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Abstract

We study the problem of unlearning datapoints from a learnt model. The learner first
receives a dataset S drawn i.i.d. from an unknown distribution, and outputs a model
ŵ that performs well on unseen samples from the same distribution. However, at
some point in the future, any training datapoint z ∈ S can request to be unlearned,
thus prompting the learner to modify its output model while still ensuring the same
accuracy guarantees. We initiate a rigorous study of generalization in machine
unlearning, where the goal is to perform well on previously unseen datapoints. Our
focus is on both computational and storage complexity.
For the setting of convex losses, we provide an unlearning algorithm that can
unlearn up to O(n/d1/4) samples, where d is the problem dimension. In compar-
ison, in general, differentially private learning (which implies unlearning) only
guarantees deletion of O(n/d1/2) samples. This demonstrates a novel separation
between differential privacy and machine unlearning.

1 Introduction

Many organizations and companies employ user data to train machine learning models for a wide
array of applications, ranging from movie recommendations to health care. While some of these
organizations allow users to withdraw their consent from their data being used (at which point the
organization will delete the user’s data), less savory businesses might covertly retain user data. Given
the potential for misuse, legislators worldwide have wisely introduced laws that mandate user data
deletion upon request. These include the European Union’s General Data Protection Regulation
(GDPR), the California Consumer Privacy Act (CCPA), and Canada’s proposed Consumer Privacy
Protection Act (CPPA).

There is some natural ambiguity present in these guidelines. Is it sufficient to simply delete the
user’s data, or must one also take action on machine learning systems that used this data for training?
Indeed, by now, privacy researchers are well-aware that user data may be extracted from trained
machine learning models (e.g., Shokri et al. [2017], Carlini et al. [2019]). In a potentially landmark
decision, the Federal Trade Commission recently ordered a company to delete not only data from
users who deleted their accounts, but also models and algorithms derived from this data [Federal
Trade Commission, 2021]. This suggests that organizations have an obligation to retrain any machine
learning models after excluding users whose data has been deleted.
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However, naïvely retraining models after every deletion request would be prohibitively expensive:
training modern machine learning models may take weeks, and use resources of value in the millions.
One could instead imagine more careful methods, which attempt to excise the required datapoints
from the model: crucially, without incurring the cost of retraining from scratch. This notion is called
machine unlearning. The goal would be to obtain a model which is identical to the alternative model
that would be obtained when trained on the dataset after removing the points that need to be forgotten.
This requirement is rather strong: Ginart et al. [2019] proposed a relaxed notion of deletion, in which
the model must only be close to the alternative, where closeness is defined in a way reminiscent of
differential privacy [Dwork et al., 2006a,b] (our variant of this notion is described in Definition 2).
This relaxation has inspired the design of several efficient algorithms for data deletion from machine
learning models [Guo et al., 2020, Izzo et al., 2021, Neel et al., 2021, Ullah et al., 2021].

As mentioned before, one naïve strategy involves retraining the model from scratch, sans the deleted
datapoints. When the training dataset is large, this approach is undesirable for several reasons. First,
it is computationally very expensive. Even iteration over the training data can be too costly, let alone
training a new model on it. Second, preserving the entire training dataset consumes a significant
amount of storage.2

Another straightforward approach involves model checkpointing, in which the learner preemptively
stores backup models in which certain points have been excluded. While this strategy makes it easy
to quickly return an appropriate backup model upon receiving a deletion request, the downside is
that one typically has to store a number of additional models which scales with the training data size,
which may be prohibitively large. As we can see from these examples, computational and storage
complexity are two vital metrics when designing a machine unlearning algorithm.

Finally, while there has recently been a wealth of results in machine unlearning, all of it has focused
on the core problem of empirical risk minimization, where the goal is to minimize the training loss.
However, to fulfil the promise of machine learning, we desire algorithms that can generalize to
previously unseen test data. Motivated simultaneously by all of these concerns, our goal is to address
the following question:

How do we design resource-efficient machine unlearning algorithms which generalize?

Our contributions. We initiate a new line of inquiry in machine unlearning:

• We investigate generalization properties of unlearning algorithms, in particular asking: how
many samples can we unlearn while still ensuring good performance on unseen test data? In
comparison, prior work focused on the empirical training loss only.

• We consider machine unlearning simultaneously under storage constraints as well as the
previously studied computation constraints. Unlike prior work, our algorithms do not require
the training data to be available to the unlearning algorithm when deleting samples.

• A clean approach for unlearning is to ignore which particular samples are being unlearnt and
directly apply known algorithms and guarantees from differential privacy (DP). We show a
strict separation between DP and machine unlearning.
In particular, algorithms based on DP can delete at most Θ̃(n/

√
d) samples while still retaining

test loss performance, where d denotes the dimension of the problem. On the other hand,
we provide efficient unlearning algorithms that take into account the particular samples to
be unlearnt and show that we can delete up to Õ(n/d1/4) samples, thus giving a quadratic
improvement in terms of dependence of d over DP. Our results apply to both strongly convex
and convex loss functions.

1.1 Related work

Cao and Yang [2015] introduced the term “machine unlearning,” and gave efficient deterministic
algorithms for exact unlearning in certain settings. This definition requires an algorithm to have
identical outputs on a dataset after deleting a point, and if that point was never inserted. However, their

2Orthogonal to storage constraints, an additional issue is that government regulations may restrict the learner
from storing raw user data for extended periods of time due to privacy concerns. However, we focus on storage
as it captures undesirability of a wider range of unsatisfactory solutions.
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algorithms are restricted to very structured problems only. Bourtoule et al. [2021] provide unlearning
algorithms using a sharding-based strategy, though in a weaker unlearning model (requiring only that
it be possible that the output may have arisen), and without error guarantees.

Ginart et al. [2019] introduced the probabilistic notion of unlearning, inspired by differential privacy
[Dwork et al., 2006b,a]. Their definition requires the output distribution of the unlearning algorithm
to be similar to the output distribution obtained by running the learning algorithm on the dataset
without the deleted points. Several recent works [Guo et al., 2020, Izzo et al., 2021, Neel et al.,
2021, Ullah et al., 2021] provide theoretical error guarantees for various problem settings under this
probabilistic notion of unlearning. While our unlearning setup is closely related to that of Ginart et al.
[2019] and in the related works, there are two major differences.

First, the prior work focuses on empirical risk minimization [Guo et al., 2020, Izzo et al., 2021,
Neel et al., 2021, Ullah et al., 2021]. In their setup, the goal of the unlearning algorithm is to find
approximate minimizers of the empirical loss on the remaining training dataset after deleting samples.
In comparison, our focus in this paper is on the test loss, and we wish to understand how many
samples can be deleted from a learnt model while still ensuring that the updated model performs
well on unseen examples (i.e., the generalization error). As we discuss in Section 3.1, the goal of
minimizing the training loss is qualitatively different from that of minimizing the test loss.

Second, the prior work focuses exclusively on the computational cost of unlearning, without concern
for associated storage requirements. This has led to approaches which involve memory-intensive
checkpointing data structures, which enables fast processing of deletion requests, but consumes
potentially impractical amounts of storage. In contrast, we are additionally concerned with memory
usage, which highlights the drawbacks of such approaches. Unlike prior work, our algorithms do not
require the training data to be available to the unlearning algorithm when deleting samples, and only
rely on some cheap-to-store data statistics.

The most closely related work to ours is the certified data removal framework of Guo et al. [2020]
which provides efficient data deletion algorithms for generalized linear models (linear and logistic
regression). While our deletion algorithm is similar to the Newton update removal mechanism
considered in their work, there are some important technical differences. First, their unlearning setup
requires access to the entire training dataset for deleting samples; we do not require this. Second,
they provide theoretical guarantees in terms of the norm of the empirical gradient being small after
data removal. In comparison, our guarantees are for the test loss. Third, their unlearning definition
requires the learning algorithm to be randomized, and this leads to worse performance guarantees
due to added noise. In comparison, we do not need to randomize the learning algorithm. Finally, our
guarantees hold for arbitrary convex loss functions and are thus broader in scope.

Several other models of unlearning have been considered. Garg et al. [2020] give an alternative
perspective on machine unlearning, grounded in cryptography. Other works in this space focus
on exploring privacy risks [Chen et al., 2020] and verification [Sommer et al., 2020] in machine
unlearning settings. For specific learning models like SVMs, exact unlearning has been considered
under the framework of decremental learning [Cauwenberghs and Poggio, 2001, Tveit et al., 2003,
Karasuyama and Takeuchi, 2010, Romero et al., 2007]. However, the primary motivation in these
works is to use the framework of decremental learning to estimate the leave-one-out error in order to
provide generalization guarantees for the learnt model. Finally, there has also been recent empirical
and theoretical work in developing definitions and algorithms for machine unlearning with deep
neural networks for application domains in computer vision [Du et al., 2019, Golatkar et al., 2020a,b,
Nguyen et al., 2020].

