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A GAUSSIAN PROCESS REGRESSION (GPR) FORMULA

Focusing on linear differential operators, and taking the prior on f to be a Gaussian process (GP)
with kernel, K. As shown in Ref. Raissi et al. (2017), or in Ref. Pang & Karniadakis (2020) section
14.3.3 for Laplacian operator, the average of f(x∗) under the multivariate Gaussian distribution in
Eqs. (3-4) of the main text is given by

⟨f∗⟩P (f |Xn) = k⃗T
(
KPINN + Ĩ

)−1

y, (1)

where
y = (ϕ, g)

T
, (2)

the GP kernel is divided into blocks,

K =

[
K(XnΩ , XnΩ) K(Xn∂Ω

, XnΩ)
K(Xn∂Ω

, XnΩ) K(Xn∂Ω
, Xn∂Ω

)

]
=

[
KΩΩ K∂ΩΩ

KΩ∂Ω K∂Ω∂Ω

]
, (3)

where XnΩ
, Xn∂Ω

are the data-points on the domain, Ω and on the boundary, ∂Ω, respectively. We
also define

Ĩ =

(
σ2
ΩI 0
0 σ2

∂ΩI

)
. (4)

where

KPINN =

(
LKΩ,ΩL

† LKΩ,∂Ω

K∂Ω,ΩL
† K∂Ω,∂Ω

)
and k⃗ =

(
k⃗ΩL

†

k⃗∂Ω

)
, (5)

where
(
k⃗Ω

)
µ
= K

(
x∗,xµ∈[1,nΩ]

)
and

(
k⃗∂Ω

)
µ
= K

(
x∗,xµ∈[nΩ+1,nΩ+n∂Ω]

)
. We denote by L

the linear operator acting in the forward direction and L† the same operator acting “backwards” so
that KL† is K acted upon by L on its second argument.

B DERIVATION OF THE NEURALLY-INFORMED EQUATION (NIE)

In this section, we derive our main result, the Neurally Informed Equation, Eq. (5) in the main text.
We start by analyzing posterior distribution in function space and show that it can be written in terms
of an effective energy function “action” for a general operator. This provides our first result. We
then focus on a linear differential operator and use variational calculus to derive the NIE.

B.1 DERIVATION OF THE EFFECTIVE ACTION

Using the Bayesian perspective, the posterior distribution in the function space can be written as
follows:

p(f |Xn) = N (L(Xn), σ
2 = 1)p0(f |X)

=

nΩ∏
µ=1

N (L[f ](xµ)− ϕ(xµ), σ
2
Ω)

n∂Ω∏
ν=1

N (f(xν)− g(xν), σ
2
∂Ω)p0(f |Xn),

(6)
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where the distribution of the output of the network is given by averaging over the final distribution
of the weight p0(f |Xn) =

∫
dθp(θ)

∏
µ
δ
(
f(xµ)− f̂θ(xµ)

)
, and L(Xn) is the training loss in Eq.

(2) of the main text. Adopting a statistical physics viewpoint, we can write the posterior distribution
as p(f |Xn) =

1
Z[Xn]

e−S[f |Xn], where

S[f |Xn] = SPDE[f |Xn] + S0[f |Xn] (7)

where,

SPDE[f |Xn] = SΩ[f |Xn] + S∂Ω[f |Xn] (8)

=
1

2σ2
Ω

nΩ∑
µ=1

(L[f ](xµ)− ϕ(xµ))
2
+

1

2σ2
∂Ω

n∂Ω∑
ν=1

(f(xν)− g(xν))
2 (9)

S0[f |Xn] =
1

2

n∑
µ=1

n∑
ν=1

fµ[K
−1]µνfν +

1

2
log |K|+ n

2
(3 log 2π + 2 log σ∂ΩσΩ) , (10)

and Z[Xn] =
∫
e−S[f |Xn]df is the partition function.

