A Some Concepts in Linear Algebra

In the interest of self-containedness, we provide a brief review of some concepts from linear algebra
utilized in this work that might potentially be considered more advanced. Presented results are all
standard; a very thorough reference is [24].

Hilbert Spaces: To us, a Hilbert space — often denoted by H — is a vector space over the complex
numbers which also has an inner product — often denoted by (-, -)3,. Prototypical examples are

given by the Euclidean spaces C? with inner product {(z, y)¢a := Z?=1 T;y;. Associated to an inner
product is a norm, denoted by | - | and defined by |z|3 := 4/{x, 2)3 for x € H.

Direct Sums of Spaces Given two potentlally different Hilbert spaces H and 7, one can form

their direct sum H ® H. Elements of 7 @ H are vectors of the form (a,b), witha e Hand b € H.
Addition and scalar multiplication are defined in the obvious way by

(a,b) + Ae,d) := (a + Ae, b+ Ad)
fora,ce H,b,de # and \ € C. The inner product on the direct sum is defined by
<(a, b), (07 d)>’;‘-i®7:l = <a7 C>H + <b, d>7:l'

As is readily checked, this implies that the norm [ - |, on the direct sum is given by
[(a, 0)13,e5 = lalz + 181%-

Standard examples of direct sums are again the Euclidean spaces, where one has C¢ = C" @ C™ if
m+n =d,asis easﬂy checked. One might also consider direct sums with more than two summands,
writing C% = @, C for example. In fact, one might also consider infinite sums of Hilbert spaces:
The space @ 17—[ is made up of those elements a = (a1, as,as, ...) with a; € H; for which the
norm

[e¢]
lale 2, == D lail,
i=1

is finite. This means for example that the vector (1,0, 0,0, ...) is in @2, C, while (1,1,1,1,...) is
not.

Direct Sums of Maps: Suppose we have two collections of Hilbert spaces {#;}I_,, {#;}_, with
IF'elNorI' = 0. Suppose further that for each ¢ < T (resp. ¢ < I') we have a (not necessarily linear)

map J; : H; — H;. Then the collection {J;}1_, of these *component’ maps induce a ’composite’
map

F @£=1Hi - @£=17Tli

between the direct sums. Its value on an element a = (a1, ag, as, ...) € (—B{:l’Hi is defined by

Z(a) = (Ji(ar), Ja(az), J3(as), ...) € D Hi.
Strictly speaking, one has to be a bit more careful in the case where I' = o0 to ensure that
|7 (a)|q= 7, # 0. This can however be ensured if we have ||J;(a;)|z, < Clai|s;, for all
2 Hi i
1 < 4 and some C' independent of all 7, since then H/(a)H@Bf:lﬁi < Claf@xz 4, < oo. If each J; is

a linear operator, such a C' exists precisely if the operator norms (defined below) of all J; are smaller
than some constant.

Operator Norm: LetJ : H — H be a linear operator between Hilbert spaces. We measure its
’size’ by what is called the operator norm, denoted by | - |, and defined by

|49 )5

[Top := .
P vertvln=1 ¥l
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Adjoint Operators LetJ: H — # be a linear operator from the Hilbert space H to the Hilbert

space H. Its adjoint J* : H — Hisan operator mapping in the opposite direction. It is uniquely
determined by demanding that

holds true for arbitrary f € H and u € H.

Normal Operators: If a linear operator A : { — 7 maps from and to the same Hilbert space,
we can compare it directly with its adjoint. If AA* = A*A, we say that the operator A is normal.
Special instances of normal operators are self-adjoint operators, for which we have the stronger
property A = A*. If an operator is normal, there are unitary maps U : H — H diagonalizing A as

U*AU = diag(A1, ...\ ),

with eigenvalues in C. We call the collection of eigenvalues the spectrum o (A) of A. If dim H = d,
we may write 0(A) = {A\}¢_,. It is a standard exercise to verify that each eigenvalue satisfies
|Ai] < |Allop. Associated to each eigenvalue is an eigenvector ¢;. The collection of all (normalized)
eigenvectors forms an orthonormal basis of . We may then write

d
Af =N ldis oui

Resolvent of a (normal) Operator: Given a normal operator A on some Hilbert space H, we have
that the operator (A — z) : H — H is invertible precisely if z # o(A). In this case we write

R(z,A) = (A—2)7"
and call this operator the resolvent of A at z. It can be proved that the norm of the resolvent satisfies

-
dist(z,0(A))’

where dist(z,0(A)) denotes the minimal distance between z and any eigenvalue of A.

IRz, A)op =

Functional Calculus: Given a normal operator A : { — H on a Hilbert space of dimension d and
a complex function g : C — C, we can define another normal operator obtained from applying the
function g to A by

f
g(A) =D gNi) i, Frads.
im1
For example if g(-) = | - |, we obtain the absolute value |A| of A by specifying for all f € H that

d
Alf = Z I\l {Bis £)ri-
i—1

Similarly we find (if z ¢ o(A) and for f € H)

— s Z )\ <¢l7f>7-l¢z ( ) 1 R(Z,A)

where we think of the left-hand-side as applying a function to A, while we think of the right-hand-side
as inverting the operator (A — z). This now allows us to apply tools from complex analysis also to
operators: If a function g is analytic (i.e. can be expanded into a power series), we have

_ L [
9N = =5 P
S

for any circle S < C encircling A by Cauchy’s integral formula. Thus, if we chose .S large enough to
encircle the entire spectrum o (A), we have

41
4 2m

d2(i, Ponds = ——35 Nz,
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Frobenius Norm: Given a finite dimensional Hilbert space H with inner product -, -)3;, and an

orthonormal basis {¢; }%_,, we define the trace of an operator A : H — H as

d
Tr(A) := Y ($r, Aron.
k=1

It is a standard exercise to show that this is independent of the choice of orthonormal basis. The

associated Frobenius inner product on the space of operators is then given as

d
(B, A)p = Tr(B*A) )\ {¢x, B* Adyw.

k=1

Hence the Frobenius norm of an operator is determined by

d
|Al% = Tr(A*A) = (b, A* Adp ).
k=1

It is a standard exercise to verify that we have ||A|,, < ||A| . Since the trace is independent of the
choice of orthonormal basis, the Frobenius norm is invariant under unitary transformations. More

precisely, if U, V' : H — “H are unitary, we have
[UAV|E = | A%

Frobenius norms can be used to transfer Lipschitz continuity properties of complex functions to the

setting of functions applied to normal operators:
Lemma A.1. Let g : C — C be Lipschitz continuous with Lipschitz constant D. This implies

lg(X) = g(¥)|r < Dy |X =Y.
for normal operators X, Y on H.

Proof. This proof is taken (almost) verbatim from [37]. For an operator A : H — H denote by A;;

its matrix representation with respect to the orthonormal basis {¢; }¢_;:

Aij =i, Adj)n.

We then have
d
2 2
JAI: = D7 1Ayl
i,j=1
as a quick calculation shows. Let now U, W be unitary (with respect to the inner product (-, -)3,)
operators diagonalizing the normal operators X and Y as

V*XV = diag(\r, ... An) = D(X)

W*YW = diag(p1, ...ptn) =: D(Y).
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Since the Frobenius norm is invariant under unitary transformations we find
l9(X) = gW)IIE = llg(VD(X)V*) = g(WD(Y)W*)[
= [Vg(D(X))V* = Wg(D(Y))W*|
= [W*Vg(D(X)) = g(DY)W*V |3

d
3 WHVg(DO0) = gDE NIV

d 2

W*V9irlg(DX)]k; — [9(DEY )ik [W* V],

bl
iP]s

-

&,
I

—_

I

D= T

W*V1351% 1g(N) — g(ui) 2

2
< [IW*V1i|" D2IA; — il
2,7=1
d n 2
= D2 Y [N WV D(X)e; — [DO)]i[W* V]
i,j=1|k=1
= DX —Y|3.