2 Preliminaries

Let D be a distribution over an instance space Z andW ⊆ Rd be the parameter space of a hypothesis
class. Let f : W ×Z → R be a loss function. The goal is to minimize the test loss population risk
(test loss), given by

F (w) := Ez∼D[f(w, z)], (1)

where f(w, z) is the loss of the hypothesis corresponding to w ∈ W on the instance z ∈ Z . Let
F ∗ = minw∈W F (w) be the value of this minimum and w∗ be a corresponding minimizer. Since the
distribution D is often unknown, we are restricted to rely on samples to find a small test loss model.
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Given S = (z1, z2, . . . , zn), a set of n samples drawn independently from D, standard learning
algorithms minimize the empirical loss given by

F̂n(w) :=
1

n

n∑
i=1

f(w, zi). (2)

2.1 Learning

Let A : Zn →W be a learning algorithm that takes the dataset S and returns a hypothesis A(S) ∈ W .
The quality of A is measured in terms of the difference between the population risk of the hypothesis
A(S) and the risk of the best hypothesis w∗ inW , i.e., the excess risk

E[F (A(S))]− F ∗,

where the expectation is over the randomness in A and S. This gives a natural notion of sample
complexity.
Definition 1 (Sample complexity of learning). The γ-sample complexity of a problem is defined as

nγ := min{n | ∃A s.t. ES∼Dn [F (A(S))]− F ∗ ≤ γ for all D},

the fewest number of samples with which a γ-suboptimal minimizer of the population loss F (w) can
be achieved for any distribution over the data samples.

For comparing different algorithms throughout the paper, we set γ = 0.01 (or any other small
arbitrary constant), and require that the provided learning algorithms learn with population risk
sub-optimality of at most 0.01. Standard results in learning theory [Bubeck, 2014, Theorem 6.1]
show that for convex and strongly convex losses,

n0.01 = O(1), (3)

where the hidden constant depends on the properties of f such as its Lipschitzness, but is independent
of the dimension d of the parameter spaceW ⊆ Rd.

2.2 Unlearning

Suppose a learning algorithm A over S outputs the model A(S). An unlearning algorithm Ā takes
as input the model A(S) and a set U ⊂ S of data samples that are to be deleted, and is required to
output a new model w̃ ∈ W . Besides the set U and the model A(S), the unlearning algorithm Ā can
also access some additional data statistics T (S) ∈ T . We emphasize that the unlearning algorithm
does not have access to the entire original dataset S in this resource-constrained setting and hence
cannot retrain from scratch.

This set of statistics T (S) captures the additional storage required by the algorithm to support un-
learning. Thus, one of our goals is to minimize |T (S)|, in particular aiming for memory requirements
which are independent of the training data size n. This precludes strategies which involve storing and
reusing the entire training set, or aggressive model checkpointing. On the other hand, it permits stor-
age of simple statistics such as the empirical mean or average gradient of training data points, which
may prove useful when unlearning. At the same time, we are still concerned with our unlearning
algorithm’s time complexity. This goes hand in hand with the storage complexity: for most natural
algorithms, the two are likely to be polynomially related. Augmented by this set of data statistics
T (S), an unlearning algorithm is a mapping Ā : Zm ×W × T → W .

To illustrate our unlearning setup, consider the following toy example: Suppose we train a model
ŵ with four datapoints S = {[0.0, 0.1], [2.0, 2.3], [4.0, 0.5], [3.0, 1.3]}. After training the model, the
learner only keeps ŵ and a cheap-to-store sufficient statistic T (S), and deletes the dataset S from
the memory. At this point the learner does not have access to any datapoints from S anymore. Now,
when a delete request comes, the request contains just the sample U to be deleted e.g. [4.0, 0.5].
The unlearning algorithm at this point will unlearn this sample, using the information ŵ, T (S), and
U = [4.0, 0.5] only. Here, note that the data sample [4.0, 0.5] is provided to the unlearning algorithm
by the user who owns this data and requests for its deletion.

We now define a notion of unlearning, which is motivated by the definition of differential pri-
vacy [Dwork et al., 2006a].
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Definition 2 ((ε, δ)-unlearning). For all S of size n and delete requests U ⊆ S such that |U | ≤ m,
and W ⊆ W , a learning algorithm A and an unlearning algorithm Ā is (ε, δ)-unlearning if

Pr
(
Ā(U,A(S), T (S)) ∈W

)
≤ eε · Pr

(
Ā(∅, A(S \ U), T (S \ U)) ∈W

)
+ δ,

and

Pr
(
Ā(∅, A(S \ U), T (S \ U)) ∈W

)
≤ eε · Pr

(
Ā(U,A(S), T (S)) ∈W

)
+ δ,

where ∅ denotes the empty set and T (S) denotes the data statistics available to Ā.

The above states that with high probability, an observer cannot differentiate between the two cases (i)
the model is trained on the set S and then a set U of m points are deleted by the unlearning algorithm
using statistics T (S) and (ii) the model is trained on the set S \U and no points are deleted thereafter
by the unlearning algorithm (using statistics T (S \ U)). For simplicity, throughout the paper, we
assume that ε ≤ 1.

While being similar, the above notion of unlearning is slightly different from the one considered in
Ginart et al. [2019]. Specifically, their definition compares the output of the unlearning algorithm
after deleting m samples, to the output of the learning algorithm that only operates on S \ U . Due to
this, they require the learning algorithm to be randomized, even in the situation when there would be
no delete requests in the future. Thus, the output of the learning algorithm will suffer a degradation
in its performance guarantees due to this added noise. On the other hand, our definition does not
require the learning algorithm to be randomized since we only compare the output of the unlearning
algorithms in the two scenarios−with and without the delete requests. Furthermore, our definition is
more general than that of Ginart et al. [2019], as we can simulate their comparison in our definition
by considering the unlearning algorithms for which Ā simply adds noise to the output of A(S \ U)
when U = ∅.
Our definition of unlearning leads to the following natural definition of the deletion capacity that
formalizes how many samples can be deleted while still ensuring good test loss guarantees.

Definition 3 (Deletion capacity). Let ε, δ ≥ 0. Let S be a dataset of size n drawn i.i.d. from D,
and let f(w, z) be a loss function. For a pair of learning and unlearning algorithms A, Ā that are
(ε, δ)-unlearning, the deletion capacity mA,Ā

ε,δ (d, n) is defined as the maximum number of samples U
that can be unlearnt, while still ensuring an excess population risk of 0.01. Specifically,

mA,Ā
ε,δ (d, n) := max

{
m | E

[
max

U⊆S:|U |≤m
F (Ā(U,A(S), T (S)))− F ∗

]
≤ 0.01

}
,

where the expectation above is with respect to S ∼ Dn and output of the algorithms A and Ā.

We are primarily interested in unlearning algorithms for which T (S) is small, and in particular does
not grow with the dataset size n (which can potentially be very large).

2.3 Unlearning via retraining from scratch

The most naïve yet natural baseline for unlearning is to simply retrain the model from scratch using
the remaining data. That is, we let Ā(U,A(S), T (S)) = A(S \ U). However, the straightforward
method to implement this approach would require us to set T (S) to contain the entire training dataset
S, and thus |T (S)| ≥ n. However, recall that, we aim to provide unlearning algorithms for which
T (S) is independent of n. Furthermore, retraining from scratch is computationally expensive –
merely reading all the data takes Ω(n−m) time, not accounting for the cost of actually running the
algorithm. These drawbacks lead one to explore more efficient methods for unlearning.

3 Our results

Prior works consider unlearning from an optimization perspective, focusing on minimizing the
empirical risk, and do not discuss the implications of unlearning on test loss. As we show in the
next section, the two could significantly different objectives even for some of the simplest learning
problems.
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3.1 Population risk vs empirical training risk

We first provide a simple example motivating our study of population risk over empirical risk,
quantified rigorously in Theorem 1. Consider the following mean estimation problem. Let d = 1,
Z = R, and the loss function f(w, z) = (w − z)2. The empirical risk of n points z1, z2, . . . , zn
is minimized by the average 1

n

∑n
i=1 zi. For this problem there is a simple unlearning algorithm

that minimizes empirical risk and also unlearns U exactly. We store the average of the points
w1 =

∑n
i=1 zi/n, and upon receiving a deletion request of a set U of m samples, subtract those

samples and renormalize to compute the minimizer of the empirical loss on the remaining training
samples, i.e., we output

w2 =
n

n−m

(
w1 −

1

n

∑
z∈U

z
)
. (4)

The above update rule requires T (S) to be of size O(d) and completely deletes the samples U
satisfying the unlearning guarantee with ε = δ = 0. The returned solution w2 is the exact minimizer
of the empirical loss on left over data points.