To understand generalization, we are interested in computing ensemble averages over many data-
sets. In the following, we use our freedom to choose the prior on the function to be on an infinite
dataset, i.e. in the reproduction kernel Hilbert space (RKHS), with the kernel being the contin-
uum version of Eq. (3) Williams & Rasmussen (2006). Utilizing a statistical mechanics approach,
we want to compute the free energy, EDn [logZ[Xn]] which can also be viewed as the generating
function of the process. For this purpose, we employ the replica trick:

EDn [logZ[Xn]] = lim
p→0

∂logEDn
[Zp[Xn]]

∂p

where

EDn
[Zp[X]] = EDn

[∫ p∏
α

e−S[fα|Xn]dfα

]

=

∫
EDn

[
e−

∑p
α=1 SPDE[fα|Xn]

] p∏
α

p0(fα)dfα

= ⟨EDn

[
e−

∑p
α=1 SPDE[fα|Xn]

]
⟩0,p = ⟨

(
Ex

[
e−

∑p
α=1 SPDE[fα|x]

])n

⟩0,p (11)

where ⟨...⟩0,p denotes expectation over the p replicated prior distribution, p0(f), where α denotes
the index of the replica modes of the system, in addition to the above we use the fact that the samples
are i.i.d. The above object is still hard to analyze due to the coupling between the replica modes. To
make progress, we follow a similar approach as in Cohen et al. (2021); Malzahn & Opper (2001).
We transform into a “grand canonical” partition function, meaning that we treat the dataset size n
as a random variable drawn from a Poisson distribution which we average over in the end.The idea
is that for a large enough data set size, the dominating term in the grand canonical partition function
Ḡp is a good estimator of the entire free energy. The grand canonical partition function is given by

Ḡp = En [EDn [Zp[Xn]]]

= ⟨
∞∑

u1=0

η̄u1

Ω e−η̄Ω

u1!
EDu1

[
e−

∑p
α=1 SΩ[fα|Xu1

]
] ∞∑
u2=0

η̄u2

∂Ωe
−η̄∂Ω

u2!
EDu2

[
e−

∑p
α=1 S∂Ω[fα|Xu2

]
]
⟩0,p

= ⟨
∞∑

u1=0

η̄u1

Ω e−η̄Ω

u1!

(
Ex

[
e−

∑p
α=1 SΩ[fα|x]

])u1
∞∑

u2=0

η̄u2

∂Ωe
−η̄∂Ω

u2!

(
Ex

[
e−

∑p
α=1 S∂Ω[fα|x]

])u2

⟩0,p

=

∫ p∏
α

e
−η̄+η̄ΩEx

[
e−

∑p
α=1 SΩ[fα|x]

]
+η̄∂ΩEx

[
e−

∑p
α=1 S∂Ω[fα|x]

]
p0(fα)dfα

=

∫
e−

∑p
α=1 Seff [fα]

p∏
α

Z−1
α dfα (12)
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where in the third transition, we assume that if the ith point is in the bulk then xi ∼ µΩ(x), other-
wise, xi ∼ µ∂Ω(x), in addition, all points are chosen to be independent and identically distributed.
With a slight abuse of notation, we take the number of data points in the bulk nΩ ∼ Pois(η̄Ω), and
on the boundary n∂Ω ∼ Pois(η̄∂Ω) as independent Poisson-distributed random variables. We de-
note by η̄ = η̄Ω + η̄∂Ω, where η̄Ω and η̄∂Ω, the expectation of the Poisson variables on the bulk and
boundary, are the true deterministic number of points in the bulk and on the boundary, respectively.
The effective action is then defined as:

Seff [f ] = η̄ − η̄ΩEx

[
e−SΩ[f |x]

]
− η̄∂ΩEx

[
e−S∂Ω[f |x]

]
+

1

2

∫
Ω

∫
Ω

f(x)[K−1](x,y)f(y)dydx. (13)

Next, Taylor expanding the above exponent, we obtain the following effective action in first-order

Seff [f ] = η̄ΩEx [SΩ[f |x]]− η̄∂ΩEx [S∂Ω[f |x]]

+
1

2

∫
Ω

∫
Ω

f(x)[K−1](x,y)f(y)dxdy +O(η̄S2
PDE), (14)

where σ2 = σ2
Ω + σ2

∂Ω. Note that, the first-order action decouples the replica modes, which dras-
tically simplifies the analysis . Taking higher-order corrections into account would lead to a tighter
prediction. Taking the standard GP limit of infinite sample size proportional to the noise level and
using the fact that the square distance between the estimate and the target decreases as well with
n, these higher-order terms decrease to zero asymptotically in n. Figure (1) of the main text shows
that the estimated output derived using the first-order action provides a good prediction for a large
amount of data. For an analysis of the higher-order terms in the context of regression, see Cohen
et al. (2021). Using variational calculus, this action provides the network’s average prediction at
any point x in the domain for a general nonlinear operator. Intuitively, one would expect that the
effective action follows from taking the continuum limit of S[f |Xn]. Yet doing so is subtle, due
to the appearance of separate bulk and boundary measures in the continuum limit and the fact that
the operator K−1 (unlike K) is measure-dependent. More precisely, the inversion operation de-
pends on the whole measure of points both on the boundary and on the bulk µ(x) meaning that∫
[K]−1(z,x)K(x,y)µ(x)dx = δz,y/µ(y).

