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ABSTRACT

Diffusion-based super-resolution (SR) has shown remarkable progress, mainly
through prior-guided approaches that require explicit degradation models or se-
mantic priors. While posterior diffusion SR avoids these assumptions by directly
learning from LR–HR pairs, it still suffers from numerical errors during sampling
and lacks plug-and-play mechanisms for quality control. We introduce the first
plug-and-play framework for posterior diffusion SR, enabling pretrained models
to support controllable quality without retraining. Our numerical analysis reveals
that discretization errors are a key bottleneck in posterior SR. We prove that these
errors can be equivalently expressed as gradients of KL divergence, unifying nu-
merical error correction with image based classifier guidance. This provides a
principled explanation of fidelity degradation and a new lens for posterior diffusion
trajectories. In principle, these errors can be corrected to improve fidelity when
reference supervision is available, offering a new theoretical understanding of
posterior diffusion trajectories. In real-world SR, we further show that our image
based guidance offers a controllable trade-off between fidelity and perception, de-
livering perceptual sharpness competitive with state-of-the-art prior-based models.
Experiments confirm that our method consistently improves perceptual quality,
while also validating the theoretical link between numerical errors and fidelity
in posterior SR. These results position our work as a new direction for posterior
diffusion models, bridging probabilistic analysis with practical deployment.

1 INTRODUCTION

Image super-resolution (SR) is a fundamental problem in low-level vision, aiming to recover high-
resolution (HR) images from their low-resolution (LR) counterparts. Classical approaches include
regression-based methods Mehta et al. (2023); Wang et al. (2023a); Lim et al. (2017); Liang et al.
(2021a) and adversarial training with GANs Ledig et al. (2017); Wang et al. (2021; 2018), but these
methods still struggle with the intrinsic ill-posedness of SR.

Diffusion models Ho et al. (2020); Song et al. (2021b) have recently emerged as a powerful generative
framework, leveraging a physics-driven probabilistic process that excels at reconstructing high-
frequency details in ill-posed image restoration problems Saharia et al. (2022b); Wang et al. (2023c);
Li et al. (2022a); Kawar et al. (2022). While diffusion models were initially criticized for their high
computational cost, subsequent advances such as improved samplers Song et al. (2021a); Yue et al.
(2023) and distillation-based acceleration Wu et al. (2024a); Dong et al. (2024); Chen et al. (2025;
2024c); Yue et al. (2025); Lin et al. (2024); Wu et al. (2024b); Yang et al. (2024) have reduced
the sampling steps to single or few iterations, making runtime comparable to regression-based SR.
Moreover, semantic priors such as CLIP have been employed to guide perceptual quality.

Despite these advances, most existing works adopt a diffusion prior paradigm: pretrained generative
priors with explicit or learned degradation models Saharia et al. (2021); Li et al. (2022c). However,
diffusion priors require an accurate likelihood formulation of the degradation process, which is often
intractable beyond simplistic assumptions such as Gaussian blur or bicubic downsampling. While
higher-order solvers Lu et al. (2022; 2023); Zheng et al. (2023) mitigate discretization error in the
generative trajectory, they remain dependent on assumed likelihoods that do not align well with
real-world degradations, especially those introduced by optical lenses.
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Table 1: Prior vs. Posterior Diffusion SR
Aspect Diffusion Prior SR Posterior Diffusion SR
Training Learn prior p(x) + likelihood p(y|x) Directly learn p(x|y) from LR–HR pairs
Assumption need explicit degradation model. Bicubic, Gaussian) Covered by Dataset
Plug-and-play CLIP Radford et al. (2021) Ours: first plug-in model
Distillation Actively used Not Active

In contrast, posterior learning approaches define the degradation process directly through LR-HR
training pairs Cai et al. (2019a); Wang et al. (2021); Bhat et al. (2021). This formulation bypasses the
need for explicit likelihood modeling and naturally inherits the legacy of regression-based SR datasets.
However, posterior diffusion models remain underexplored: unlike diffusion priors, no plug-and-play
modules for image quality control have been established on pretrained posterior models.