B Proof of Theorem 2.1

Theorem B.1. Let A : /2(G) — ¢?(G) be normal. If the family {g;(+)};cs of bounded functions
satisfies A < Y,/ |g:(c)|? < B for all ¢ in the spectrum o(A), we have (Vf € (%(Q))

AHfH?Q(G) < Z ng-(A)fH%(G) S B||f\|1?2(G)~

iel

Proof. Writing the normalized eigenvalue-eigenvector sequence of A as (\;, ¢;) Ell, we simply note

|G| €]
DT KgiR) b, Dy = D) (Z |gi()\k)|2> Kok, el

el k=1 k=1 \iel

Now under the assumption, we can estimate the sum in brackets by A from below and by B from
above. Then we need only use Bessel’s (in)equality to prove

1G]
AIFIP <20 D0 KgiOw) s Hexal® < BIIFIP.
iel k=1
O
C Proof of Theorem 4.1
Theorem C.1. With the notation of Section 3 and setting By = 1, we have:
N n—1
[@n(f) = en(M)|%, < (1 + > max{[Bu (L Ri)* — 11,04 | | Bk(REL;W) |f =l
n=1 k=0

To streamline the argumentation let us first introduce some notation:
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Notation C.2. Let us denote paths in I'N as ¢ := (v, ..., 71). For f € £2(G) let us write

fq=Uln]o...oU[n](f).

Proof. By Definition, we have

N

18 (f) = on(@)Fy =D | D0 IValfa) = Valho) 22,

n=1 qel'n—1

N
= 2 Z HXn(An)Pn(Pn(fq)) - Xn(An)pn(Pn(hq))”52(Gn)

n=1 q€F"71

We proceed in two steps:
Our initial goal is to upper bound a,, as
an < Bo(LfRS)? - bpoy — by = (bpo1 — b)) + [Ba (L R))? — 1] - by ®))

for by 1= Yoern Ifa = haleq,) With bo = | f — A% ) To achieve this we note that (5) is
equivalent to
an + by < Bo(LERS)? - byy

which upon unraveling definitions may be written as
2 IXn (An)pn(Pr((fg))) — Xn(An>pn(Pn(hq>”?2(Gn) + Z Hfﬁ - hf?”%(G

gel'n—1 gern

Bn(L:{R:{)Q Z qu_th??(Gn,l)'

gelrm—1

(6)

To establish (6), we note, that in the sum over paths of length n, any g € I'" can uniquely be written
as ¢ = (Vn, q), with the path ¢ € T™"~! of length (n — 1) determined by

4= (Yn>Vn—1ss71)-
—_—
T

With this we find
D lfa= il = X DL 195 (An)pa(Pa((£) = v (An)pn (P ()7,

gern Yn €l gel'm—1

Thus we can rewrite the left hand side of (6)) as

Z 7 (An) pr (Pr((f4))) = X (An) pr(Pr(hyg H[" )yt Z 1fg = hq He2

germ—1 gelr'n
- (xnm) W(PalFy) = xn(An)on(Palig) o
qgel'n—1

Y g (A ((fq»)g%,<An>pn<Pn<hq>>||32<Gn))

The fact that in each layer the function {x, (-)} {g~, (-)}4,.er, form a generalized frame with upper
frame constant B,, implies by Theorem 2.1, that we can further bound this as

< B, Z [ on (P, n(Pn(hq)ng(Gn)'

qelrn— 1

Using the Lipschitz continuity of p,, and P,,, we arrive at the desired expression (6).
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Having established that
an < (b1 — by) + [Bu(LERE)? — 1] - by

holds true, we note that we can establish

1 < [ [ Be(Li RE)bo—s

arguing similarly as in the case of @ by using (for f € (?(G,_1))
Z Hgvn4(An—l)fH??(Gn,l) < HXn—l(An—l)fH?%Gn,l) + Z Hgvnfl(An—l)f”%?(an,l)
Yn—1€ln—1 vyel

together with the frame property and Lipschitz continuities. We then iterate this inequality and recall
that by = || f — Al - Using the fact that

Z n) = by — by < by,

we finally find

[2n(f) = @n(h)|%, < <1 + 2 max{[B, (L} R})* - 1],0} l;[ Bk(RZL$)2> If = Pl ).

k=0

O

D Proof or Theorem 4.2

Theorem D.1. Let @y and ® y be two scattering transforms based on the same module sequence

Qn and operator sequences Yy, QN with the same connecting operators (F,, = =P ») in each
layer. Assume R;', L} < 1 and B, < B for some B and n < N. Assume that the respective

normal operators satisfy |A, — A, | < d for some § > 0. Further assume that the functions
{9+, }y,er, and x, in each layer are Lipschitz continuous with associated Lipschitz constants

satisfying L2+, L2 < D?foralln < N and some D > 0. Then we have

1B (f) — Ex ()7 < 4/22Y —1) -4/ (max{B,1/2)¥1 - D5 | flec)

forall f € ¢2(G). If B < 1/2, the stability constant improves to 4/2(1 — BN)/(1 - B)-D < 2-D.
Notation D.2. Let us denote scattering propagators based on operators A,, and connecting operators

P, by U,, and scattering propagators based on operators A, by U,. Similarly, to Notation|C.2| let us
then write (with ¢ = (v, ..., 71))

fa = Unlyn] 0 ... o 1 [11](f).
Proof. By definition we have

N

”(I)N(f) - CT)NHL2¢N = Z Z HXn(An)pn(Pn((fq))) - Xn(ﬁn)pn(Pn(fq))H%(G )

n=1 \ gel'n-1

=iQn

We define by, := 3 cpn [ fo — J?LJH??(GW,)’ with by = | f — h[% ) = 0 and note

entbo= T (InlBadpa(Pal) = o Bl (PalF)

geln—1

+ 2 19y, (An) pn (Pu((f4))) = s (zn)pn(Pn(JFq)H%(Gn)) :

Yn€ly
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Using (with |a + b|? < 2(]a|? + [b]?))

3193, (A)on (Pa(0)) ~ 02, B (P ) e
<9 (An) = 92, Bolon(Pa ) e

g, B)on(Pul(fa))) ~ palPuF e
<9 (An) = 92, Bl - lon(Pa ) o
g, Ba)on(PalFa)) — pu PG o

)
)
n)
)
and

19 (An) = g, A1 < g3, (An) = g5, (A)][F < L5, - 62
(c.f. Lemma[A]), we find

antbp<2 Y <L§n+ D %)(L:R:>262||pn<Pn<fq>>|%2<Gn>

qEF"*I Yn€lp

+2 3} Bullon(Palfe)) = pu(PalF) 2 e

qGF"71

Using L} + Yer, L3, < D2, we then infer (using the assumption L, R} < 1)

Ay < (bn—l — bn) + [QB — 1]bn_1 + Bn_12D252‘|f||p(G).
Now if B < % we have
an < (bp—1 — by) + B"'2D%8°||f||2(c)

and results of geometric sums leads to the desired bound after summing over n.
Hence let us assume B > 1. Using similar arguments as before, we find

buor <B"2D*3||fl[%(q) + 2Bz < B 22D fl[Bqy + B *AD?8| |22y + Abas

n—1
<pn? (2 2k> D28 f|[ ey = B'(2" ~ 2)D%0|flf

k=1
Thus we now know

< 2D°B" || flf3c) + 2B — 112" — 2)D*6*B" 2| f|Pa sy + (bus — br)

N
Z <4/2(2 VBYT.D 6| fleo,

where we have estimated the sum over (b,_1 — by, ) by zero from above again. This establishes the
claim. O

In total we find

Remark D.3. To see that this also holds for our Architecture I of Fig. 2, we note that the critical step
is establishing that Lemma[A-T]also applies to 8y and cos, as defined in Section 2. Here we establish

that N
160(A) = do(A)|lF =0

[eos(A) — @os(A) | < Deos| A = Allp.