However, w2 may not perform well on fresh samples drawn from the test distribution. Consider the
same setting as above, but where the points zi are drawn i.i.d. from Bernoulli(1/2). Thus, the optimal
parameter w∗ that minimizes the test loss is given by 1/2. However, consider the scenario where all
of the m delete requests correspond to points with value 1. In this case, the minimizer of the updated
empirical loss would be smaller by an additive factor of m/n than the previous estimate, and would
thus have worse test loss.

In other words, in the unlearning framework, while minimizing training loss might be a good
algorithm, just providing guarantees on the training loss can be vacuous if we want the model to
generalize to unseen test samples. Furthermore, focusing on the test loss inherently limits the deletion
capacity as noted in example discussed above. We further formalize this intuition in Theorem 1
and show that even if the unlearning algorithm has access to all undeleted samples S \ U , there is a
non-trivial limit on the deletion capacity.
Theorem 1. Let δ ≤ 0.005 and ε = 1. There exists a 4-Lipschitz, 1-strongly convex function f and
distribution D, such that for any learning algorithm A and unlearning algorithm Ā , which even has
access to undeleted samples S \ U , the deletion capacity

mA,Ā
ε,δ (d, n) ≤ cn,

where c depends on the properties of function f and is strictly less than 1.

Prior work [Shalev-Shwartz et al., 2009a, Feldman, 2016] suggests that even in the learning setting
there are problems for which empirical risk minimizer solution fails to perform well on fresh samples,
and regularization does not help [Kale et al., 2021]. Our situation is worse, since the delete requests
U can be adversarially chosen from S [Lai et al., 2016, Diakonikolas et al., 2019]. In fact, the proof
of Theorem 1 relies on showing the existence of an adversary that can only delete points and can
change the empirical loss considerably. We defer full details to Appendix B.1.

3.2 Strict separation between unlearning and differential privacy

Given the strong resemblance between differential privacy and our definition for unlearning, a natural
approach would be to use tools from differential privacy (DP) for machine unlearning. The simplest
way is to ignore the particular set of delete requests U and construct an unlearning algorithm Ā that
only depends on the learning algorithm A(S). More formally, such an unlearning algorithm is of the
form Ā(U,A(S), T (S)) = Ā(A(S)) and satisfies:

Pr
(
Ā(A(S)) ∈W

)
≤ eεPr

(
Ā(A(S \ U)) ∈W

)
+ δ,

Pr
(
Ā(A(S \ U)) ∈W

)
≤ eεPr

(
Ā(A(S)) ∈W

)
+ δ.

Note that any such pair of algorithms would be differentially private with respect to the original
dataset S, where the notion of neighboring datasets is for datasets with edit distance of m. The
above guarantee is stronger than the distribution-free unlearning guarantee in Definition 2, and thus it
suffices to satisfy it. The key observation is that any DP algorithm A, which is private for datasets
with edit distance m, automatically unlearns any m data samples. Thus, the standard performance
guarantees for DP learning yields the following bound on deletion capacity:
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Lemma 1 (Unlearning via DP). There exists a polynomial time learning algorithm A and unlearning
algorithm Ā of the form Ā(U,A(S), T (S)) = A(S) such that the deletion capacity

mA,Ā
ε,δ (d, n) ≥ Ω̃

( nε√
d log(eε/δ)

)
, (5)

where the constant in the Ω-notation above depends on the properties of the loss function f .

The above result raises an immediate question of whether this particular dependence on d and n is
necessary on the deletion capacity, and if it can be improved further. The following lemma shows
that there exist problem instances for which any unlearning algorithm that ignores the samples U ,
can not improve over the factor of

√
d in the denominator of the deletion capacity bound in (5).

Lemma 2 (Bassily et al. [2019], Section C). For any learning algorithm A and an unlearning
algorithm Ā that does not use U , i.e., Ā(U,A(S)) = Ā(A(S)), there exists a 1-strongly convex
function and O(1)-Lipschitz loss function f , and a distribution D such that we can not unlearn even
a single sample point, if

n ≤ c ·
√
d

ε
,

where c depends on the properties of the function f .

Given that the
√
d dependence on dimension is unavoidable for algorithms that directly use DP, it is

natural to wonder whether this factor may be bypassed using other techniques. Our main contribution
in this work a positive answer in this direction. As we show in the next section, when the loss function
is convex, there exist unlearning algorithms which can delete up to n/d1/4 sample points while still
retaining the performance guarantee with respect to the test loss.

3.3 Unlearning for convex loss functions

In this section, we provide an unlearning algorithm Ā for convex losses that can delete more points
than unlearning algorithms that simply use DP.

Theorem 2. There exists a learning algorithm A and an unlearning algorithm Ā such that for any
convex (and hence strongly convex), L-Lipschitz, and M-Hessian-Lipschitz loss f and distribution D,

mA,Ā
ε,δ (d, n) ≥ c · n

√
ε

(d log(1/δ))
1/4

,

where the constant c depends on the Lipschitz constants L and M . Furthermore, for the unlearning
algorithm Ā has running time O(dω) where ω ∈ [2, 2.38] is the exponent of matrix multiplication,
and space complexity for T (S) = O(d2).

Theorem 2 and Lemma 2 together show that there exist problem settings, where the deletion capacity
in unlearning and DP is different by a multiplicative Θ(d1/4). In particular, when learning with
convex loss functions, we can delete O(n/d1/4) samples while still retaining good performance
on the unseen test loss, whereas DP only guarantees deletion of Θ(n/d1/2) samples. Hence, our
algorithm is at least quadratically better in terms of dependence on d in deletion capacity that standard
DP algorithms. Besides improving the dependence on d, our algorithm also enjoys better dependence
on ε and log(1/δ) in the deletion capacity, by at least a quadratic factor.

Our learning algorithm stores additional statistics of the dataset S in order to delete the set U in the
unlearning algorithm. The extra memory we need for these statistics is independent of n. Furthermore,
our algorithm uses the samples in U during the unlearning phase. This paradox of storing and using
information in order to delete it, motivates the name of the paper: Remember what you want to forget.

Characterizing the entire set of problems for which unlearning and differential privacy are different
remains an interesting open question. Theorem 2 yields an improved upper bound, but it is not clear
if this dependence on d or n in the deletion capacity is tight or if it can be improved even further.
Resolving this question would be a fascinating future research direction.
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4 Unlearning algorithms

In the following, we provide learning and unlearning algorithms when the loss function f(·, z) is
λ-strongly convex. The unlearning algorithms for convex losses follows by appealing to the strongly
convex case after adding regularization. We defer the algorithms and proofs for the convex case to
Appendix D. Throughout this section, we make the following assumption:
Assumption 1. For any z ∈ Z , the function f(w, z) is λ-strongly convex, L-Lipschitz and M -
Hessian Lipschitz with respect to w.

Learning algorithm. We denote our learning algorithm by Asc. When given a dataset S of n points
sampled i.i.d. from some distribution D, the algorithm Asc computes the point ŵ by minimizing the
empirical loss F̂n(w), i.e.

ŵ ← argmin F̂n(w) :=
1

n

∑
z∈S

f(w, z). (6)

Asc then returns the point ŵ and the statistics T (S) := {∇2F̂ (ŵ)} containing the Hessian of F̂ (w)
evaluated at the output point ŵ. We provide the pseudocode for Asc in the appendix.

Unlearning algorithm. We denote our unlearning algorithm by Āsc and provide the pseudocode in
Algorithm 1. Āsc receives as input the set of delete requests U , the point ŵ and the data statistics
T (S). Using these inputs, Āsc first estimates the matrix Ĥ that denotes the Hessian of the empirical
function on the dataset S \ U when evaluated at the point ŵ. Then, Āsc computes the point w̄ by
removing the contribution of the deleted points U from ŵ using the update in (8). Finally, Āsc

perturbs w̄ with noise ν drawn from N (0, σ2Id) and returns the perturbed point w̃.