From a numerical analysis perspective, diffusion samplers typically employ first-order forward
discretization, which is computationally efficient but induces significant numerical error. Existing
efforts Lu et al. (2022; 2023); Zheng et al. (2023) target discretization in diffusion priors, but posterior
models have not been systematically analyzed in this regard. Notably, Yue et al. (2023) adopts a
single-order solver, which remains susceptible to discretization error. For general image generation,
Li et al. Li & van der Schaar (2024) analyzed cumulative error between forward and backward
processes, but the role of discretization error in SR has yet to be explicitly studied.

Our contribution. The contributions of this work are summarized as follows:

• We propose the first plug-and-play module for posterior diffusion SR, enabling pretrained
models to support image quality control without retraining.

• We theoretically derive that discretization errors in first-order posterior models can be cor-
rected by incorporating second-order differential terms, providing a principled explanation
of fidelity degradation.

• We further propose an image-based classifier guidance formulation for posterior diffusion
and prove that it is mathematically equivalent to the second-order correction term, thereby
unifying numerical analysis with guidance-based conditioning.

• While explicit fidelity correction requires HR references and is thus of limited use in blind
SR, we show that the same formulation can be adapted in a sign-flipped manner to enhance
perceptual quality in reference-free scenarios.

• This dual view—fidelity-oriented correction under supervision and perception-oriented
control without supervision—establishes a unified framework for posterior SR.

• Extensive analysis and experiments validate that our approach bridges the gap between
numerical error theory and real-world perceptual enhancement in posterior learning models.

2 RELATED WORKS

Image Super-Resolution Since the emergence of deep neural network-based image super-resolution
Liang et al. (2021a); Zhang et al. (2021); Dong et al. (2011); Gu et al. (2015); Zamir et al. (2022),
significant advancements have been made in this field. Generative adversarial networks (GANs)
Goodfellow et al. (2014) have played a crucial role in enhancing details in super-resolution outputs
Wang et al. (2021; 2018). By leveraging adversarial learning, GANs improve texture sharpness
and realism in super-resolved images. Recently, diffusion models Saharia et al. (2022b); Li et al.
(2022a); Kawar et al. (2022); Yue et al. (2023); Wang et al. (2023c) have emerged as a powerful
alternative for image super-resolution. Originally developed for novel image synthesis, these models
have demonstrated exceptional capabilities in texture restoration and fine-detail reconstruction.
Unlike GANs, diffusion models progressively refine images from noise, providing a more stable
and controlled SR framework. Studies have shown that diffusion-based SR outperforms GAN-based
approaches, particularly in preserving high-frequency details and reducing artifacts Rombach et al.
(2022a). Furthermore, developments in VQGAN Esser et al. (2021) and stable diffusion models
Rombach et al. (2022a) have significantly influenced image synthesis Saharia et al. (2022a), expanding
beyond SR into text-conditioned image generation. These advancements have played a pivotal role in
integrating SR capabilities within broader generative frameworks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Performance Enhancement Diffusion models for image super-resolution face an inherent challenge
of high computational overhead Saharia et al. (2022b); Ho et al. (2020). Various efforts have been
made to address this issue Song et al. (2021a); Lu et al. (2022; 2023); Zheng et al. (2023); Wu
et al. (2024a); Wang et al. (2024a). Starting with DDIM, subsequent works on DPM solvers have
significantly reduced the number of iteration steps from thousands to just tens. Residual-based
approaches in image synthesis Liu et al. (2024) and image super-resolution Yue et al. (2023) have
demonstrated stable performance even with fewer than ten steps. More recently, techniques such as
model distillation Wang et al. (2024a) and single-step SR Wu et al. (2024a) have emerged, further
pushing the boundaries of efficiency in diffusion-based SR.