Indeed, since A and A are (possibly) rescaled graph Laplacians on the same graph, the spectral
projections to their lowest lying eigen space, associated to the eigenvalue A.,;, = 0 agree. Denoting
this spectral projection by P, we have

cos(A) —cos(A) = [cos(A) — P] — [cos(A) — P] = cos(A) — cos(A)

and we can apply Lemma[A-T] Similar considerations apply to do.

and
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E Prototypical Example illustrating w-) Closeness and J-Unitary
Equivalence

To investigate the example of Figure 3, we label the vertices of
the respective graphs as depicted in Figure [f] We denote the left
graph by G and the right graph by G. The node-weights on G are
given as i; = 1 for 1 < ¢ < 7, while on G the weights are given
as pu; = 1 for 1 < ¢ < 5 while ug = 2. We then consider the
respective un-normalized graph Laplacians A : ¢2(G) — ¢%(G) and
A : 2(G) — (%(G), which for a given adjacency matrix 1 on a
graph signal space /2(G) with node weights {;;}; is given as

Af)i = iZWZ—jm — f). 4 4
vt

Such operators are positive and hence |A| = A (similarly for A). 5 6 5 6
We now need to find operators J : £2(G) — ¢2(G) and J : *(G) —
¢?(Q) satisfying the conditions of Definition 4.3. To construct .J, we @ - vertex-weight 1

define a family {1;}5_, of vectors on ¢2(G) as @ = vertex-weight 2 7
1 = (1,0,0,0,0,0,0), ¥ = (0,1,0,0,0,0,0), m = edge-weight 1/6°
112}3 = (07 07 1a 07 07 07 O) 1/’4 - (0 07 07 17 07 0? 0)7 Flgure 6: IndeXing on the re-
Y5 = (0,0,0,0,1,0,0), ¥ = (0,0,0,0,0,1,1). spective graphs

The map J : /2(G) — EQ(CNJ) is then defined as
6
Tf o= fithi,
i=1

for any f € (2(G). We take J : 2(G) — ¢2(G) to be its adjoint (J := J*), which determined
explicitly by

~ 1
(Ju); = ;@%,@Zz(@)

for any u € £2 (é) We shall now first check the conditions for d-quasi unitary equivalence, which we
list again for convenience; now adapted to our current setting:

1@ < 2 le@s 10 =T o <01 le@,
Hf - ijH?Q(G) < 52 (Hf“??‘(G) + <f7A7 f>£2(G)) ) HU - Jju“?%é) < 62 (HuH?z(é) + <ua£ U’>[2(é)) .

We first note that since J = .J*, we have ||(J — j*)ngz(é) = (. Next we note

6 6
17112 e = 2 Tl = 1fel* + Z; |fil? = Zlui = f1Zc)-

Furthermore we note
6

JJf Z <’(/)z7 wk:>gz(G

k=1 %,_/
=dik

and hence | f — ijH?Q(G) = 0. It remains to control |u — JJUHZ?(G We note
j’ll, = (uh U2, U3, Uq, Us, (’LL5 + ’Z,Lg)/2)
and thus

JJu = (uy,ug, uz, ug, us, (ug + ur)/2, (ug + ur)/2)",

22



Which implies
w—JJu=(0,0,0,0,0, (ur — ug)/2, (ug — uz)/2)7,

and thus ) )
vz olue —urlt  us — ug
[l JJqu(é) =2 1 = 5 .

We have
- 1 &
<u,Au>Z2(é) = = Z Z]|u, uj|2.

l\D

Since Wm = 1/4? by assumption, we have

2

1 1 o~
(i ‘]‘]qu(G lug U?\Q =35 - U?\Z = *52W67|U6 —ug[?

9 57\“6
1 d
5 Z 1]‘u1 uj|? = 6%u, A u>e2(g)

< (uuum + A W)

Thus we have proven J-unitary-equivalence and it remains to establish (—1)-124 closeness. Com-
bining Proposition 4.4.12. and Theorem 4.4.15 of [29], instead of bounding |[(R.J — JR)f|| (@)

126 f|l¢2() directly, we may instead establish that there are operators J' : ¢*(G) — 2(G)
JL: 2(G) — 2(G) satisfying
1Y = T fllp@ <6 (Ifle@ + LA Dew) (7
[T = Jullexay < 0 (Julag + 0B, wpg)) ®)
and N N
T AW e = A T e ). )

We chose J! = J and determine :]\I by setting (for (1 < ¢ < 6))
Thus (7) is clearly satisfied. For (8) we note that we have
(Ju— Jlu) = (0,0,0,0,0, (ur — ug)/2).
Thus we have
1Tt~ Tullacy = 7 lus — url? < 82 (lulPs ) + o A g
(7 u 22(G) = B Ug urlm x u ZQ(CNJ) u, u 02(G)
as before. It remains to establish (9). We have

<f7Ajiu>82(G) Z f’L 1] ')a

i,j=1

while we have

|
e
=
A~
&
>
S
N
a

<J1f, ﬁ u>22(@)
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We have (with all node-weights on £?(() equal to unity)

<¢6»A“>£2(G (Au)g + (Au)7 = <Z We; (fs = f5) + 2(f6 - f7)> + <512(f7 - fG))

J
- (Z Wos(fo — fi) + 55 (fo — f7)>
And thus

T AW = Y FWij(u —u;) = (£ A T

which proves the claim.

F Proof of Lemma 4.4

Lemma F.1. In the setting of Definition 4.3 let A and A be w-d-close and satisfy [A]op, H&Hop <K
for some K > 0. If g : C — C is holomorphic on the disk Bx1(0) of radius (K + 1), there is a
constant C'y > 0 so that

l9(A)T = Tg(A)]op < Cy -6
with Cy depending on g , w and K.

Proof. Without loss of generality, let us assume that K > |w|. Let us denote the circle of radius 7 in
C by S,.. For any holomorphic function g and (normal) operator A whose spectrum is enclosed by
the circle S, we can express the operator g(A)

2m Afz

as discussed in Appendix E] (see also [7] for more detalls). Note that in our case the resolvent
R(z,A) = (A — 2)71 is well defined for |z| > K, since with our assumptions all eigenvalues are
within the circle of radius K. Additionally note that we have

dist(z,0(A)) = dist(z,Sk) = |z| —
if |z| = K. The same holds true after replacing A with A. Since for any normal operator A we have

IR (2, A)lop = 1/dist(z,0(A)),
we find
R (2, A)op, [R(2,A)]op < 1/(|2] = K).

To quantify the difference HR(z,A)J — JR(z,A)|op in terms of the difference Hfl(w)J —
JR(w)]op < 9, we define the function
|z — w|
2] — K
for which N N

|R(2,8)J — JR(z,A)|op < 70(2)*|R(w, A)J — JR(w, A)|op
holds, as proved (in more general form) in Lemma 4.5.9 in [29]. Since on Sk ;1 we have and
|z — w| < 2K + 1 hence vy (2) < 2(K + 1), we find

lo(B)T = 9Ol =55 § 96 (R B) ~ Rz ) d
SK+1 op
<% ff |g(z)|HR(z,3)—R(z7A) =
SK+1
2B lgaits | 1R BT = TR B,

SK+1
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Thus we may set
(K +1)2

™

Cy:=2 Ef) lg(2)|d=.

Sk+1

G Proof of Theorem 4.5

We state and prove a somewhat more general theorem, incorporating also the case where the identifi-
cation operators only almost commute with connecting operators or non-linearities. We also would
like to point out that the constant 2 in Definition 4.3 is arbitrary and any constant larger than one
would suffice. Much more details are provided in Chapter IV of [29].

Theorem G.1. Let ®, P ~ be scattering transforms based on a common module sequence {2 and
differing operator sequences P, Zn. Assume R, Lt < 1 and B,, < B for some B and n > 0.
Assume that there are identification operators J,, : (2(G,) — 3(G,), Jn : (*(G,) — 2(Gy)
(0 < n < N) so that the respective signal spaces are §-unitarily equivalent, the respective normal
operators A,,, A,, are w-6-close as well as bounded (in norm) by X' > 0 and the connecting
operators satisfy | Py Jn—1f — JnPofl 2,y < 0l fle(, ). For the common module sequence
Qv assume that the non-linearities satisty | pn (Jnf) = Jnpn(f)l 2@, ) < 0l fle2(c,.) and that the
constants C, and {Cy_ },,er, associated through Lemma 4.4 to the functions of the generalized
frames in each layer satisfy C’in + Z%eFN C’;n < D? for some D > 0. Denote the operator
that the family {.J,},, of identification operators induce on .#x through concatenation by #n :
Fn — Fy. Then we have with Ky = +/(8Y —1)(2D2? + 12B)/7- BN-1if B > 1/8 and
Ky =+/(2D2? +12B)- (1 - BN)/(1 - B) if B < 1/8 that

|85 (Jof) — InON(Hlz, < En-0-|flee Vfel(G).

