ´ }P r∆n
rxq}ℓ2p rGnq

ˇ̌
ˇ
2

˛
‚

`2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

ˇ̌
ˇ}P∆n

xq}ℓ2pGnq ´ }P r∆n
Jnxq}ℓ2p rGnq

ˇ̌
ˇ
2

˛
‚

ď2}JΦN pfq ´ rΦN pJ0fq}2ĂFN
` 2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

ˇ̌
ˇ}P∆n

xq}ℓ2pGnq ´ }P r∆n
Jnxq}ℓ2p rGnq

ˇ̌
ˇ
2

˛
‚

ď2}JΦN pfq ´ rΦN pJ0fq}2ĂFN
` 2

Nÿ

n“1

¨
˝ ÿ

qPΓn´1

K2 ¨ δ2}xq}2ℓ2pGnq

˛
‚

ď2}JΦN pfq ´ rΦN pJ0fq}2ĂFN
` 2K2 ¨ δ2}f}2ℓ2pGq.

which proves the claim.
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In establishing triviality of the ’kernel’, we have to be a tiny bit more careful:

Theorem I.3. In the setting of of Corollary H.4, assume that in each layer n, the output generating
function χn of the underlying scattering transform satisfies χnp0q ‰ 0 and χnpλiq “ 0 for ordered

non-zero eigenvalues λ2 ď ... ď λ|Gn| of the operator ∆n. Then Ψ
|x¨,¨y|
8 pfq “ 0 implies f “ 0.

Proof. Under these assumptions, we do not lose any information by projecting to ψ∆n
in each

ℓ2pGnq, since the image of χnp∆nq is already contained in the one-dimensional space generated by
the lowest lying eigenvector ψ∆n

.

J Details on Higher Order Scattering

Node signals capture information about nodes in isolation. However, one might also want to analyse
or incorporate information about binary, ternary or even higher order relations between nodes, such
as distances or angles between nodes representing atoms in a molecule. This can be formalized by
considering tensorial input signals:

Tensorial input: A 2-tensor on a graph G, as it was already utilized in Section 6, is simply an

element of C|G|ˆ|G| or – equivalently – a map from GˆG to C, since it associates a complex number
to each element pg1, g2q P G ˆ G. Since G ˆ G is precisely the set of (possible) edges E, we can

equivalently think of 2-tensors edge-signals. A 3-tensor an element of C|G|ˆ|G|ˆ|G| or equivalently
a map from G ˆ G ˆ G ” G3 to C. A 4-tensor then is a map from G4 ” G ˆ G ˆ G ˆ G to C

or equivalenlty an element of C|G|ˆ|G|ˆ|G|ˆ|G| and so forth. Clearly the space of k-tensors forms a
linear vector space. Addition and scalar multiplication by λ P C are given by

pf ` λgqi1,...,ik :“ fi1,...,ik ` λgi1,...,ik

with f and g being k-tensors. For fixed k, we equip the space of k-tensors with an inner product
according to

xf, gy “
|G|ÿ

i1,...,ik“1

fi1,...,ikgi1,...,ikµi1,...,ik

and denote the resulting inner-product space by ℓ2pGkq.

Operators on Spaces of Tensors: Since for fixed k the space ℓ2pGkq is simply a |G|k-dimensional

complex inner product space, there are exist normal operators ∆k : ℓ2pGkq Ñ ℓ2pGkq on this space.

Note that the k in ∆k signifies on which space this operator acts. It does not signify that an operator
is raised to the kth power. Setting for example node-weights µi and edge weights µik to one, the
adjacency matrix W as well as normalized or un-normalized graph Laplacians constitute self-adjoint
operators on ℓ2pG2q, where they act by matrix multiplication.