Algorithm 1 Unlearning algorithm (Āsc)
Input: Delete requests: U = {zj}mj=1 ⊆ S, output of Asc(S): ŵ, additional statistic T (S) :

{∇2F̂ (ŵ)}, loss function: f(w, z).
1: Set γ = 2Mm2L2

λ3n2 , σ = γ
ε

√
2 ln(1.25/δ).

2: Compute

Ĥ =
1

n−m

(
n∇2F̂ (ŵ)−

∑
z∈U

∇2f(ŵ, z)
)
. (7)

3: Define

w̄ = ŵ +
1

n−m
(Ĥ)−1

∑
z∈U

∇f(ŵ, u). (8)

4: Sample ν ∈ Rd from N (0, σ2Id).
5: Return w̃ := w̄ + ν.

Our main technical insight that leads to improvements in deletion capacity over differential privacy is
the following observation. For loss functions that satisfy Assumption 1, when deleting m samples, we
can approximate the empirical minimizer on the dataset S \ U up to a precision of O(m2/n2) by the
point w̄ computed in (8). This implies that we only need to add noise of the scale of σ ∝ O(m2/n2)
to get the desired unlearning guarantee. This noise is smaller than the amount of noise typically
added for DP learning [Dwork and Roth, 2014] by a quadratic factor; hence giving us a quadratic
improvement in the deletion capacity.
Lemma 3. Suppose the loss function f satisfies Assumption 1. Let S ∼ Dn be a set of n samples,
and U ⊆ S denote the set of m delete requests. Define the point ŵ′ as the empirical minimizer over
S \ U , i.e. ŵ′ ∈ argminw

∑
z∈S\U f(w, z)/(n−m). Then,

∥ŵ′ − w̄∥ ≤ 2ML2m2

λ3n2
,

where the point w̄ is defined in (8) in Algorithm 1.
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The following theorem provides performance guarantees for the algorithms Asc and Āsc, and show
that Asc and Āsc are (ε, δ)-unlearning.

Theorem 3. Suppose the loss function f satisfy Assumption 1 and let the dataset S ∼ Dn. Then,

(a) The point ŵ returned by running Asc on S satisfies

ES∼Dn [F (ŵ)− min
w∈W

F (w)] ≤ 4L2

λn
. (9)

(b) For any set U ⊆ S of m delete requests, the point w̃ returned by Āsc satisfies

ES,ν [F (w̃)− min
w∈W

F (w)] = O
(√dMm2L3

λ3n2ε

√
ln
(
1/δ

)
+

4mL2

λn

)
. (10)

(c) The learning algorithm Asc and the unlearning algorithm Āsc are (ε, δ)-unlearning.

Note that our guarantees in the above theorem are in terms of the test loss performance, while our
algorithms compute minimizers of the training loss. We defer the proof to the Appendix C.2. This
gives a lower bound on the number of samples m that can be deleted while still ensuring the desired
excess risk guarantee (deletion capacity). Specifically, from the performance guarantee for Āsc in
(10), we observe that we can delete

m ≥ c · n
√
ε

(d log(1/δ))
1/4

,

samples from the set S (with size n) while still ensuring that an excess risk guarantee of γ = 0.01.
Here, c depends on the constants M,K and λ for the function f . This proves Theorem 2 for strongly
convex loss functions.

Memory. We do not need to store the entire dataset S for the unlearning algorithm Āsc. We note
that the data statistic T (S) that is passed as an input to Āsc is given by T (S) = {∇2F̂ (ŵ)}. Clearly,
T (S) needs O(d2) memory and thus |T (S)| is independent of n or m.

Computation. For the sake of exposition above, our learning algorithm Asc computes the exact
minimizer for the empirical loss in (6). However, as we show in Appendix C.2, our theoretical
guarantees hold even when the empirical minimizer is computed approximately up to a precision of
O(1/n2). When the domainW is convex, such a minimizer can be efficiently computed using stan-
dard optimization algorithms like accelerated gradient descent, SGD, clipped-SGD, etc. For example,
for the λ-strongly convex case, Nesterov’s accelerated GD algorithm can find a O(1/n2) approximate
minimizer in time Õ(nd/

√
λ) [Bubeck, 2014, Nemirovski and Yudin, 1983]. Furthermore, Asc takes

O(nd2) time to compute T (S).

On the other hand, the running time for the unlearning algorithm Āsc scales as O(md2 + dω), the
time taken to compute the matrix Ĥ and to invert it. Here, ω ∈ [2, 2.38]. Note that our unlearning
time is independent of the (potentially large) dataset size n. Furthermore, for problems such as linear
SVMs where the Hessian is a diagonal matrix, Asc takes time O(nd) and Āsc takes time O(d).

Comparison to retraining from scratch. Retaining from scratch requires access to the entire
training dataset S during unlearning, and is thus not a feasible unlearning algorithm in the resource
constrained setting that we consider in this work where the size of the data statistics T (S) should
not scale with the size of S. However, ignoring the memory issues, there are regimes for the
value of m for which retraining from scratch is computationally more efficient that implementing
Algorithm 1, and the returned solution enjoys the same test loss performance guarantee. In particular,
when max(m5d2,m4+ω) > λ4n2ε, retraining from scratch by solving (6) using stochastic gradient
descent is more efficient that computing the matrix Ĥ and its inverse in Algorithm 1. On the other
hand, for large datasets (when n≫ d), we expect our algorithm to be computationally more efficient.
We defer the exact characterization of memory / computation tradeoffs in machine unlearning for
future work.
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Algorithms for convex losses. Our unlearning algorithms when the loss function is convex are
based on reductions to the strongly convex setting discussed above. Give the convex loss function
f(·, z), we define the function f̃(·, z) as

f̃(w, z) = f(w, z) +
λ

2
∥w∥2.

The key observation is that the function f̃(w, z) is λ-strongly convex, (L+λ∥w∥)-Lipschitz, (H+λ)-
smooth and M -Hessian Lipschitz, and thus we can run algorithms Asc and Āsc on f̃ . We defer the
algorithmic implementation and theoretical analysis for the convex loss setting to Appendix D.

5 Conclusion

We initiated a new study on machine unlearning with a focus on population risk minimization, in
comparison to previous works that focus on empirical risk minimization. For the case of convex loss
functions, we provide a new unlearning algorithm that improves over the deletion capacity, by at least
a quadratic factor in d, than using an out of the box differentially private algorithm for unlearning.
Proving a dimension dependent information theoretic lower bound on the deletion capacity is an
interesting future research direction. Another exciting direction of future research is to provide
efficient unlearning algorithms for finite / discrete hypothesis class, and for non-convex loss functions.
Finally, in this work, we considered the problem of batch deletion where the delete request U all
arrive at the same time; Extending our algorithms for the online case is another interesting research
direction that we are excited to pursue in future research.
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A Additional Notation

We recall the following standard definitions for the loss function f(w; z).
Definition 4 (Lipschitzness). The function f(w, z) is L-Lipschitz in the parameter w if for all z ∈ Z ,
and all w1, w2 ∈ W ,

|f(w1, z)− f(w2, z)| ≤ L∥w1 − w2∥.
Definition 5 (Strong convexity). The function f(w, z) is λ-strongly convex, if for all z ∈ Z , and all
w1, w2 ∈ W ,

f(w1, z) ≥ f(w2, z) + ⟨∇f(w2, z), w1 − w2⟩+
λ

2
∥w1 − w2∥2.

Definition 6 (Hessian-Lipschitzness). The function f(w, z) is said to be M -Hessian Lipschitz if for
all z ∈ Z , and all w1, w2 ∈ W ,

∥∇2f(w1, z)−∇2f(w2, z)∥ ≤M∥w1 − w2∥,

or equivalently, that ∥∇3f(w, z)∥ ≤M for all w.

B Missing proofs from Section 3

B.1 Proof of Theorem 1

We first develop some technical results, which we will use to prove Theorem 1. For a distribution D,
define µ(D) := EZ∼D[Z].
Lemma 4. There exists two distributions D1 and D2 over [0, 1] such that ∥D1 − D2∥1 ≤ α and
|µ(D1)− µ(D2)| ≥ α/2.

Proof. Let D1 be the uniform distribution over [0.25 + α/2, 0.75 + α/2] and D2 be the uniform
distribution over [0.25, 0.75]. We note that Ez∼D1

[z] = 0.5 + α/2 and Ez∼D2
[z] = 0.5 and hence

|Ez∼D1
[z]− Ez∼D2

[z]| = α/2. However, the ℓ1 distance between D1 and D2 is bounded by α.