If additionally | P, Ju—1f = JuPuflpe,) = 00r [on(Jaf) = Japu(f)leza,) = 0 holds in
each layer, then we have Ky = +/(4Y —1)(2D2 +4B)/3-BN-1if B > 1/4 and Kx =
\/(2D? +4B) - (1—-BVN)/(1- B) if B < 1/4. If both additional equations hold, we have
Ky =+/(2N =1)2D%2 - BN-1if B> 1/2and Ky = 1/2D%- (1 — BN)/(1 — B) if B < 1/2.

Notation G.2. Let us denote scattering propagators bas~ed on operators A,, and P, by U, and

scattering propagators based on operators A,, and P, by U,,. Similarly, to N otationand , let us
then write (with ¢ = (v, ..., 1))

~

fa = Unln] 0 .. o i [11](Jof)-

Proof. By definition we have

N

lZon () = on (NG, = 2 | 2 1exa(@n)pn(Palfe)) = Xa(Bn)pn(Palfo)) 72 e,

n=1 qEFn—l

N

=!Qn

We define by, := 3 o |Tnfq — fol with by = || Jo.f — Jof||%,, ~ = 0and note

2 2
(G, 2(G)

ontbn = 5 (10l Pl = ol B (P TP,

qel“n—l

3 [ agr (An)on(Pa((£))) —g%@n)pn(qum32(@,”) .

Yn€lrn
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Using

S0, (8P (P((F)) — 0, B P e
<t (Bn) = 05, (B) Tl on (P )
93, B) npn (Pa(12) = o PalF) I,
W (B)
(/o)

<t (An) = 9, (B Tallon - o (PalFi)l2n s
gy ) npn(Pa((J)) = o BalF D2 5,

and [[g-, (An) — gy, (Ao < C;. - 6° (c.f. Lemma 4.4), we find

an+by <2 )] (Ci,,+ > Og%)<Lm>262||pn<Pn<ﬁ>>||§2(@n)

qgel'n—1 Yn€Lln

+2 Z BnHann(Pn(fq))_pn(Pn(J?q))H?z(@n)

qgelrn—1
<2 ) 4 (Ciﬁr > ngn)<L:R;>2||pn<Pn<fq>>|@(@n)
qern—1 Yn€ln

+4B - B" | f|172()0” + 8B - B" || f|72()0” + 8Bby 1,

where the second inequality arises from permuting the identification operator .J,, through non-linearity
and connecting operator. Using C’in + Z% er,, C’gn < D?, we then infer

an < (bu—1 — bp) + [8B — 1]by_y + (2D* + 12B) B"6%|f|[32s)-

If B < £, summing over n and using a geometric sum argument yields the desired stability constant.
Hence let us assume B > g. Using similar arguments as before, we find

bn—1 <(2D? +12B)6*B"?||f|[72(c) + 8Bbn—2

n—1
1
< <2 8k_1> B"?(2D? + 12B)8%|| f[32 () = =5 (8" = 8)(2D? +12)8%|| f|[22 )

k=1

In total we find

N

2 an

n=1

2 n—1:2 2 n—1 n—2 2 2 2
<(bg —by)+(2D* +12B)B" "¢ ||f\|£2(G) + (8B —1)(8 —-1)/7B -(2D* +12B)¢ ||f||g2(G)
0
<

<8V —1)(2D? +12B)/7- BN Y| £l[32 -
If one of the additional equations holds, we find
an +bp < (bno1 = by) + [4B = 1]by_1 + (2D + 4B)8*(| f[1 (-
and
bn-1 <(2D* +4B)6°B" (| f|| () + 4Bbn—2
n—1
1
k—1 n—2 2 211 £/)2 _ n n—2(9 12 211 ¢112
< <2 4 ) B"2(2D* + 4)6%|| fllez (o) = 5(4 —4)B"(2D% + 4)8%|| fllz2 () -

k=1

Arguing as previously yields the desired stability bounds.
If both additional equations are satisfied the proof is virtually the same as the one for Theorem
4.2. O
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H Details on Energy Decay and Truncation Stability

We first prove the statement made about the relation between truncation stability and energy:

Lemma H.1. Given the energy Wy := >, ycpw [Ulyn] o0 U[fyl](f)H?g(GN) stored in

the network at layer N, we have after extending ®  (f) by zero to match dimensions with ® x4 1(f)
that

|on(f) = Pni1 ()%, < (RE L 1)’ Byen - W

Proof. We note

|on (f) = P ()%, = > [V o Ulyn] o o Ul (A2

(YN—1,--s71)ETN

2
<(Bys1Lyg) By > [Ulyw] o o Ulnl(DlEa ey

(YN=1,---;71)El N1

In fact one can prove even more:

Lemma H.2. The energy Wy stored in layer N satisfies

Calfle ey <I@n(Hllzy + Wa(f) < CHIFIZ )

N N
with constants Cy, := [ min {1, 4,(L; R; )?} and C; := [] max {1, B;(L] R} )?}.
i=1 i=1

Proof.
min {1, Ay (Ly BY)*HI 112 e
= A1 (LT R f 126
=Ai|lp1(P1(f ))||1?2(G1)
< 3 lgn@)n P e + I @Da P,

v1€lL

= 2 UGNy + [ (A (Pr(H)) e
qel?

=lIx1(A0)p1 (PL () + Wa(F),

and similarly

Ix1(Ar)p (P( Dz + Wi(f)
= 25 WDl + Ia@)p(PLN)) )

qel?t

<B1(LY RO (| fl1 (-

This yields the starting point for our induction. Now for the inductive step assume the claim holds up
until layer NV — 1. Then we have

N-1
Onoillfllzey < 20 | X (@) falli,y |+ Wa-1() < Ch_ilI 1l
=1

qu"‘l
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using Notation [C.2] We note

2 ||Xn(An)Pn(Pn(fq))|‘[%Q(Gn) + Wn

iD=

qel"n—l
N—-1
= 2 n@nonPalf)llzcy |+ 20 Ixv(Ax)on (Pr(f)llZz ()
n=1 \gqel'n—1 gel’N-1
+ qu”%?(GN)'
qel'N

Every path § € 'Y may be written as ¢ = (7,, q), for some ~y,, € I',, and ¢ € V"1, Thus we have

2 ||fq|‘?2(GN): Z Z ||g’YN(AN)PN(pN(fq))H?Q(GN)

qel’'N gel'N-1ynyel'n

Inserting this in the above equation yields

M=

S (An)on(Pu(f )2,y | + Wi

1 \ geln—1

n

2

—1

_ DT (A0 pn(Pu(f)I22 6,

n=1 qel'n—1

+ ), <|XN (AN)on (PN (2 + D, |9“/N(AN)PN(pN(fq)”??(GN))'

qelrN—-1 Yn€l' N

=:8(fq)

We have
(LERE)ZAN||fq||?2(G ﬁ(fq) (LJJ\FIRN) BNquHé2 Gno1)?
by the operator frame property. With this we find:

nl

N-1

min{1, (LX,RR,)QAN} Z Z ||Xn(An)pn(Pn(fq)>|‘?2(Gn) +Who

n=1 qepn—l

N
Z 10 (An) o (P (D2 + Wi

n—1

N-1
<max{l, (LyRy)*By} (Z (Z ||Xn(An)U[Q](f)|§2(Gn)> + WN—l) ;

n=1 \qgel'™
after unravelling the definition
W_1(f) = Y] lfallzian_y-

qel’'N

The induction hypothesis together with the definition of C’;—\r, now yields the claim.

With this we now prove our main theorem concerning energy decay.