Higher order Scattering Transforms: We can then follow the recipe laid out Section 3 in con-
structing kth-order scattering transforms; all that we need are a module sequence ΩN and an operator
sequence Dk

N :“ pP kn ,∆k
nqNn“1, where now P kn : ℓ2pGkn´1q Ñ ℓ2pGknq and ∆k

n : ℓ2pGknq Ñ ℓ2pGknq.
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Figure 7: Schematic Higher Order Scattering Ar-
chitecture

To our initial signal f P ℓ2pGkq we first apply

the connecting operator P k1 , yielding a signal rep-

resentation in ℓ2pGk1q. Subsequently, we apply
the pointwise non-linearity ρ1. Then we apply
our graph filters tχ1p∆k

1quŤtgγ1p∆k
1quγ1PΓ1

to ρ1pP k1 pfqq yielding the output V1pfq :“
χ1p∆k

1qρ1pP k1 pfqq as well as the interme-
diate hidden representations tU1rγ1spfq :“
gγ1p∆k

1qρ1pP k1 pfqquγ1PΓ1
obtained in the first

layer. Here we have introduced the one-step
scattering propagator Unrγns : ℓ2pGkn´1q Ñ
ℓ2pGknq mapping f ÞÑ gγnp∆nqρnpPnpfqq
as well as the output generating operator
Vn : ℓ2pGkn´1q Ñ ℓ2pGknq mapping f to

χnp∆k
nqρnpP kn pfqq. Upon defining the set

ΓN´1 :“ ΓN´1 ˆ ... ˆ Γ1 of paths of length
pN ´ 1q terminating in layer N ´ 1 (with Γ0

taken to be the one-element set) and iterating the
above procedure, we see that the outputs gener-
ated in the N th-layer are indexed by paths ΓN´1

terminating in the previous layer.

We denote the resulting feature map by ΦkN and write F k
N for the corresponding feature space. The

node-level stability results of the preceding sections then readily translate to higher order scattering
transforms.

As the respective proofs are identical to the corresponding results for the node setting, we do not
repeat them here.

Theorem J.1. With the notation of Section 4, we have for all f, h P ℓ2pGkq:

}ΦkN pfq ´ ΦkN phq}2
Fk

N

ď
˜
1 `

Nÿ

n“1

maxtrBn ´ 1s, rBnpL`
nR

`
n q2 ´ 1s, 0u

n´1ź

ℓ“1

Bℓ

¸
}f ´ h}2ℓ2pGkq

Theorem J.2. Let ΦN and rΦN be two scattering transforms based on the same module sequence

ΩN and operator sequences Dk
N ,

rDk
N with the same connecting operators (P kn “ rP kn ) in each

layer. Assume R`
n , L

`
n ď 1 and Bn ď B for some B and n ď N . Assume that the respective

normal operators satisfy }∆k
n ´ r∆k

n}F ď δ for some δ ą 0. Further assume that the functions
tgγnuγnPΓn

and χn in each layer are Lipschitz continuous with associated Lipschitz constants

satisfying L2
χn

` ř
γnPΓn

L2
gγn

ď D2 for all n ď N and some D ą 0. Then we have for all

f P ℓ2pGkq

}rΦkN pfq ´ ΦkN pfq}FN
ď
b
2p2N ´ 1q ¨

b
pmaxtB, 1{2uqN´1 ¨D ¨ δ ¨ }f}ℓ2pGkq

Theorem J.3. Let ΦkN ,
rΦkN be higher order scattering transforms based on a common module

sequence ΩN and differing operator sequences Dk
N ,

rDk
N . Assume R`

n , L
`
n ď 1 and Bn ď B

for some B and n ě 0. Assume that there are identification operators Jn : ℓ2pGknq Ñ ℓ2p rGknq,
rJn : ℓ2p rGknq Ñ ℓ2pGknq (0 ď n ď N ) so that the respective signal spaces are δ-unitarily equivalent,

the respective normal operators ∆k
n,

r∆k
n are ω-δ-close as well as bounded (in norm) byK ą 0 and the

connecting operators satisfy } rP knJn´1f ´ JnP
k
nf}

ℓ2p rGk
nq ď δ}f}ℓ2pGk

n´1
q. For the common module

sequence ΩN assume that the non-linearities satisfy }ρnpJnfq ´ Jnρnpfq}
ℓ2p rGk

nq ď δ}f}ℓ2pGk
nq

and that the constants Cχn
and tCgγn uγnPΓN

associated through Lemma 4.4 to the functions of the

generalized frames in each layer satisfy C2
χn

` ř
γnPΓN

C2
gγn

ď D2 for some D ą 0. Denote the

operator that the family tJnun of identification operators induce on F k
N through concatenation by

JN : F k
N Ñ ĂF k

N . Then we have with KN “
a

p8N ´ 1qp2D2 ` 12Bq{7 ¨BN´1 if B ą 1{8 and
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KN “
a

p2D2 ` 12Bq ¨ p1 ´BN q{p1 ´Bq if B ď 1{8 that

}rΦkN pJ0fq ´ JNΦkN pfq} ĂFk
N

ď KN ¨ δ ¨ }f}ℓ2pG, @f P ℓ2pGkq.