In the next section, we apply the calculus of variations to derive the neurally-informed equation
(NIE) for the estimator from the effective action.

B.2 DERIVATION OF THE NIE USING VARIATIONAL CALCULUS

In principle, one could apply variational calculus to derive from the effective action an NIE for a
general non-linear operator. However, since there are infinitely many ways for the operator to be
nonlinear (e.g. L = L(1, f, fx, fxx, .., f

2, fxf, ...)), and this is very much a problem dependent. We
explicitly demonstrate the derivation for a general linear operator, L. The operator L is applied to
the scalar function f(x), with x ∈ Rd. The corresponding effective action is

Seff [f ] =
1

2
ηΩ

∫
Ω

(Lf(x)− ϕ(x))
2
dx+

1

2
η∂Ω

∫
∂Ω

(f(x)− g(x))
2
dx

+
1

2

∫
Ω

∫
Ω

f(x)[K−1](x,y)f(y)dydx. (15)

Suppose that f0 is a minimizer, and h : Ω → R is a variation function,
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δSeff [f0] =
1

2

d

dϵ
Seff(f0 + ϵh, Lf0 + ϵLh)) |ϵ=0

= ηΩ

∫
Ω

(Lf0(x) + ϵLh(x)− ϕ(x))Lh(x)dx

+ η∂Ω

∫
∂Ω

(f0(x)− ϵh(x)− g(x))h(x)dx

+
1

2

∫
Ω

h(x)

∫
Ω

[K−1](x,y) (f0(y) + ϵh(y)) dxdy

+
1

2

∫
Ω

(f0(x) + ϵh(x))

∫
Ω

[K−1](x,y)]h(y)dydx |ϵ=0

= ηΩ

∫
Ω

dx (Lf0(x)− ϕ(x))Lh(x)

+ η∂Ω

∫
∂Ω

(f0(x)− g(x))h(x)dx

+

∫
Ω

∫
Ω

[K−1](x,y)f0(x)h(y)dydx (16)

Next, we use our freedom how to parameterize the variation to simplify the boundary terms. Specif-
ically, we consider a variation of the form

h(x) = (K ⋆ h̃)(x) =

∫
Ω

K(x,y)h(y)dy,

where ⋆ denote the convolution operator on the bulk measure and h̃ : Ω → R. Provided that the
kernel K is invertible, we stress that any variation can be presented in this manner. Substituting into
Eq. equation 16

δSeff [f0] = ηΩ

∫
Ω

∫
Ω

(Lf0(x)− ϕ(x)) [LK](x,y)h̃(y)dydx

+ η∂Ω

∫
Ω

dy

∫
∂Ω

dx(f0(x)− g(x))K(x,y)h̃(y) +

∫
Ω

f0(x)h̃(x)dx. (17)

In the notation, LK, the operator L is defined to act on the first coordinate of the operator K.
Differentiating with respect to h̃ gives

ηΩ

∫
Ω

(Lf0(y)− ϕ(y)) [LK](y,x)dy

+ η∂Ω

∫
∂Ω

(f0(y)− g(y))K(y,x)dy + f0(x) = 0. (18)

We note in passing that the above derivation can also be done for a nonlinear operator, by allowing
the functional derivative to also act on the operator L.

C GENERATING SOME NNGP KERNELS

The kernel used in the toy model could be generated using the following random neural network
acting on a one-dimensional input x

f(x) =

C∑
c=1

ac cos(wcx) (19)

with

ac ∼ N(0, σ2
a/C) (20)

wc ∼ N(0, σ2
w)
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where we will soon take σ2
w = 1/l2 and σ2

a = 1√
2πl2

. The NNGP kernel is then

K(x, y) ≡ ⟨f(x)f(y)⟩a,w = σ2
a

1√
2πσ2

w

∫
dwe

− w2

2σ2
w cos(wx) cos(wy) (21)

=
σ2
a

2
√
2πσ2

w

∫
dwe

− w2

2σ2
w [eiw(x+y) + eiw(x−y)] =

σ2
a

2
[e−

σ2
w(x+y)2

2 + e−
σ2
w(x−y)2

2 ]

hence, as mentioned, choosing σ2
w = 1/l2 and σ2

a = 1/
√
2πl2 reproduces the desired NNGP kernel.