Theorem H.3. Let &, be a generalized graph scattering transform based on a an operator sequence
Dw = (Pn,An)¥_; and a module sequence €2y, with each p,() > 0. Assume in each layer
n > 1 that there is an eigenvector 1,, of A,, with solely positive entries; denote the smallest
entry by m,, := min;eq, ¥n[i]. Denote the eigenvalue corresponding to 1, by A,,. Quantify the
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’spectral-gap’ opened up at this eigenvalue through neglecting the output-generating function by
M t= 20 er, |9+, (An)|? and assume B,,m,, > 1,,. We then have

110~ (- 4))

Proof. Denote the spectral projection (i.e. the orthogonal projection projecting to the space of
eigenvectors) onto the eigenspace corresponding to A, by P

Wx(f) <Cy - N2 6y

Then we have

Wa(f) = D, DL lgww(An)on (Pn(f)ll22 (a0

qgeI’N—1 ynel'n

= 3 > g AN = PY)pn Py (f)| 2

ge’N—1 yNn€el'N

+ Z Z ||g,7N(AN)PCNPN(PN(fq))H%z(GN)

qeTN-1 ynyel'n

< Z BNH(I—PCN)PN(PN(fq))H?Z(GN)

quN—l

+ > anlIPY pn (P (f))| 22 (an)

quN—l

< 2 BNH(I—PCN)/)N(PN(fq))H!%?(GN)

qer\N—l

+ 2 ’I’]NHPN(PN(fq))H%z(GN).

gerN-1

By orthogonality of the spectral projection, we then have

11 = P)on (Pa(f))llz2(any = 1o (Pr (F))llia(an) — 1P N (Pa(fa))ll72 (-

Furthermore, we have
[N pN (P (F))e2 () < TP o (Pu(F) 122 ()
with equality if the multiplicity of A"V is exactly one. With this we find
(1= PY)pn (Pr (Fo) 122y = llow (P ()22 any = 1PN o8 (P (F)) 122 Gy
< |l Py (Fl[22 () = KON o8 (Pr (f)De2an) -

Since the image of py is contained in IR by assumption, we have

2
|G|

Z PN (PN (fg))i(¥n)ipi

i=1

KN, o (P (f) ez |2

2
|G|

Z lon (Pn (fq))ilpi| - m%

A\

|G|
D lon(Pr(f))ilPpg| - miy

i=1

\Y

|G|
3 v (P (£q))ilP il - m¥

i=1

V

\Y

HpN(PN(fq))”%?(GN) ) m?\,
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Here the second to last inequality follows since in any finite dimensional vector space, the 1-norm is
larger than the 2-norm (|| f||1 = ||f||2) and all weights are assumed to satisfy p; > 1. Thus we now
know

11 = PO)on (Pr (fo)lle2 ey < (1= mR) llon (Pr(£a))ll72 (-

Inserting this in our estimate for W (f) we find

Taking N to infinity, we know that C'y; converges to something larger than zero by assumption.

For products of the form ]_[ (1 —gp) with 0 < g, < 11itis a standard exercise to prove that the limit

is non-zero precisely if the sum over the ¢,, converges. Combining the above result with Lemma[H.2]
we obtain as an immediate Corollary:

Corollary H.4. In the setting of Theorem 4.6, the generalized scattering transform satisfies ' (0) =
{0} if CF — O for some positive constants C'* and Z:Ll(mn —Np/By) > was N — .

I Stability of Graph Level Feature Aggregation

L1 General non-linear feature aggregation:

Our main stability theorem for non-linear feature aggregation is as follows:
Theorem I.1. We have

N n—1 %
1UN(f)=Un(9)]an < (1 + Y, max{[B, — 1], [Bu(L RY)? = 11,0} | | Bk) If=Plle
n=1

k=1

'With the conditions and notation of Theorem 4.2 we have

[ (f) — Tn(f)ln <4/22Y — 1)/ (max{ B, 1/2)¥1-D 5 | flle (-

Additionally, in the setting of Theorem 4.5, assuming that for each n < N the identification operator

Jn satisfies | T f”él(Gn)/\/an =N fller )/ vHGn s |HJ f”zk(Gn) ~flex ey < O-K-|flexa.,)
(2 < k < p,,) implies (Vf € 2(G))

|¥n (Jof) = Un(F)law < V2 KR - +K2-6- | flea-

Furhermore, under the assumptions of Corollary Uy (f) = 0implies f = 0.

Proof. Let f, h € 2(G). To prove the first two claims, it suffices to prove

1N (f) = ¥n Rz < PN (f) = Pn(P)]2y,

and N N
[N (f) = Un(lay < |2n(f) —2n(f)]zy-

Both statements follow immediately, as soon as we have proved

ING () = Ny (W) e < |f = Ble(ay
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for arbitrary choices of p and G. To this end we note that for p > 2 we have | f||¢(c) < | flle2(c)

by the monotonicity of p-norms, while we have || f|,(a) < v/ic - | f] () by Holder’s inequality.
With this we find

1

1
ING () = Ny (W) [ = , (;La'fél(a) — ke Ih

P
2
i)~ [hllee )
<|f hleel? + 2 I1f = Rhlleio)l )
=2

pIf = hleel?
= |lf = hllez(a)-

where we have employed the reverse triangle inequality in the first step.

1
P
1
p
To prove the second claim, we note that we have

VN (f)— ‘T’N(Jof)\@zw

N

n=1 qEF"*l V

=

)P0 (Pa(F)) [

I

8
Q
8

N INS (Jnzq) = N (Fg) |mon

1 \ gern—1

=

<2

n

+2 Do ING" (Jazg) = Ny (2q) e

1 qel"n—l

“2| Fon(f) = In(Iof)%,
N
Z N INGr (Juirg) — NG (24) e

n=1 \ gel'n—1

=

3
Il

Thus it remains to bound the last expression. We have

ING™ (Jntq) = Ny (24) | o

1 2 pn

1
== : Tnfloe| +
ol U Fu Al | + 2111

<SK?-6% - ||lzg)72(c,)-

vi) = [Inf

12
ei(G)|

By our results of Appendix [C|and since we assume admissibility, we have

N
Z Z lzql72(c) < 1F1Zq)

n=1 q€F"71
Thus in total

198 (f) = In ()%, <20708(f) = o (Tof)IZ, + 2K6]f e

from which our stability claim follows.

It remains to prove that the assumptions of Corollary - Uy(f) = 0imply f = 0. But since
NG(f) = 0 implies f = 0, this is clear. O
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I.2 Low-Pass feature Aggregation

The main assumption we have in this section is that each operator A,, (and ﬁn) has a simple lowest
lying eigenvalue equal to zero. We denote the associated eigenvector (determined up to a complex
phase) by 14, and the associated spectral projection to the lowest lying eigenvalue by P, . It acts

as
Pa, f=vYa, A, e,

Now we are ready to state our main stability result under these circumstances:
Theorem I.2. We have

N n—1 2
[ = w7 (9 < (1 + 3 max{[B, — 1], [B.(L; R)? = 11,04 [ | Bk) If~hle).
n=1 k=1

With the conditions and notation of Theorem 4.2 and under the additional assumption |(Pa, —
Px )op < K -0 forn < N and some K > 0, we have

) = TP e < V2422 — D(max(B,1/2)Y 1 + K25 | flc.
In the setting of Theorem 4.5 and under the additional assumption [|Pa, fle(c,) —
HPA”J"fHﬂ(C?n)‘ < Ké||flle2(c,, forall f € £2(G,) (n < N), we have

197 (o f) = U (F)lew < V2oaJKZ -+ K26 |l

Proof. Let f, h € £?(G). To prove the first claim, it suffices to prove
[WX7() = UG W) ey < [25(F) — 2n(B)] 2
This immediately follows from the fact that for all f € £2(G,,)
Kb, el < ¥alE@,) 112,

by Holder’s inequality.

The next claim we want to prove is that we have for all f € ¢?(G)
[N ) = TG (Dllew < V24228 = 1) + K25+ | fe.