If additionally } rP knJn´1f ´ JnP
k
nf}

ℓ2p rGnq “ 0 or }ρnpJnfq ´ Jnρnpfq}
ℓ2p rGk

nq “ 0 holds in

each layer, then we have KN “
a

p4N ´ 1qp2D2 ` 4Bq{3 ¨BN´1 if B ą 1{4 and KN “a
p2D2 ` 4Bq ¨ p1 ´BN q{p1 ´Bq if B ď 1{4. If both additional equations hold, we have

KN “
a

p2N ´ 1q2D2 ¨BN´1 if B ą 1{2 and KN “
a
2D2 ¨ p1 ´BN q{p1 ´Bq if B ď 1{2.

The map NG
p introduced in (4) can also be adapted to aggregate higher-order tensorial features into

graph level features: With

}f}q :“
˜

ÿ

i1,...,ikPG

|fi1,...,ik |qµi1,...,ik

¸1{q

and µGk :“ ř|G|
i1...ik“1

µi1,...,ik , we define

NGk

p pfq “ p}f}ℓ1pGkq{?
µGk , }f}ℓ2pGkq, }f}ℓ3pGkq, ..., }f}ℓppGkqqJ{?

p.

Given a feature map ΦkN with feature space

FN “ ‘N
n“1

`
ℓ2pGknq

˘|Γn´1|
,

we obtain a corresponding map ΨkN mapping from ℓ2pGkq to

RN “ ‘N
n“1 pRpnq|Γn´1|

by concatenating ΦkN with the map that the family of non-linear maps tNpn
Gk

n
uNn“1 induces on FN by

concatenation. The resulting map ΨkN again has stability properties analogous to the node level case:

Theorem J.4. Assuming admissibility, we have

}ΨkN pfq ´ΨkN phq}RN
ď
˜
1 `

Nÿ

n“1

maxtrBn ´ 1s, rBnpL`
nR

`
n q2 ´ 1s, 0u

n´1ź

ℓ“1

Bℓ

¸
}f ´h}2ℓ2pGkq

for all f, h P ℓ2pGq . With the conditions and notation of Theorem J.2 we have

}ΨkN pfq ´ rΨkN pfq}RN
ď
b
2p2N ´ 1q ¨

b
pmaxtB, 1{2uqN´1 ¨D ¨ δ ¨ }f}ℓ2pGkq.

Additionally, in the setting of Theorem J.3, assuming that for each n ď N the identification operator
Jn satisfies

ˇ̌
}Jnf}

ℓ1p rGk
nq{aµ rGk

n
´}f}ℓ1pGk

nq{?
µGk

n

ˇ̌
,
ˇ̌
}Jnf}

ℓrp rGk
nq ´}f}ℓrpGk

nq

ˇ̌
ď δ ¨K ¨}f}ℓ2pGk

nq

for 2 ď r ď pn implies (@f P ℓ2pGkq)

}rΨN pJ0fq ´ ΨN pfq}RN
ď

?
2 ¨

b
K2
N `K2 ¨ δ ¨ }f}ℓ2pGkq.

As the proofs here are virtually the same as for the corresponding results in previous sections –
essentially only replacing G by Gk, we omit a repetition of them here.