Lemma 5. Given two distributions D1 and D2 over the domain Z , let the distribution D̄ be defined
such that for any z ∈ Z , D̄(z) ∝ min(D1(z),D2(z)). Then, for any D1 and D2 such that ∥D1 −
D2∥1 = α, and n samples {zi}ni=1 drawn iid from D1, there exists an adversary that deletes at most
2nα samples and outputs the dataset {zj}n

′

j=1 with a distribution D̃n′
and n′ ≤ n− 2nα such that

∥D̃∗ − D̄∗∥1 ≤ e−nα/6,

where the superscript denotes distribution over all sequences over the domain Z .

Proof. Let m = 2nα. Our proof uses two adversaries A′ and A. We first define A′. Given n samples
{zi}ni=1, it deletes sample zi with probability [D1(zi)−D2(zi)]+

D1(zi)
, where [x]+ := max{x, 0}. First

observe that for any sample z, probability that z is retained is given by

D1(z) ·
min{D1(z),D2(z)}

D1(z)
= min{D1(z),D2(z)}.

Thus the distribution of samples outputted by A′ is exactly D̄. However, it can delete more than m
samples. Next, we consider another adversary A, which is same as A′, except it stops after deleting
m samples. Hence, for sequences of length > n−m, the output of A′ and A are the same. Hence,

∥D̃∗ − D̄∗∥1 ≤ Pr(N ≥ m), (11)

where N is the number of deleted samples. In the rest of the proof, we bound this probability.

Let Xi ∈ {0, 1} be the random variable that takes the value 1 if the sample i is deleted. Hence
N =

∑
i Xi. Furthermore, E[Xi] =

∫
z
[D1(z),D2(z)]+dz = ∥D1 − D2∥2/2 = m/4n. By the

Chernoff bound, we have that

Pr
(∑

i

Xi ≥ m
)
≤ e−m/12.

Using the above with (11) implies the desired statement.
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We now have all the tools to prove Theorem 1.

Proof of Theorem 1. The proof for small values of m follows from known bounds for sample
complexity of learning [Bubeck, 2014, Shalev-Shwartz and Ben-David, 2014]. In the following, we
provide an information-theoretic lower bound for m ≥ 100 by constructing two distributions D1 and
D2 and show that no single learning-unlearning pair A, Ā can perform well on both of them.

LetW = [0, 1] and Z = R. Further, let the loss function be f(w, z) = (w − z)2. Our proof consists
of two main parts: we first provide a reduction from learning to mean estimation, and then give the
lower bound by a reduction from mean estimation to hypothesis testing.

Reduction from learning to mean estimation: We first show that for any distribution D for the
population loss given by F (w) := Ez∼D[f(wz)] satisfies,

F (w)− F (w∗) = (w − w∗)2.

To observe this note that

F (w) = E[(w − z)2]

= E[(w − w∗ + w∗ − z)2]

= E[(w − w∗)2] + 2 E[(w − w∗)(w∗ − z)] + E[(w∗ − z)2]

= (w − w∗)2 + 2(w − w∗)E[(w∗ − z)] + F (w∗)

= (w − w∗)2 + F (w∗),

where the last inequality uses the fact that E[z] = w∗ for our loss function. Thus, in order to bound
the learning error, it suffices to bound the error in estimating the mean of the underlying distribution
w∗.

From mean estimation to the lower bound: Since Z is unbounded and having more information
only helps, we assume that the unlearner has access to the entire sample set S i.e., the passed
data statistics T (S) = {S}. Since the output A(S) can be derived from S, it suffices to consider
unlearning algorithms Ā of the form Ā(U, S). Let w denote the output Ā(U, S). By the definition of
forgetting rule,

ED1(Ā(U,A(S))− w∗
1)

2 =

∫
w

PrD1(Ā(U,A(S)) = w)(w − w∗
1)

2dw

≥ e−ε

∫
w

PrD1
(Ā(ϕ,A(S \ U)) = w)(w − w∗

1)
2dw − δ,

where the last inequality uses the fact thatW = [0, 1]. Let Ã = Ā(ϕ,A(·)). Let α = m/2n and
let D1 and D2 be two distributions such that ∥D1 −D2∥1 = α. Let the set of delete requests U be
chosen by the adversary in Lemma 5. For these set of samples U , we have that∫
w

PrD1(Ā(ϕ,A(S \ U)) = w)(w − w∗
1)

2dw ≥
∫
w

PrD̄(Ā(ϕ,A(S \ U)) = w)(w − w∗
1)

2dw − e−m/12,

where D̄ is defined in Lemma 5. Similarly, we have that

ED2
(Ā(U,A(S))− w∗

1)
2 ≥ e−ε

∫
w

PrD̄(Ā(ϕ,A(S \ U)) = w)(w − w∗
1)

2dw − e−m/12 − δ.

The sum of errors the unlearner makes on either of the errors is at least

ED1 [F (w)]− F ∗
D1

+ ED2 [F (w)]− F ∗
D2

≥ e−ε

∫
w

(PrD̄(Ã(S \ U) = w)((w − w∗
1)

2 + (w − w∗
2)

2)dw − 2δ − 2e−m/12

≥ e−ε

2

∫
w

(PrD̄(Ã(S \ U) = w)((w∗
1 − w∗

2)
2)dw − 2δ − 2e−m/12

=
e−ε(w∗

1 − w∗
2)

2

2
− 2e−m/12 − 2δ, (12)
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where the inequality in the second last line follows from the fact that a2 + b2 ≥ (a+ b)2/2 for any
a, b ∈ R.

Plugging in the distributions D1 and D2 as given in Lemma 4 with α = m/2n in the error bound
(12) implies that

ED1 [F (w)]− F ∗
D1

+ ED2 [F (w)]− F ∗
D2
≥ e−εm2

32n2
− 2e−m/12 − 2δ.

Since δ ≤ 0.005, ε ≤ 1 and m ≥ 100, for the above quantity to be less than 0.01, we have that
m ≤ cn · eε, where ceε < 1.

B.2 Proof of Lemma 1

Proof. We let A to be a DP algorithm which is private for datasets with edit distance m. Our
unlearning algorithm Ā simply returns the input point A(S) without making any changes to it, i.e.
Ā(U,A(S), T (S)) = A(S). Clearly, the unlearning algorithm Ā does not require any additional data
statistics and thus T (S) = ∅.
We set the DP algorithm A as the mini-batch noisy SGD method from Bassily et al. [2019]. The
learning guarantee for A from Bassily et al. [2019, Theorem 3.2] together with the group privacy
property of differential privacy [Vadhan, 2017, Lemma 2.2] implies that:

F (A(S))− F ∗ ≤ 10BL
( 1√

n
+

m
√
d log(meε/δ)

εn

)
. (13)

Furthermore, A(S) is (ε, δ)-DP for datasets with edit distance m, i.e. for any set U ⊆ S of m
samples:

Pr(A(S) ∈W ) ≤ eεPr(A(S \ U) ∈W ) + δ,

Pr(A(S \ U) ∈W ) ≤ eεPr(A(S) ∈W ) + δ.

Since T (S) = ∅ and Ā(A(S), U, T (S)) = A(S) for any U ⊆ S such that |U | = m, we can rewrite
the DP guarantee as:

Pr
(
Ā(U,A(S), T (S)) ∈W

)
≤ eε · Pr

(
Ā(∅, A(S \ U), T (S \ U)) ∈W

)
+ δ,

Pr
(
Ā(∅, A(S \ U), T (S \ U)) ∈W

)
≤ eε · Pr

(
Ā(U,A(S), T (S)) ∈W

)
+ δ,

implying that the pair (A, Ā) is (ε, δ)-unlearning for U of size m.

We next bound the deletion complexity. The bound in the right hand side of (13) implies that we can
delete

m = Ω̃
( 0.01ε√

log(eε/δ)
· n√

d

)
samples while still ensuring that the excess risk is bounded by γ = 0.01. The above implies the
desired lower bound on the deletion capacity.

B.3 Proof of Theorem 2

The following lower bound on the deletion capacity is based on the excess risk guarantees for our
learning and unlearning algorithms given in Theorem 3 and Theorem 4 (in Appendix D) for strongly
convex and convex loss setting respectively.

Proof. We consider the strongly convex loss and convex loss setting separately below.