We note

el o) — 12,

I
M=

Z |<¢An7XWL(An)pn(Pn(fq)»ﬁ(Gn)‘ - |<¢Anv Xn(zn)pn(Pn(qu)pZ?(Gnﬂ

geTn—1 N >
=Tgq Tq

3
Il
—

I
=
g

1Pa,2qllez () — 1Px, Zqlle2a)

3

Il
—

=]

m
N
3

|
=

Lg — PA,,ﬁqHé(Gn)

n

N
M=
g
.

N
2 1Px (@ =F)leee,) | +2 20 | X 1(Pa, = Py el

qu—‘"_1 n=1 qun—l

N
[\
iD=

N
2N (f) =M%y +2 D, | D, 1(Pa, — Py )zgl2a

=1 qEFW'_l
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Hence we need to bound the expression "||(Pa, — Px
|(Pa, = Px, gl < H( 3 lop 12422 c,)
< K2 0% H33q||e2(Gn)

):ch?z(G )" We note

and thus
el = w1z,
N

<2fen(f) —en(h)F, +2K%-6%- 3 [ D) Dan(@Qn)pa(Pul(f)) e,

n=1 qEF"71

<2 en(f) — On(W)|%, +2K2- 0% | flF@)
and the claim follows.

Finally we want to prove
[ (o f) = W5 ()ley < V2B - +K2 5+ | fle)-

‘We note

1T () = TN e

[
M=

Z |<7/)AnaXn(An)Pn(Pn((fq)))>€2(G )= |<w5naXn(zn)Pn(Pn(fq)»p(énﬂ

—1
qgel'” ) ~
=:x4 Tq

i
L

2
Z 1P, zqlle2(c) — ||P5nxq”z2(én)
qeln—1

[
=

3
Il
it

2
Z 1Pa,zqllez(,) — “PAanqu@(én) + HPAn Jnxq“p(én) - Hpﬁnxq”p(én)
qeln—1

N
1=

3
Il
-

2
Z HPAn,Jn%Hﬁ(én) - HPBH%HL’Z(@?@)

gelm—1

N
[\
M=

3
Il
—

2
Z HPAnquﬁ(Gn) - ”Pﬁanxq”p(én)

qeln—1

4_
[\
=

3
Il
—

2
2 |18, Inrale e, = 1Pa, Tl e,

qelrn— 1

N
[\
M=

3
Il
—

_l’_
[N}
M=

2
Z HPAnquéz(Gn) - Hpﬁanmq”z?(én)

qel'n—1

3
Il
—

2
1Pa,2qllez () — HPA,,LJnqup(én)

| N (f) = On(Jof) 1%, +2Z >

n=1 qu"_ 1

N

2

N

<2| 7on(f) — On(Jof) 1%, +22 > K8l
n=1 qel"’n,—l

2| fen(f) - ‘T’N(Jof)H}N +2K2 - 8| fl%2 -

which proves the claim. O
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In establishing triviality of the kernel’, we have to be a tiny bit more careful:

Theorem L.3. In the setting of of Corollary [H.4] assume that in each layer n, the output generating
function X, of the underlying scattering transform satisfies x,,(0) # 0 and x,,(\;) = 0 for ordered

non-zero eigenvalues Ay < ... < (g, of the operator A,,. Then \I/|3<O"'>|(f) = 0 implies f = 0.

Proof. Under these assumptions, we do not lose any information by projecting to i)a, in each
?%(G,,), since the image of x,,(A,,) is already contained in the one-dimensional space generated by
the lowest lying eigenvector ¥, . O

J Details on Higher Order Scattering

Node signals capture information about nodes in isolation. However, one might also want to analyse
or incorporate information about binary, ternary or even higher order relations between nodes, such
as distances or angles between nodes representing atoms in a molecule. This can be formalized by
considering tensorial input signals:

Tensorial input: A 2-tensor on a graph G, as it was already utilized in Section 6, is simply an
element of C/G1*IG! or — equivalently — a map from G x G to C, since it associates a complex number
to each element (g1, g2) € G x G. Since G x G is precisely the set of (possible) edges E, we can
equivalently think of 2-tensors edge-signals. A 3-tensor an element of C/C*IGIXIGI or equivalently
amap from G x G x G = G to C. A 4-tensor then is a map from G* = G x G x G x G to C
or equivalenlty an element of C/IXIGIXIGIXIG1 and so forth. Clearly the space of k-tensors forms a
linear vector space. Addition and scalar multiplication by A € C are given by

(f + )‘g)ihm,ik = fih-u,ik + )\gi17~~;ik

with f and g being k-tensors. For fixed k, we equip the space of k-tensors with an inner product
according to

G|

<fag>: Z fil,...,ikgil ..... i lbiy, ... ik

01yt =1

and denote the resulting inner-product space by ¢£2(G*).

Operators on Spaces of Tensors:  Since for fixed k the space ¢2(G*) is simply a |G|*-dimensional
complex inner product space, there are exist normal operators A* : ¢2(G*) — ¢2(G*) on this space.
Note that the k in A* signifies on which space this operator acts. It does not signify that an operator
is raised to the k" power. Setting for example node-weights z; and edge weights /i, to one, the
adjacency matrix W as well as normalized or un-normalized graph Laplacians constitute self-adjoint
operators on £?(G?), where they act by matrix multiplication.

Higher order Scattering Transforms: We can then follow the recipe laid out Section 3 in con-
structing k" -order scattering transforms; all that we need are a module sequence €2 and an operator
sequence 2% := (P¥ AK)IV_| where now P¥ : (2(G*_|) — (2(GF)and AE : 2(GF) — 72(GF).

n=1s n—1
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To our initial signal f € £2(G*) we first apply

) _ the connecting operator PJ, yielding a signal rep-

S et (‘))<: resentation in £2(G%). Subsequently, we apply

pa(Pi () 9 ]_1 " the pointwise non—linearlty p1. Then we apply

=) %)\ p3(P()) _—" Our graph filters {Xl }U{gﬁl( }’Y1€F1

7 = |_1\~ to p1(PF(f)) yielding the output Vl( f) =

Y BN ko) X1 (AF)pi (PF(f)) as well as the interme-

o (PEO)) g (M%) pa(PE) A - diate hidden representations {Ui[v1](f) :=
f{ % ps(PE()) __— In (Alf)pl (Plk(f))}"/lerl obtained in the first
(G - * (g . r layer. Here we have introduced the one-step
KZ« w(ah] <P‘7('>)§' scattering propagator U, [v,] : 2(GE_|) —
BT ST C(GY) mapping = g0, (Au)pa(Pa(1)

227 () as well as the output generating operator

a(ah) %)\ p(PhO) 7 Vo @ (Gl_y) — (*(G}) mapping [ to

ol ]—1\~ Xn(Ak)pn(Pk(f)). Upon defining the set

e I'N=1:=T'y_1 x ... x I'; of paths of length

2} e (@) <+ £~ (N — 1) terminating in layer N — 1 (with T'°

taken to be the one-element set) and iterating the
above procedure, we see that the outputs gener-
ated in the N'"-layer are indexed by paths TV !
terminating in the previous layer.

Figure 7: Schematic Higher Order Scattering Ar-
chitecture

We denote the resulting feature map by ®%; and write .7 ¥ for the corresponding feature space. The
node-level stability results of the preceding sections then readily translate to higher order scattering
transforms.

As the respective proofs are identical to the corresponding results for the node setting, we do not
repeat them here.