K Additional Details on Experiments

Here we provide additional details on utilized scattering architectures, training procedures, datasets
and (performance of) other methods our approach is being compared to. Irrespective of task, our
models are trained on an NVIDIA DGX A100 architecture utilizing between two and eight NVIDIA
Tesla A100 GPUs with 80GB memory each. Running 10-fold cross validation for the respective
experiments took at most 71 hours (which was needed for social network graph classification on
REDDIT-12K).
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K.1 Social Network Graph Classification

Datasets: The data we are working with is taken from [43]. In particular this work introduced six
social network datasets extracted from from scientific collaborations (COLLAB), movie collabora-
tions (IMDB-B, IMDB-M) and Reddit discussion threads (REDDIT-B, REDDIT-5K, REDDIT-12K).
Data is anonymised and contains no content that might be considered offensive. Each graph carries a
class label, and the goal is to predict this label. Some basic properties of these datasets are listed in
Table 3 below.

Table 3: Social Network Dataset Characteristics

Attributes: COLLAB IMDB- B IMDB-M REDDIT-B REDDIT-5K REDDIT-12K

Graphs 5K 1K 1.5K 2K 5K 12K
Nodes 372.5K 19.8K 19.5K 859.2K 2.5M 4.7M
Edges 49.1M 386.1K 395.6 4M 11.9M 21.8M
Maximum Degree 2k 540 352 12.2K 8K 12.2K
Minimum Degree 4 4 4 4 4 4
Average Degree 263 39 40 9 9 9
Target Labels 3 2 3 2 5 11
Disconnected Graphs No No No Yes Yes Yes

These datasets contain graph structures, however they don’t contain associated weights or graph
signals. Having unspecified weights simply means that the adjacency matrix W from which we
construct the graph Laplacian

L “ D ´W

on which our operator ∆ is based simply has each entry corresponding to an edge set to unity. If
no edge is present between vertices i and j, the entry Wij is set to zero. It remains to solve the
problem of the missing input signals. Our strategy is to generate signals reflecting the geometry
of the underlying graph. We do this by utilizing features that associate to each node a number that
characterizes its role or importance within its local environment or within the entire graph. We briefly
describe them here:

1. Degree: The degree of a node is the number of edges incident at this node.

2. Eccentricity: For a connected graph, the eccentricity of a node is the maximum distance
from this node to all other nodes. On a disconnected graph it is not defined.

3. Clustering: For unweighted graphs the clustering cpuq of a node u is the fraction of possible
triangles through that node that actually exist. It is calculated as

cpuq “ 2T puq
degpuqpdegpuq ´ 1q .

4. Number of triangles: The number of triangles containing the given node as a vertex.

5. Core number: A k-core is a maximal subgraph that only contains nodes of degree k or
more. The core number of a node is the largest value k of a k-core containing that node.

6. Clique number: A clique is a subset of vertices of an undirected graph such that every two
distinct vertices in the clique are adjacent. This input assigns the number of cliques the
nodes participates in to each node.

7. Pagerank: This returns the PageRank of the respective nodes in the graph. PageRank
computes a ranking of the nodes in the graph based on the structure of the edges. Originally
it was designed as an algorithm to rank web pages.

For the first three datasets listed in Table 3 we utilize all listed input features. For the latter three
datasets we have to refrain from using eccentricity as an input signal, as these datasets contain graphs
that have multiple non-connected graph components.

Scattering Architecture: We chose a generalized scattering architecture of depth N “ 4. As
normal-operators, we utilize in each layer the un-normalized graph Laplacian L “ D ´W scaled
by its largest eigenvalue (∆ “ L{λmaxpLq). Filters are chosen as 1

2
psinpπ{2 ¨ ∆q, rcospπ{2 ¨ ∆q ´
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ψ∆ψ
J
∆

s, sinpπ ¨ ∆q, rcospπ ¨ ∆q ´ ψ∆ψ
J
∆

sq, which allows to specify the output generating function
solely by demanding χp0q “ 1 and χpλq “ 0 on all other eigenvalues of ∆. Here ψ∆ is the
normalized vector of all ones (satisfying ∆ψ∆ “ 0). Connecting operators are chosen as the identity,
while we set ρně1p¨q “ | ¨ |. We note that for connected graphs, this recovers Architecture I of Fig. 2.
On disconnected graphs (as they can appear in the REDDIT datasets), we however do not account
for vectors other than ψ∆ in the lowest-lying eigenspace of the graph Laplacian. This scattering
architecture is then applied to each of these input signal individually. For each input signal, this
returns a feature vector with 1 ` 4 ` 16 ` 64 “ 85 entries. These individual feature vectors are
then concatenated into one final composite feature vector for each graph. Concerning applicable
theoretical results, we note the following:

Training Procedure: We train RBF kernel support vector classifiers on our composite scattering
features. We fix ǫ “ 0.1. The hyperparameter γ scaling the exponent is chosen from

Gpool :“ t0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100u,
while we pick the C that controls the error our slack variables introduce among

Cpool :“ t0.001, 0.01, 0.1, 1, 10, 25, 50, 100, 1000u.
We chose these parameters in agreement with the choices of [12] to facilitate comparison between
the two works.
We could simply implement the training of the RBF-classifier on our composite scattering features
by dividing each social-network dataset into 10 folds, then iteratively choosing one fold for testing
and among the remaining 9 folds randomly choosing one for validation (i.e. for tuning the hyperpa-
rameters). Instead, following [12] (whose code is released under an Apache license and on which
we partially built), we take a slightly different approach: We still randomly split our dataset into 10
folds. Among the 10 folds, we iteratively pick one for testing. Say we have picked the nth fold for
testing. Then there are 9 remaining folds. We iteratively pick the mth

n (with 1 ď mn ď 9) of the
remaining 9 folds for choosing hyperparameters. This leaves 8 folds on which we train our model
for each choice of hyper parameter in Cpool ˆGpool. The resulting classifiers are all evaluated on the

mth
n fold. The one that performs best is retained as classifier mn. As mn varies between 1 and 9

(still for fixed n), this yields a set tfmn
: 1 ď mn ď 9u of nine classifiers. From these we build the

classifier fn, whose classification result is obtained from a majority vote among the nine classifiers
in tfmn

: 1 ď mn ď 9u. Then we evaluate the performance of fn on the nth fold to obtain the

nth estimation of how well our model performs. As n varies from one to ten, we built the mean
and variance of the performances of the classifiers fn on the nth fold expressed as the percentage of
correct classifications.

Reference Methods: To allow for a comparison of our results to the literature, typical classification
accuracies for graph algorithms on social network datasets are displayed in Table 1. Following the
standard format of reporting classification accuracies, they are presented in the format (Accuracy ˘
standard deviation). If results are not reported for a dataset, we denote this as not available (N/A).
The first three rows of Table 1 display results for graph kernel methods; namely Weisfeiler-Lehman
graph kernels (WL, [33]), Graphlet kernels (Graphlet, [34]) and deep graph kernels (DGK, [42]). The
subsequent rows display results for geometric deep learning algorithms: Deep graph convolutional
neural networks (DGCNN,[46]), Patchy-san (PSCN (with k=10), [26]), recurrent neural network
autoencoders (S2S-N2N-PP, [16]) and graph isomorphism networks (GIN [41]). These results are
taken from [12]. Additionally we compare with P-Poinc [19], which embeds nodes into a hyperbolic
space (the Poincare ball, to be precise), GSN-e [3] which combines message passing with structural
features extracted via subgraph isomorphism and WKPI-kC [47] which utilizes a weighted kernel
within its metric learning framework. The second to last row (GS-SVM [12]) provides a result that is
also based on a method that combines a static scattering architecture with a support vector machine.
Its filters are based on graph wavelets built from differences between lazy random walks that have
propagated at different time scales.

K.2 Regression of Quantum Chemical Energies

Dataset: The dataset we consider is the QM7 dataset, introduced in [2, 31]. This dataset contains
descriptions of 7165 organic molecules, each with up to seven heavy atoms, with all non-hydrogen
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atoms being considered heavy. A molecule is represented by its Coulomb matrix CClmb, whose
off-diagonal elements

CClmb
ij “ ZiZj

|Ri ´Rj |
(10)

correspond to the Coulomb-repulsion between atoms i and j, while diagonal elements encode a
polynomial fit of atomic energies to nuclear charge [31]:

CClmb
ii “ 1

2
Z2.4
i

For each atom in any given molecular graph, the individual Cartesian coordinates Ri and the atomic
charge Zi are also accessible individually. To each molecule an atomization energy - calculated via
density functional theory - is associated. The objective is to predict this quantity, the performance
metric is mean absolute error. Numerically, atomization energies are negative numbers in the range
´600 to ´2200. The associated unit is rkcal/mols.