Strongly convex loss setting. Our learning algorithm Asc and the unlearning algorithm Āsc are
given in Algorithm 2 and Algorithm 1 respectively. Theorem 3 implies that the learning algorithm
Asc and the unlearning algorithm Āsc are (ε, δ)-unlearning. Furthermore, we have that

E[F (ŵ)− F ∗] ≤ 4L2

λn
,
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and

E[F (w̃)− F ∗] = O
(√dMm2L3

λ3n2ε

√
ln
(
1/δ

)
+

4mL2

λn

)
,

where ŵ denotes the output point Asc(S) and w̃ denotes the output point Āsc(U,Asc(S), T (S)).

The above upper bound on the excess risk implies that we can delete at least

m = c · n
√
ε

(d log(1/δ))
1/4

,

samples while still ensuring an excess risk guarantee of γ = 0.01. Here, the constant c depends on
the constants M,L and λ for the function f . This gives us the desired lower bound on the deletion
capacity mAsc,Āsc

ε,δ (d, n).

Convex loss setting. Our learning algorithm Ac and the unlearning algorithm Āc are given in
Algorithm 3 and Algorithm 4 respectively. Lemma 13 implies that the learning algorithm Ac and the
unlearning algorithm Āc are (ε, δ)-unlearning. Furthermore, as a consequence of Corollary 2, we
note that setting λ as in (25) implies that:

E[F (ŵ)− F ∗] = O
(
c1

√
m

n
+ c2

(d log(1/δ)
ε2

)1/8
√

m

n

)
and

E[F (w̃)− F ∗] = O
(
c1

√
m

n
+ c2

(d log(1/δ)
ε2

)1/8
√

m

n

)
,

where ŵ denotes the output point Ac(S) and w̃ denotes the output point Āc(U,Ac(S), T (S)), and
the constants c1 and c2 depend on the properties of the function f .

The above upper bound on the excess risk implies that we can delete at least

m = c · n
√
ε

(d log(1/δ))
1/4

,

samples while still ensuring an excess risk guarantee of γ = 0.01. Here, the constant c depends on
the constants M,L and B for the function f . This gives us the desired lower bound on the deletion
capacity mAc,Āc

ε,δ (d, n).

C Missing details from Section 4

C.1 Proof of Lemma 3

Lemma 6. The points ŵ and ŵ′, defined in Lemma 3, satisfy the following guarantee

∥ŵ − ŵ′∥ ≤ 2mL

λn
.

Proof. Define the functions F̂1 and F̂2 as

F̂1(w) :=
1

n

∑
z∈S

f(w, z) and, F̂2(w) :=
1

n−m

∑
z∈S̄

f(w, z),

where the set S̄ := S \ U . Note that ŵ = argminw F̂1(w) and, ŵ′ = argminw F̂2(w). We first
observe that

n
(
F̂1(ŵ

′)− F̂1(ŵ)
)
=

∑
z∈S

f(ŵ′, z)−
∑
z∈S

f(ŵ, z)
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=
∑
z∈S̄

f(ŵ′, z)−
∑
z∈S̄

f(ŵ, z) +
∑
z∈U

f(ŵ′, z)−
∑
z∈U

f(ŵ, z)

= (m− n)
(
F̂2(ŵ

′)− F̂2(ŵ)
)
+

∑
z∈U

f(ŵ′, z)−
∑
z∈U

f(ŵ, z)

(i)

≤
∑
z∈U

f(ŵ′, z)−
∑
z∈U

f(ŵ, z)
(ii)

≤ mL∥ŵ′ − ŵ∥, (14)

where the equality in the second line above follows from the fact that s̄ = S \ U and the equality
in the third line holds from the definition of the function F̂2. The inequality (i) holds because ŵ′ is
the minimizer of the function F̂2(w) and the inequality (ii) is due to the fact that the function f is
L-lipschitz. Next, note that the function F̂1 is λ-strongly convex. Thus,

F̂1(ŵ
′)− F̂1(ŵ) ≥

λ

2
∥ŵ − ŵ′∥2. (15)

Using (14) and (15), we get that

λn

2
∥ŵ − ŵ′∥2 ≤ mL∥ŵ − ŵ′∥,

which implies that ∥ŵ − ŵ′∥ ≤ 2mL
λn .

Proof of Lemma 3. Given the function f that satisfies Assumption 1, define the functions F̂1 and
F̂2 as

F̂1(w) :=
1

n

∑
z∈S

f(w, z) and, F̂2(w) :=
1

n−m

∑
z∈S̄

f(w, z),

where the set S̄ := S \U . Using the Taylor’s expansion for∇F̂2(ŵ
′) around the point ŵ, we get that

∥∇F̂2(ŵ
′)−∇F̂2(ŵ)−∇2F̂2(ŵ)[ŵ

′ − ŵ]∥ ≤ M

2
∥ŵ − ŵ′∥2,

where M denotes the Hessian-Lipschitz constant for the function f(·, z), i.e. ∥∇3F̂2(ŵ)∥ ≤ M .
Since ŵ′ is a minimizer of F̂2, and F̂1 is smooth, we have that ∇F̂2(ŵ

′) = 0. Plugging this in the
above bound, we get

∥∇F̂2(ŵ) +∇2F̂2(ŵ)[ŵ
′ − ŵ]∥ ≤ M

2
∥ŵ − ŵ′∥. (16)

Also note that

∇F̂2(ŵ) =
1

n−m

∑
z∈S̄

∇f(ŵ, z)

=
1

n−m

∑
z∈S

∇f(ŵ, z)− 1

n−m

∑
z∈U

∇f(ŵ, z)

=
n

n−m
∇F̂1(ŵ)−

1

n−m

∑
z∈U

∇f(ŵ, z)

= − 1

n−m

∑
z∈U

∇f(ŵ, z)

where the equality in the second line above holds because S̄ = S \ U , the third line follows by using
the definition of the function F̂1(w), and the last line is due to the fact that ŵ is the minimizer for the
function F̂1(w) and hence ∇F̂1(ŵ) = 0. Plugging the above in (16), we get that

∥− 1

n−m

∑
z∈U

∇f(ŵ;u) +∇2F̂2(ŵ)[ŵ
′ − ŵ]∥ ≤ M

2
∥ŵ − ŵ′∥2. (17)
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Algorithm 2 Learning algorithm (Asc)
Input: Dataset S : {zi}ni=1 ∼ Dn, loss function: f .

1: Compute

ŵ ← argmin F̂n(w) :=
1

n

n∑
i=1

f(w, zi).

2: Return (ŵ,∇2F̂ (ŵ)).

Now, let us define the vector v such that

ŵ′ = ŵ +
1

n−m
(∇2F̂2(ŵ))

−1
∑
z∈u

∇f(ŵ; z) + v. (18)

Plugging the above relation in (17), we get that

∥∇2F̂2(ŵ)v∥ ≤
M

2
∥ŵ − ŵ′∥2. (19)

Since, the function F̂2 is λ-strongly convex, we have that ∥∇2F̂2(ŵ)v∥ ≥ λ∥v∥ for any vector v.
Using this fact in (19), we get that

∥v∥ ≤ M

2λ
∥ŵ − ŵ′∥2.

Finally, an application of Lemma 6 implies that ∥ŵ − ŵ′∥ ≤ 2mL
λn , using which in the above bound,

we get that

∥v∥ ≤ 2Mm2L2

λ3n2
.

Plugging in the definition of the vector v from (18), we get that∥∥ŵ′ − ŵ − 1

n−m
(∇2F̂2(ŵ))

−1
∑
z∈u

∇f(ŵ; z)
∥∥ ≤ 2Mm2L2

λ3n2
.

The desired bound follows by setting Ĥ := 1
n−m

∑
z∈S\U ∇2f(ŵ, z) = ∇2F̂2(ŵ).

C.2 Proof of Theorem 3

Before we delve into the proof of Theorem 3, we first provide in Algorithm 2, the pseudocode for
the learning algorithm Asc. We also recall the following technical result that provides excess risk
guarantees for the empirical risk minimizer when the loss is strongly convex and Lipschitz.
Lemma 7 (Claim 6.2 in Shalev-Shwartz et al. [2009b]). For any z ∈ Z , let f(w, z) be a L-Lipschitz
and λ-strongly convex function in the variable w. Given any distribution D, let S = {zi}ni=1
denote a dataset of n samples drawn independently from D. Let the point ŵ be defined as ŵ :=
argminw

1
n

∑n
i=1 f(w, zi). Then,

E[F (ŵ)− F (w∗)] ≤ 4L2

λn
,

where the function F (w) := Ez∼D[f(w, z)] and w∗ ∈ argminw F (w).