Theorem J.1. With the notation of Section 4, we have for all f, h € (2(G*):

N n—1
[9% () = @R (W%, < (1 + Y, max{[By, — 1], [Ba(L RY)* = 11,04 [ | Be) If = Rl

n=1 {=1

Theorem J.2. Let & and ® ~ be two scattering transforms based on the same module sequence

Q. and operator sequences 2%, 7% with the same connecting operators (P¥ = PF) in each
layer. Assume RF, L} < 1and B, < B for some B and n < N. Assume that the respective

n
normal operators satisfy |AX — A’fLH r < 6 for some § > 0. Further assume that the functions
{9+, }yner,. and x, in each layer are Lipschitz continuous with associated Lipschitz constants
satisfying L+ >, .p L; < D?foralln < N and some D > 0. Then we have for all

fe (G
K(Nllzy < f202 -

Theorem J.3. Let ®% CE‘?V be higher order scattering transforms based on a common module
sequence (2 and differing operator sequences 2%, éj’f, Assume R}, L} < 1land B, < B
for some B and n > 0. Assume that there are identification operators .J,, : £2(GF) — (2(GF),
Jp : L2(GF) — £2(G*) (0 < n < N) so that the respective signal spaces are d-unitarily equivalent,
the respective normal operators AF | ﬁﬁ are w-d-close as well as bounded (in norm) by K > 0 and the
connecting operators satisfy | P¥J,_1 f — J, P¥f|| 2(Gry <O | fle2(cx - For the common module
Tuon(Dl ey < 01 Flean)
and that the constants C', and {C,_ },, cr, associated through Lemma 4.4 to the functions of the
generalized frames in each layer satisfy C7 + 3, . C7 < D?for some D > 0. Denote the
operator that the family {J,, },, of identification operators 1nduce on .Z}, through concatenation by
IN TR — ﬂff, Then we have with Ky = /(8Y — 1)(2D? + 12B)/7- BN-1if B > 1/8 and

5 (f) - 1)/ (max{B.1/2})¥1 - D6 | f ()

sequence )y assume that the non-linearities satlsfy || pn(J f) -
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Ky =+/(2D2 +12B) - (1 - BY)/(1 - B) if B < 1/8 that
|5 (Jof) — /N‘I)]fv(f)”ﬁﬁ <Ky -8 |flee Vfel(GF).

If additionally |P¥.J,_, f — TPl flez@,y = 0ot [pa(Juf) - Tnpn(f)ll 2y = 0 holds in
each layer, then we have Ky = /(4N —1)(2D2 +4B)/3-BN-1if B > 1/4 and Ky =
\/(2D? +4B)-(1—-BN)/(1- B) if B < 1/4. If both additional equations hold, we have
Ky =+/(2N —1)2D2 - BN-1if B> 1/2and Ky = 1/2D%- (1 — BN)/(1 — B) if B < 1/2.

The map N¢ introduced in (4) can also be adapted to aggregate higher-order tensorial features into
graph level features: With

1/q
Hf“q = ( Z |fi17~--,ik|qu’i17~-,ik>

il,...,ikGG

G
and pgr = Z!ﬁl.l..ikzl Wiy,... 0> We define
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Given a feature map ®%; with feature space
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we obtain a corresponding map WX, mapping from ¢2(G¥) to

%N _ @»{val (an)\l"n—1|

by concatenating ‘Pf\, with the map that the family of non-linear maps {V, g”k; }V_, induces on .Z y by
concatenation. The resulting map W%, again has stability properties analogous to the node level case:

Theorem J.4. Assuming admissibility, we have

N n—1
15 () = W (1), < (1 + 3 max{[B, — 1], [Ba(LF RD)? — 1,01 [ | Bz) 1 =l
(=1

n=1

for all £, h € £2(G) . With the conditions and notation of Theorem [J.2| we have

[ (F) = TR ()l < /22 — 1) -/ (max{B,1/2)¥ 1D -5 | .

Additionally, in the setting of Theorem [J.3] assuming that for each n < N the identification operator
Ty satisfies |1 s g/ /BEr — | F v/ GE | |1 f lor ey~ I flercay| < 65| flleacany
for 2 < r < p,, implies (Vf € £2(G*))

’
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As the proofs here are virtually the same as for the corresponding results in previous sections —
essentially only replacing G by G*, we omit a repetition of them here.

K Additional Details on Experiments

Here we provide additional details on utilized scattering architectures, training procedures, datasets
and (performance of) other methods our approach is being compared to. Irrespective of task, our
models are trained on an NVIDIA DGX A100 architecture utilizing between two and eight NVIDIA
Tesla A100 GPUs with 80GB memory each. Running 10-fold cross validation for the respective
experiments took at most 71 hours (which was needed for social network graph classification on
REDDIT-12K).
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K.1 Social Network Graph Classification

Datasets: The data we are working with is taken from [43]. In particular this work introduced six
social network datasets extracted from from scientific collaborations (COLLAB), movie collabora-
tions (IMDB-B, IMDB-M) and Reddit discussion threads (REDDIT-B, REDDIT-5K, REDDIT-12K).
Data is anonymised and contains no content that might be considered offensive. Each graph carries a
class label, and the goal is to predict this label. Some basic properties of these datasets are listed in
Table 3] below.

Table 3: Social Network Dataset Characteristics

Attributes: COLLAB IMDB-B IMDB-M REDDIT-B  REDDIT-5K REDDIT-12K
Graphs 5K 1K 1.5K 2K 5K 12K

Nodes 372.5K 19.8K 19.5K 859.2K 2.5M 4. 7™M

Edges 49.1M 386.1K 395.6 4M 11.9M 21.8M
Maximum Degree 2k 540 352 12.2K 8K 12.2K
Minimum Degree 4 4 4 4 4 4

Average Degree 263 39 40 9 9 9

Target Labels 3 2 3 2 5 11
Disconnected Graphs | No No No Yes Yes Yes

These datasets contain graph structures, however they don’t contain associated weights or graph
signals. Having unspecified weights simply means that the adjacency matrix W from which we
construct the graph Laplacian
L=D-W

on which our operator A is based simply has each entry corresponding to an edge set to unity. If
no edge is present between vertices 4 and j, the entry Wj; is set to zero. It remains to solve the
problem of the missing input signals. Our strategy is to generate signals reflecting the geometry
of the underlying graph. We do this by utilizing features that associate to each node a number that
characterizes its role or importance within its local environment or within the entire graph. We briefly
describe them here:

1. Degree: The degree of a node is the number of edges incident at this node.

2. Eccentricity: For a connected graph, the eccentricity of a node is the maximum distance
from this node to all other nodes. On a disconnected graph it is not defined.

3. Clustering: For unweighted graphs the clustering ¢(u) of a node w is the fraction of possible
triangles through that node that actually exist. It is calculated as

c(u) = 2T (u)
= dog(w)(deg(w) = 1)’

4. Number of triangles: The number of triangles containing the given node as a vertex.

5. Core number: A k-core is a maximal subgraph that only contains nodes of degree k or
more. The core number of a node is the largest value k of a k-core containing that node.

6. Clique number: A clique is a subset of vertices of an undirected graph such that every two
distinct vertices in the clique are adjacent. This input assigns the number of cliques the
nodes participates in to each node.

7. Pagerank: This returns the PageRank of the respective nodes in the graph. PageRank
computes a ranking of the nodes in the graph based on the structure of the edges. Originally
it was designed as an algorithm to rank web pages.

For the first three datasets listed in Table [3] we utilize all listed input features. For the latter three
datasets we have to refrain from using eccentricity as an input signal, as these datasets contain graphs
that have multiple non-connected graph components.

Scattering Architecture: We chose a generalized scattering architecture of depth N = 4. As
normal-operators, we utilize in each layer the un-normalized graph Laplacian £ = D — W scaled

by its largest eigenvalue (A = L£/Ayqc(L)). Filters are chosen as 2 (sin(m/2 - A), [cos(m/2 - A) —
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Yapr],sin(m - A), [cos(m - A) — 1parp X ]), which allows to specify the output generating function
solely by demanding x(0) = 1 and x(\) = 0 on all other eigenvalues of A. Here ¢a is the
normalized vector of all ones (satisfying AyYa = 0). Connecting operators are chosen as the identity,
while we set p,>1(+) = | - |- We note that for connected graphs, this recovers Architecture I of Fig. 2.
On disconnected graphs (as they can appear in the REDDIT datasets), we however do not account
for vectors other than A in the lowest-lying eigenspace of the graph Laplacian. This scattering
architecture is then applied to each of these input signal individually. For each input signal, this
returns a feature vector with 1 + 4 + 16 + 64 = 85 entries. These individual feature vectors are
then concatenated into one final composite feature vector for each graph. Concerning applicable
theoretical results, we note the following:

Training Procedure: We train RBF kernel support vector classifiers on our composite scattering
features. We fix € = 0.1. The hyperparameter ~ scaling the exponent is chosen from

Ghpool := {0.00001,0.0001,0.001,0.01,0.1,1, 10, 100},
while we pick the C' that controls the error our slack variables introduce among
Chpool := {0.001,0.01,0.1, 1, 10, 25, 50, 100, 1000}.