Scattering Architecture: Off-diagonal entries in the Coulomb Matrix clearly represent an inverse
distance. A weight of zero can then heuristically be thought of as the inverse distance between two
infinitely separated atoms. After calculating the degree matrix D associated to C, we obtain the
graph Laplacian once more as L “ D ´ C and set our normal operator to

∆ “ L

λmaxpLq .

If we continuously vary the distances in (10), staying clear of zero, then the adjacency matrix
and hence the graph Laplacian L varies continuously. As long as we avoid complete degeneracy,
the largest eigenvalue λmaxpLq will remain positive. This implies that our normal operator ∆
varies continuously under changes of the inter-atomic distances, which implies that our feature
vector also varies continuously, as distances are changed. Connecting operators are set to the
identity, while non-linearities are fixed to ρně1p¨q “ | ¨ |. Filters are chosen as psinpπ{2 ¨ ∆q,
cospπ{2 ¨ ∆q, sinpπ ¨ ∆q, cospπ ¨ ∆qq acting through matrix multiplication. The output generating
functions are set to the identity as well. Graph level features are aggregated via the map NE

5 p¨q
of Section 6; slightly modified to neglect the normalizing factor in the first entry for improved
convenience in numerical implementability. As weights µij for our second-order feature space are set

to unity and molecular graphs in QM7 contain at most 23-molecules, we note that
?
µG2 ď

?
232 “

23. Going through the proofs of our graph-level stability results, we see that they remain valid after
multiplying each stability constant by 23. The Coulomb matrix (divided by a factor of 10 as this
empirically improved performance) is then also utilized as an edge level input signal. Node level
features are obtained by applying the above architecture to the node level information provided by
the respective atomic charges tZiu on each graph. We aggregate to graph level features using NG

5

(cf. Section 5), again neglecting the normalizing factor in the first entry for improved convenience in
implementing. The network depth is set to N “ 4 in both cases. We then concatenate graph level
features obtained from node- and edge level input into a composite scattering feature vector.

Training Procedure: The QM7 dataset comes with a precomputed partition into five subsets; each
containing a representative amount of heavy and light molecules covering the entire complexity range
of QM7. To allow for 10-fold cross validation, we further dissect each of these subsets into two
smaller datasets, one containing graphs indexed by an even number, one containing graphs indexed
by an odd number. On these 10-subsets, we then perform 10-fold cross validation. Among the 10
folds, we iteratively pick one for testing. Say we have picked the nth fold for testing. Then there
are 9 remaining folds. We iteratively pick the mth

n (with 1 ď mn ď 9) of the remaining 9 folds for
choosing hyperparameters. This leaves 8 folds on which we train our model for each choice of hyper
parameter in Cpool ˆ Gpool. This yields 8 regression models, which we average to built our final

predictor for the nth run. This mean absolute error of this predictor is then evaluated on the nth fold
which was retained for testing. As n varies from one to ten, we built the mean and variance of the
performances of the generated regression models. We chose log-linear equidistant hyperparameters
from

Gpool :“ t0.00003, 0.0003, 0.003, 0.03, 0.3, 3, 30u,
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and
Cpool :“ t400000, 40000, 4000, 400, 40, 4, 0.4u.

Reference Methods: We comprehensively evaluate our method against 11 popular baselines and
state of the art approaches. Among these methods are graph convolutional methods such as GraphConv
[18], Weave [17] or SchNet [32]. MPNN [13] and its variant DMPNN [44] are models considering
edge features during message passing. AttentiveFP [40] is an extension of the graph attention
framework, while N-Gram [21] is a pretrained method. Results for these methods as well as for
GROVER are taken from [30]. PhysChem [45] learns molecular representations via fusing physical
and chemical information. Deep Tensor Neural Networks (DTNN [39]) are adaptable extensions of the
Coulomb Matrix featurizer mapping atom numbers to trainable embeddings which are then updated
based on distance information and other (node-level) atomic features. Finally Path-Augmented Graph
Transformer Networks (PATGN, [6]) exploit the connectivity structure of the data in a global attention
mechanism.
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