This means that training such a neural network with weight decay proportional to l2 on the wc

weights, PINN loss, and using Langevin type training, samples from the GP posterior we used in
our toy example.

D GREEN’S FUNCTION FOR THE TOY MODEL

We first focus on inverting the bulk operator on the l.h.s. (K−1−ηΩδ(x− y)∂2
y), which now derive.

Consider the following set of basis functions for the positive half-interval,

⟨x|k > 0⟩ =
√
2√
π
cos(kx) =

1√
2π

[eikx + e−ikx] (22)

Notably

⟨k|k′⟩ =
∫ ∞

0

dx⟨k|x⟩⟨x|k′⟩ (23)

=

∫ ∞

0

dx
2

π
cos(kx) cos(k′x) =

∫ ∞

−∞
dx

1

π
cos(kx) cos(k′x)

=

∫ ∞

−∞
dx

1

4π
[eikx + e−ikx][eik

′x + e−ik′x] = δ(|k| − |k′|)

Consider K(x, y) on this basis

K|k⟩ =
∫ ∞

0

dyK(x, y)

√
2√
π
cos(ky) =

∫ ∞

−∞
dyK(x, y)

1√
2π

cos(ky) (24)

=

∫ ∞

−∞
dyK(x, y)

1

2
√
2π

[eiky + e−iky] = 2e−(kl)2/2 1√
2π

cos(kx) = e−(kl)2/2|k⟩

Transforming the bulk operator to this “k-space”

⟨k|[K−1 − ηΩ∂
2
x]|k′⟩ = δ(k − k′)

[
e(kl)

2/2 + ηΩk
2
]
. (25)

We thus find the following expression for the Green function which is defined here as [K−1 +
ηΩL

TL]G(x, y) = δ(x− y),

G(x, x′) =
2

π

∫ ∞

0

dkdk′ cos(kx) cos(k′x′)δ(k − k′)
[
e+(kl)2/2 + ηΩk

2
]−1

(26)

=
2

π

∫ +∞

0

dk cos(kx) cos(kx′)
[
e+(kl)2/2 + ηΩk

2
]−1

=
1

π

∫ +∞

−∞
dk cos(kx) cos(kx′)

[
e+(kl)2/2 + ηΩk

2
]−1

=
1

4π

∫ +∞

−∞
dk[eikx + e−ikx][eikx

′
+ e−ikx′

]
[
e+(kl)2/2 + ηΩk

2
]−1

.

This integral can be evaluated numerically or via contour integration. Considering the latter, one
finds an infinite set of simple poles. As |x − x′| grows or for very large ηΩ, we find numerically
that a single pole dominates the result and yields G(x, x′) ≈ κ

2

[
e−κ|x−x′| + e−κ|x+x′|

]
where

κ = 1√
l2/2+ηΩ

for κl ≪ 1. While this approximation can be systematically improved by accounting

for additional poles, in the numerics carried below we simply calculate this integral numerically.
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E DERIVING THE Qn[ϕ, g] FIGURE OF MERIT

Here, we derive the Qn[ϕ, g] figure of merit, which also exposes some hidden algebraic relations
between the GPR formula and the neurally-informed equation.

First, we note that one can re-rewrite the neurally-informed equation as an operator equation without
performing any integration by parts, namely∫

Ω

[K−1 + η∂Ωδδ + ηΩL
†L]xyf(y)dy = η∂Ωδ∂Ω(x)g(x) + ηΩL

†ϕ(x) (27)

where δ∂Ω(x) =
∫
∂Ω

δ(x− z)dz, [δδ]xy =
∫
∂Ω

δ(x− z)δ(z− y)dz, and [fL†]x = [Lf ]x, which
is then consistent with

∫
Ω
[L†L]xyf(y)dy =

∫
Ω
L†
xδ(x − y)Lyf(y)dy. Noting that the operator

on the l.h.s. is a sum of positive semi-definite operators and that K−1 is positive definite (indeed K
is generically semi-definite and bounded), we invert the operator on the left-hand side and obtain

f(x) = η∂Ω

∫
∂Ω

[
[K−1 + ηΩL

†L+ η∂Ωδδ]
−1

]
xz

g(z)dz (28)

+ ηΩ

∫
Ω

[
[K−1 + ηΩL

†L+ η∂Ωδδ]
−1

]
xy

[L†ϕ]ydy

where the inverse is taken with respect to the bulk measure. Next, we define the following operator,