We are now ready to prove the statements of Theorem 3. We prove each part in a separate lemma
below. The following result provides performance guarantee for the output of the learning algorithm
Asc.
Lemma 8 (Learning guarantee for Asc). For any distribution D, the output ŵ of running Algorithm 2
on the dataset S ∼ Dn satisfies

ES∼Dn [F (ŵ)]− F ∗ ≤ 4L2

λn
,

where F ∗ denotes minw∈W F (w).
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Proof of Lemma 8. We note that the point ŵ is given by the empirical risk minimizer on the dataset
S, i.e.

ŵ ← argmin
w

1

n

∑
z∈S

f(w, z).

Since the function f(w, z) is λ-strongly convex and L-Lipschitz, the desired performance guarantee
for the ERM point follows from Lemma 7.

Next, we provide performance guarantees for the output of the unlearning algorithm Āsc.
Lemma 9. For any dataset S, output ŵ of Asc(S) and set U of m delete requests, the point w̃
returned by Algorithm 1 satisfies

E[F (w̃)− F ∗] = O
(√dMm2L3

λ3n2ε

√
ln
(
1/δ

)
+

4mL2

λn

)
,

where the expectation above is taken with respect to the dataset S and noise ν.

Proof of Lemma 9. We recall that

w̃ = ŵ +
1

n−m
(Ĥ)−1

∑
z∈u

∇f(ŵ, z) + ν, (20)

where the vector ν ∈ Rd is drawn independently from N (0, σ2Id) with σ given by
√
2 ln( 1.25δ ) ·

2Mm2L2

λ3n2ε . Thus,

E[F (w̃)− F (w∗)] = E[F (w̃)− F (ŵ) + F (ŵ)− F (w∗)]

= E[F (w̃)− F (ŵ)] + E[F (ŵ)− F (w∗)] ≤ E[L∥w̃ − ŵ∥] + 4L2

λn
, (21)

where the inequality in the last line follows from the fact that the function F = E[f(w, z)] is
L-Lipschitz, and by using Lemma 8. Further, from the relation in (20), we have that

E[∥w̃ − ŵ∥] = E[∥ 1

n−m
(Ĥ)−1

∑
z∈U

∇f(ŵ, z) + ν∥]

(i)

≤ E[
∑
z∈U

∥ 1

n−m
(Ĥ)−1∇f(ŵ, z)∥] + E[∥ν∥]

(ii)

≤
∑
z∈U

1

(n−m)λ
E[∥∇f(ŵ, z)∥] +

√
E[∥ν∥2],

where the inequality in (i) follows from an application of the triangle inequality, and the inequality
(ii) holds because the function F (w) is λ-strongly convex which implies that ∇2F (ŵ) ≽ λId,
and by an application of Jensen’s inequality to bound E[∥ν∥]. Next, using the fact that the vector
ν ∼ N (0, σ2Id), we get that

E[∥w̃ − ŵ∥] ≤ 1

(n−m)λ
E
[∑
z∈U

∥∇f(ŵ, z)∥
]
+
√
dσ

≤ mL

(n−m)λ
+
√
dσ,

where the last line holds because f(w, z) is L-Lipschitz. Using the above bound in (21), we get

E[F (w̃)− F (w∗)] ≤ mL2

(n−m)λ
+
√
dσL+

4L2

λn
.

Our final guarantee follows by plugging in the value of σ and using the fact that n = Ω(m).

Finally, we show that the algorithms Asc and Āsc are (ε, δ)-unlearning.
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Lemma 10 (Unlearning guarantee). For any distribution D, dataset S and set of delete requests
U ⊆ S, the algorithms Asc and Āsc satisfy the following guarantees for any set W ⊆ Rd,

(a) Pr(Āsc(U,Asc(S), T (S)) ∈W ) ≤ eε Pr(Āsc(∅, Asc(S \ U), T (S \ U)) ∈W ) + δ, and

(b) Pr(Āsc(∅, Asc(S \ U), T (S \ U)) ∈W ) ≤ eε Pr(Āsc(U,Asc(S), T (S)) ∈W ) + δ.

Proof of Lemma 10. The proof follows along the lines of the proof of the differential privacy
guarantee for the Gaussian mechanism (see e.g., Dwork and Roth [2014, Appendix A]).

Let ŵ denote the output of the learning algorithm Asc when run on dataset S, and let w̃ denote the
corresponding output of the unlearning algorithm Āsc when run with delete requests U , the input
model ŵ and data statistics T (S), i.e. ŵ = Asc(S) and w̃ = Āsc(U, ŵ, T (S)). Additionally, let w̄
be the local variable defined in line 3 of Āsc (see Algorithm 1) when computing w̃.

Similarly, let ŵ′ denote the output of the learning algorithm Asc when run on dataset S \U , and let w̃′

denote the corresponding output of the unlearning algorithm Āsc when run with delete requests ∅, the
input model ŵ′ and data statistics T (S \ U), i.e. ŵ′ = Asc(S \ U) and w̃′ = Āsc(∅, ŵ′, T (S \ U)).
Additionally, let w̄′ be the local variable defined in line 3 of Āsc for this case.

Note that in the algorithm Asc, the points ŵ and ŵ′ are computed as:

ŵ = argmin
w

1

n

∑
z∈S

f(w, z) and ŵ′ = argmin
w

1

n−m

∑
z∈S\U

f(w, z).

An application of Lemma 3 thus gives us the bound∥∥∥ŵ′ − ŵ − 1

n−m
(Ĥ)−1

∑
z∈U

∇f(ŵ, z)
∥∥∥ ≤ 2Mm2L2

λ3n2
,

where the matrix Ĥ is defined in (7). Using the relation in (8) for the points w̄ and w̄′, and observing
that ŵ′ = w̄′ since U = ∅ in the calculation of ŵ′, we get that

∥w̄′ − w̄∥ ≤ 2Mm2L2

λ3n2
=: γ. (22)

Next, note that in the algorithm Āsc, the points w̃ and w̃′ are computed as w̃ = w̄+ν and w̃′ = w̄′+ν

respectively, where the noise ν ∼ N (0, σ2Id) with σ = (γ/ε) ·
√
2 ln(1.25/δ). Thus, following the

same proof as Dwork and Roth [2014, Theorem A.1], with the bound (22), we get that for any set W ,

Pr(w̃ ∈W ) ≤ eε Pr(w̃′ ∈W ) + δ,

and

Pr(w̃′ ∈W ) ≤ eε Pr(w̃ ∈W ) + δ,

giving us the desired unlearning guarantee.

Proof of Theorem 3. The statements of the theorem follow immediately from Lemma 8, Lemma 9
and Lemma 10 respectively.

D Unlearning algorithms for convex loss function

In this section, we provide learning and unlearning algorithms when f is convex (but not necessarily
strongly convex). Similar to the strongly convex setting, we assume that

Assumption 2. For any z ∈ Z , the function f(w, z) is convex, L-Lipschitz and M -Hessian Lipschitz
with respect to w.

Additionally, we also assume the following about some minimizer of the population loss F (w) =
Ez∼D[f(w, z)].

Assumption 3. There exists a w∗ ∈ argminw∈W F (w) such that ∥w∗∥ ≤ B.
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Algorithm 3 Learning algorithm (Ac)
Input: Dataset S : {zi}ni=1 ∼ Dn, loss function: f , regularization parameter: λ.

1: Define
f̃(w, z) := f(w, z) +

λ

2
∥w∥2.

2: Run the algorithm Asc on the dataset S with loss function f̃ .
3: return (ŵ, H̃)← Asc(S; f̃), where H̃ := 1

n

∑
z∈S f̃(ŵ, z).

Algorithm 4 Unlearning algorithm (Āc)

Input: Delete requests: U = {zj}mj=1 ⊆ S, output of Ac: ŵ, additional statistic T (S) : H̃ , loss
function: f , regularization parameter: λ.

1: Define
f̃(w, z) := f(w, z) +

λ

2
∥w∥2.

2: Run the algorithm Āsc for the delete request U with input model w̃ and with loss function f̃ .
3: return w̃ ← Āsc(S, ŵ, T (S); f̃).

Our algorithms for convex losses are based on algorithms for the strongly convex setting. Given the
convex function f(·, z), define the function f̃(·, z) as

f̃(w, z) = f(w, z) +
λ

2
∥w∥2.

The key observation is that at any w ∈ Rd, the function f̃(w, z) is λ-strongly convex, (L+ λ∥w∥)-
Lipschitz, (H + λ)-smooth and M -Hessian Lipschitz in w for any z. Clearly, the function f̃ satisfies
Assumption 1 whenever w is such that ∥w∥ ≤ L/λ (see Lemma 14), and thus we can run algorithms
Asc and Āsc respectively on the function f̃ .