We chose these parameters in agreement with the choices of [12] to facilitate comparison between
the two works.

We could simply implement the training of the RBF-classifier on our composite scattering features
by dividing each social-network dataset into 10 folds, then iteratively choosing one fold for testing
and among the remaining 9 folds randomly choosing one for validation (i.e. for tuning the hyperpa-
rameters). Instead, following [12] (whose code is released under an Apache license and on which
we partially built), we take a slightly different approach: We still randomly split our dataset into 10
folds. Among the 10 folds, we iteratively pick one for testing. Say we have picked the n* fold for
testing. Then there are 9 remaining folds. We iteratively pick the m!® (with 1 < m,, < 9) of the
remaining 9 folds for choosing hyperparameters. This leaves 8 folds on which we train our model
for each choice of hyper parameter in Cpoo1 X Gpool- The resulting classifiers are all evaluated on the
m‘nh fold. The one that performs best is retained as classifier m,,. As m,, varies between 1 and 9
(still for fixed n), this yields a set {f,,, : 1 < m,, < 9} of nine classifiers. From these we build the
classifier f,,, whose classification result is obtained from a majority vote among the nine classifiers
in {fm, : 1 < m, < 9}. Then we evaluate the performance of f,, on the n'* fold to obtain the
n' estimation of how well our model performs. As n varies from one to ten, we built the mean
and variance of the performances of the classifiers f,, on the n'"* fold expressed as the percentage of
correct classifications.

Reference Methods: To allow for a comparison of our results to the literature, typical classification
accuracies for graph algorithms on social network datasets are displayed in Table 1. Following the
standard format of reporting classification accuracies, they are presented in the format (Accuracy +
standard deviation). If results are not reported for a dataset, we denote this as not available (N/A).
The first three rows of Table 1 display results for graph kernel methods; namely Weisfeiler-Lehman
graph kernels (WL, [33]), Graphlet kernels (Graphlet, [34]) and deep graph kernels (DGK, [42]). The
subsequent rows display results for geometric deep learning algorithms: Deep graph convolutional
neural networks (DGCNN,[46]), Patchy-san (PSCN (with k=10), [26]), recurrent neural network
autoencoders (S2S-N2N-PP, [16]) and graph isomorphism networks (GIN [41]). These results are
taken from [12]. Additionally we compare with P-Poinc [19], which embeds nodes into a hyperbolic
space (the Poincare ball, to be precise), GSN-e [3] which combines message passing with structural
features extracted via subgraph isomorphism and WKPI-kC [47] which utilizes a weighted kernel
within its metric learning framework. The second to last row (GS-SVM [12]) provides a result that is
also based on a method that combines a static scattering architecture with a support vector machine.
Its filters are based on graph wavelets built from differences between lazy random walks that have
propagated at different time scales.

K.2 Regression of Quantum Chemical Energies

Dataset: The dataset we consider is the QM7 dataset, introduced in [2, 31]. This dataset contains
descriptions of 7165 organic molecules, each with up to seven heavy atoms, with all non-hydrogen
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atoms being considered heavy. A molecule is represented by its Coulomb matrix C“'™®, whose
off-diagonal elements

CC]mb _ Z ’LZJ
v R Ry
correspond to the Coulomb-repulsion between atoms ¢ and j, while diagonal elements encode a
polynomial fit of atomic energies to nuclear charge [31]:
1
2

(10)

Clmb 2.4
Ci™ =52
For each atom in any given molecular graph, the individual Cartesian coordinates RR; and the atomic
charge Z; are also accessible individually. To each molecule an atomization energy - calculated via
density functional theory - is associated. The objective is to predict this quantity, the performance

metric is mean absolute error. Numerically, atomization energies are negative numbers in the range
—600 to —2200. The associated unit is [kcal/mol].

Scattering Architecture: Off-diagonal entries in the Coulomb Matrix clearly represent an inverse
distance. A weight of zero can then heuristically be thought of as the inverse distance between two
infinitely separated atoms. After calculating the degree matrix D associated to C', we obtain the
graph Laplacian once more as £ = D — C' and set our normal operator to

L
B )\max (E) ’

If we continuously vary the distances in (I0), staying clear of zero, then the adjacency matrix
and hence the graph Laplacian £ varies continuously. As long as we avoid complete degeneracy,
the largest eigenvalue Ayax(£) will remain positive. This implies that our normal operator A
varies continuously under changes of the inter-atomic distances, which implies that our feature
vector also varies continuously, as distances are changed. Connecting operators are set to the
identity, while non-linearities are fixed to p,>1(-) = | - |. Filters are chosen as (sin(w/2 - A),
cos(m/2 - A),sin(m - A), cos(m - A)) acting through matrix multiplication. The output generating
functions are set to the identity as well. Graph level features are aggregated via the map NZ(-)
of Section 6; slightly modified to neglect the normalizing factor in the first entry for improved
convenience in numerical implementability. As weights y1;; for our second-order feature space are set

to unity and molecular graphs in QM7 contain at most 23-molecules, we note that \/fig2 < V232 =
23. Going through the proofs of our graph-level stability results, we see that they remain valid after
multiplying each stability constant by 23. The Coulomb matrix (divided by a factor of 10 as this
empirically improved performance) is then also utilized as an edge level input signal. Node level
features are obtained by applying the above architecture to the node level information provided by
the respective atomic charges {Z;} on each graph. We aggregate to graph level features using N¢*
(cf. Section 5), again neglecting the normalizing factor in the first entry for improved convenience in
implementing. The network depth is set to N = 4 in both cases. We then concatenate graph level
features obtained from node- and edge level input into a composite scattering feature vector.

Training Procedure: The QM7 dataset comes with a precomputed partition into five subsets; each
containing a representative amount of heavy and light molecules covering the entire complexity range
of QMY7. To allow for 10-fold cross validation, we further dissect each of these subsets into two
smaller datasets, one containing graphs indexed by an even number, one containing graphs indexed
by an odd number. On these 10-subsets, we then perform 10-fold cross validation. Among the 10
folds, we iteratively pick one for testing. Say we have picked the n'” fold for testing. Then there
are 9 remaining folds. We iteratively pick the m® (with 1 < m,, < 9) of the remaining 9 folds for
choosing hyperparameters. This leaves 8 folds on which we train our model for each choice of hyper
parameter in Cpool X Gpool. This yields 8 regression models, which we average to built our final
predictor for the n' run. This mean absolute error of this predictor is then evaluated on the n'* fold
which was retained for testing. As n varies from one to ten, we built the mean and variance of the
performances of the generated regression models. We chose log-linear equidistant hyperparameters
from

Glpool := {0.00003,0.0003,0.003,0.03,0.3, 3, 30},
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and
Chool = {400000, 40000, 4000, 400,40, 4,0.4}.

Reference Methods: We comprehensively evaluate our method against 11 popular baselines and
state of the art approaches. Among these methods are graph convolutional methods such as GraphConv
[18], Weave [17] or SchNet [32]. MPNN [13] and its variant DMPNN [44] are models considering
edge features during message passing. AttentiveFP [40] is an extension of the graph attention
framework, while N-Gram [21] is a pretrained method. Results for these methods as well as for
GROVER are taken from [30]. PhysChem [45] learns molecular representations via fusing physical
and chemical information. Deep Tensor Neural Networks (DTNN [39]) are adaptable extensions of the
Coulomb Matrix featurizer mapping atom numbers to trainable embeddings which are then updated
based on distance information and other (node-level) atomic features. Finally Path-Augmented Graph
Transformer Networks (PATGN, [6]) exploit the connectivity structure of the data in a global attention
mechanism.
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