K̂xy ≡
[
[K−1 + η∂Ωδδ]

−1
]
xy

(29)

= K(x,y)−
∫
∂Ω

∫
∂Ω

K(x, z1)[K + η−1
∂Ω]

−1(z1, z2)K(z2,y)dz1dz2

where the second transition is since the operator K is assumed invertible, a Woodbury-type manip-
ulation can be applied. Note also that the inverse after the second inequality is w.r.t. the boundary
measure and η∂Ω = n∂Ω/σ

2
∂Ω. If the boundary is a single point, obtaining K̂ is again straightfor-

ward, since the operator inverse becomes just a simple algebraic inverse. Substituting Eq. equa-
tion 29

[K−1 + η∂Ωδδ + ηΩL
†L]−1 = [K̂−1 + ηΩL

†L]−1. (30)

Next, we perform a similar manipulation to the one leading to K̂ namely

[K̂−1 + ηΩL
†L]−1 = K̂[1 + ηΩL

†LK̂]−1 (31)

= K̂ − K̂L†
(
η−1
Ω + LK̂L†

)−1

LK̂

To obtain the result in the main text, we apply the operator L on Eq. equation 28, i.e. Lf . It has two
contributions, we first start with the source term contribution

ηΩL

∫
Ω

[
[K̂−1 + ηΩL

†L]−1
]
xy

[L†ϕ]ydy (32)

= ηΩL

[
K̂ − K̂L†

(
η−1
Ω + LK̂L†

)−1

LK̂

]
L†ϕ

= ηΩ

[
(LK̂L†)− (LK̂L†)

(
η−1
Ω + (LK̂L†)

)−1

(LK̂L†)

]
ϕ

= ηΩ

[
η−1
Ω

(
η−1
Ω + (LK̂L†)

)−1

(LK̂L†)

]
ϕ

=
(
η−1
Ω + (LK̂L†)

)−1

(LK̂L†)ϕ,
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where to simplify the notation in places where there is no indication of position the position is x.
Similarly, the boundary contribution,

η∂ΩL

∫
∂Ω

[
[K̂−1 + ηΩL

†L]−1
]
xz

g(z)dz (33)

= η∂ΩL

[
K̂ − K̂L†

(
η−1
Ω + LK̂L†

)−1

LK̂

]
g

= η∂Ω

[
(LK̂)− (LK̂L†)

(
η−1
Ω + (LK̂L†)

)−1

(LK̂)

]
g

= η∂Ω

[
1− (LK̂L†)

(
η−1
Ω + (LK̂L†)

)−1
]
LK̂g

=
η∂Ω
ηΩ

(
η−1
Ω + (LK̂L†)

)−1

LK̂g

=
η∂Ω
ηΩ

∫
∂Ω

[(
η−1
Ω + (LK̂L†)

)−1

LK̂

]
xz

g(z)dz

Consequently, Lf − ϕ is

Lf(x)− ϕ =

[(
η−1
Ω + (LK̂L†)

)−1

(LK̂L†)− 1

]
ϕ+

η∂Ω
ηΩ

(
η−1
Ω + (LK̂L†)

)−1

LK̂g (34)

= −η−1
Ω

(
η−1
Ω + LK̂L†

)−1

ϕ+
η∂Ω
ηΩ

(
η−1
Ω + (LK̂L†)

)−1

LK̂g

we thus find that η∂ΩLK̂g acts as an additional source term. While it may seem it diverges with
η∂Ω we recall that K̂ goes to zero at this limit for arguments on the boundary, hence its contribution
is finite and the overall η−1

Ω ensures this quantity Lf − ϕ goes to zero. Changing the basis to the
eigenfunction basis of LK̂L† leads to the spectral bias result of the main text.

Last, we note in passing that K̂ as the interpretation of the dataset-averaged posterior covariance,
given that one introduced only boundary points and fixes them to zero Cohen et al. (2021). Thus, as
n∂Ω → ∞, K̂ involving any boundary point, is zero.

From a practical point of view, one can obtain an estimate for K̂ at small, η∂Ω. A straightforward
expansion of this quantity to its leading order is then,

K̂xy = K(x,y)− η∂Ω

∫
∂Ω

K(x, z)K(z,y)dz (35)

− η2∂Ω

∫
∂Ω

K(x, z)K(z, z′)K(z′,y)dzdz′ +O(η3∂Ω)

which can then be evaluated analytically in some cases.
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