Our learning and unlearning algorithms for the convex loss f simply invoke the algorithms Asc and
Āsc on the function f̃ with an appropriate choice of λ. We provide the pseudocode in Algorithm 3
and Algorithm 4 respectively.

In order to avoid confusion in this section, for any algorithm A, we use the notation A(S; f) to denote
the fact that A is run on the loss function f (similarly for Ā). Whenever clear from context, we will
drop the argument f from the notation. Additionally, we also define F̃ to denote the population loss
w.r.t. the loss function f̃ , i.e. F̃ (w) := Ez∼D[f̃(w, z)].
Theorem 4. Suppose the loss function f satisfy Assumption 2 and Assumption 3. Let the dataset
S ∼ Dn. Then,

(a) The point ŵ returned by running Ac on S satisfies

ES∼Dn [F (ŵ)− min
w∈W

F (w)] ≤ λB2

2
+

16L2

λn
. (23)

(b) For any set U ⊆ S of m delete requests, the point w̃ returned by Āc satisfies

ES,ν [F (w̃)− min
w∈W

F (w)] = O
(λB2

2
+

√
dMm2L3

λ3n2ε

√
ln(1/δ) +

mL2

λn

)
. (24)

(c) The learning algorithm Ac and the unlearning algorithm Āc are (ε, δ)-unlearning.

Corollary 1. Suppose we did not have any unlearning requests, and only cared about the performance
of the output point ŵ for the learning algorithm Ac. Then, setting λ = L/B

√
n, the performance

guarantee for the point ŵ given in Theorem 4 implies

E[F (ŵ)− F ∗] ≤ BL√
n
.
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The above rate is tight for learning with Lipschitz convex losses (see Bubeck [2014, Theorem 6.1]).

Corollary 2. Suppose that we have m delete requests and thus care about the performance guarantee
of both the point ĥ, output of the learning algorithm Ac, and the point w̃, output of the unlearning
algorithm Āc. In this case, we set the regularization parameter λ as:

λ = max
{L

B

√
m

n
,
(√dMm2L3

B2n2ε

√
ln
(
1/δ

))1/4}
. (25)

Plugging the above values of λ in Theorem 4, we get that

E[F (ŵ)− F ∗] = O
(
c1

√
m

n
+ c2

(d log(1/δ)
ε2

)1/8
√

m

n

)
and

E[F (w̃)− F ∗] = O
(
c1

√
m

n
+ c2

(d log(1/δ)
ε2

)1/8
√

m

n

)
,

where the constant c1 ∝ BL and c2 ∝
(

ML3

B2

)1/4

.

D.1 Proof of Theorem 4

We are now ready to prove the statements of Theorem 4. We prove each part in a separate lemma
below. The following provides performance guarantee for the output of the learning algorithm Ac.

Lemma 11 (performance guarantee for Ac). For any λ > 0 and S ∼ Dn, the point ŵ returned by
Algorithm 3 satisfies

E[F (ŵ)− F ∗] ≤ λB2

2
+

16L2

λn
.

Proof. First, note that an application of Lemma 14 implies that for any dataset S, the empirical
minimizer ŵ (returned by Ac) satisfies: ∥ŵ∥ ≤ L/λ. Thus, our domain of interest isW := {w |
∥w∥ ≤ L/λ}. Over the setW , the function f̃ is 2L-Lipschitz, and thus, an application of Lemma 8
implies that the returned point ŵ satisfies

E[F̃ (ŵ)] ≤ F̃ (w̃∗) +
16L2

λn
,

where w̃∗ denotes the minimizer of F̃ (w). We can further upper bound the right hand side above as

E[F̃ (ŵ)] ≤ F̃ (w∗) +
16L2

λn
,

where w∗ denotes a minimizer of the population loss F (w) that satisfies Assumption 3. Plugging in
the form of the function F̃ (w) in the above, we get

E[F (ŵ)] ≤ F (w∗) +
λ

2
∥w∗∥2 + 16L2

λn

≤ F (w∗) +
λB2

2
+

16L2

λn
,

where the last line holds due to Assumption 3.

Lemma 12 (performance guarantee for Āc). For any λ > 0, dataset S ∼ Dn, output ŵ of Ac(S) and
set U of m delete requests, the point w̃ returned by Algorithm 4 satisfies

E[F (ŵ)− F ∗] = O
(λB2

2
+

√
dMm2L3

λ3n2ε

√
ln(1/δ) +

mL2

λn

)
.
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Proof. Let w∗ ∈ argminw F (w). We note that

E[F (w̃)− F (w∗)] = E[F (w̃)− F (ŵ) + F (ŵ)− F (w∗)]

= E[F (w̃)− F (ŵ)] + E[F (ŵ)− F (w∗)]

≤ E[L∥w̃ − ŵ∥] + E[F (ŵ)− F (w∗)], (26)

where the inequality in the last line holds because the loss function f(w, z), and thus the function
F (w), is L-Lipschitz. We next note that Āc computes the point w̃ by running the algorithm Āsc with
inputs U , ŵ on the loss function f̂ . Thus, we have that

E[∥w̃ − ŵ∥] = E
[∥∥∥ 1

n−m
(Ĥ)−1

∑
z∈U

∇f̃(ŵ, z) + ν
∥∥∥],

where Ĥ := 1
n−m

∑
z∈S\U ∇2f̃(w, z). Since, the function f̃ is λ-strongly convex, we note that

Ĥ ≽ λId. Using this fact with the above relation implies

E[∥w̃ − ŵ∥] ≤ 1

λ(n−m)
∥
∑
z∈U

∇f̃(ŵ, z)∥+ E∥ν∥

≤ 1

λ(n−m)

∑
z∈U

∥∇f̃(ŵ, z)∥+ E∥ν∥ ≤ 2mL

λ(n−m)
+ σ, (27)

where the last line follows from the fact that ∥ŵ∥ ≤ L
λ , and thus

∥∇f̃(ŵ, z)∥ ≤ ∥∇f(ŵ, z)∥+ λ∥ŵ∥ ≤ 2L.

Finally, using (27) and Lemma 11 in (26), and by plugging in the value of σ implies the desired
performance guarantee.

Finally, the algorithms Ac and Āc are (ε, δ)-forgetting, as a consequence of Lemma 10.
Lemma 13 (Forgetting guarantee). For any distribution D, dataset S, set of delete requests U ⊆ S,
the algorithms Ac and Āc satisfy the following guarantees for any set W ⊆ Rd,

(a) Pr(Āc(U,Ac(S), T (S)) ∈W ) ≤ eε Pr(Āc(∅, Ac(S \ U), T (S \ U)) ∈W ) + δ, and

(b) Pr(Āc(∅, Ac(S \ U), T (S \ U)) ∈W ) ≤ eε Pr(Āc(U,Ac(S), T (S)) ∈W ) + δ.

Proof of Theorem 3. The desired statements follow immediately from Lemma 11, Lemma 12 and
Lemma 13 respectively.

D.2 Supporting technical results

The following lemma gives a bound on the regularized empirical risk minimizer point for the loss
function f(w, z) for any dataset S. This gives us a bound on the domain of interest, and thus allows
us to bound the Lipschitz constant for loss function over this domain.

Lemma 14. Let f(w, z) be a L-Lipschitz function in the variable w, and let f̃ be defined as

f̃(w, z) = f(w, z) +
λ

2
∥w∥2.

Given a dataset S = {zi}ni=1, define Ĝ(w) = 1
n

∑n
i=1 f̃(w, zi), and let ŵ denote the empirical risk

minimizer of the loss function f̃ on dataset S, i.e. ŵ ∈ argminw Ĝ(w). Then, the point ŵ satisfies
∥ŵ∥ ≤ L

λ .

Proof. Since, ŵ ∈ argminw Ĝ(w), we have

∇Ĝ(ŵ) =
1

n

∑
z∈S

∇f̃(ŵ, z) = 0.
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Plugging in the definition of the function f̃ in the above implies that

1

n

∑
z∈S

∇f(ŵ, z) + λŵ = 0.

Rearranging the terms, we get

∥λŵ∥ = ∥ 1
n

∑
z∈S

∇f(ŵ, z)∥
(i)

≤ 1

n

∑
z∈S

∥∇f(ŵ, z)∥
(ii)

≤ L,

where the inequality in (i) follows from an application of the Triangle inequality, and the inequality
in (ii) holds because the function f is L-Lipschitz in the variable w, and thus ∥∇f(w, z)∥ ≤ L for
all w ∈ W and z ∈ Z .
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