Error Estimation Reducing the number of iteration steps inherently increases step intervals in
finite difference methods, making diffusion models more susceptible to numerical errors Strang
(2007); Peter & Eckhard (1992); Hochbruck & Ostermann (2005). Consequently, research has been
conducted to analyze and mitigate numerical errors and their effects Li & van der Schaar (2024);
Li et al. (2024). Trajectory analysis Chen et al. (2024b;a) is also effective for detailed analysis of
numerical errors. In Li & van der Schaar (2024), the authors investigated errors in pretrained diffusion
models by analyzing discrepancies between forward and reverse processes. They defined **modular
errors** between these processes and extended their analysis to **cumulative errors** throughout the
entire process. Similarly, Li et al. (2024) examined how iterative inference steps exacerbate exposure
bias due to training-inference discrepancies and proposed a method to mitigate this issue without
requiring DPM retraining.

High Order Differential Equation Solver Diffusion based super resolution initially began by
learning the posterior distribution.Li et al. (2022a); Saharia et al. (2022c). However, the diffusion
posterior sampling(DPS) approach has gained attention for its efficiency , as it enables sampling
using a pre-trained prior without requiring additional training costs. Most existing higher-order
ODE/SDE solvers (Heun, RK2/3, DPM-Solver-2/3, etc.) have been developed in the context of
DDPM-like models, where the prior is learned and the sampling process is derived from a score-based
or probability-flow ODE interpretation Song et al. (2021a); Karras et al. (2022); Lu et al. (2022;
2023); Zheng et al. (2023); Liu et al. (2022). These works typically apply numerical integration
of a pre-trained prior distribution, thus enabling explicit higher-order schemes for fast sampling.
However, compared to the DPS approach, which reuses a pre-trained model trained with a distribution
based loss, the posterior learning using pixel-based loss is still considered advatangeous in terms of
final image quality. Yue et al. (2023) Thus, our setting focuses on a learned-posterior approach
rather than a learned-prior approach, where the solver is based on the first-order Euler-type update.
The higher-order solvers introduced in prior-based diffusion works may not be readily applicable to
the learned posterior method without re-architecting the model to fit a score-based ODE sampling
paradigm.

3 PLUG AND PLAY FOR POSTERIOR DIFFUSION MODEL

3.1 BACKGROUND FOR NUMERICAL ACCURACY

A Taylor series expansion can be written as

x(t+ h) = x(t) + h∇x(t) +
1

2
h2 ∇2x(t) + O(h3).

In a first-order difference scheme, we usually adopt

x(t+ h) = x(t) + h∇x(t) +DE,

where DE is the leading-order discretization error, whose dominant term is 1
2 h

2 ∇2x(t). If we
explicitly include this second-order term in the difference scheme, the accuracy increases. Most
existing diffusion models, however, only consider a first-order discretization, whereas in this paper,
we adopt a second-order discretization that accounts for 1

2 h
2 ∇2x(t). Higher-order discretization

methods and their errors have also been analyzed in Lu et al. (2022; 2023); Zheng et al. (2023). While
conventional formulas rely on starting the restoration from white Gaussian noise (thus requiring
many diffusion steps), recent works on one-step or few-step diffusion models employ large step
intervals, which can cause large discretization errors. Therefore, it becomes necessary to correct such
discretization errors.

3
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DPM-Solver Revisited. Consider a random variable x0 sampled from q0(x0). The forward SDE
on the interval [0, T ] is

dxt = f(t)xt dt+ g(t) dwt, x0 ∼ q0(x0),

where wt ∈ RD is a standard Wiener process. Song et al. (2021b) show that its reverse process from
T to 0, given the marginal qT (xT ), is

dxt =
[
f(t)xt − g2(t)∇x log pt(xt)

]
dt + g(t) dw̄t, xT ∼ pT (xT ),

where w̄t is a standard Wiener process in reverse time. From the above, Lu et al. (2022; 2023)
transform it into a probability flow ODE for faster sampling:

dxt =
[
f(t)xt − 1

2g
2(t)∇x log pt(xt)

]
dt. (1)

To estimate the score function ∇x log qt(xt), DPMs use a neural network ϵθ(xt, t). The parameter θ
is optimized by minimizing

L(θ) =

∫ T

0

Eqt(xt)

∥∥ϵθ(xt, t) +∇x log pt(xt)
∥∥2
2
dt,

yielding
dxt = f(t)xt + g2(t) ϵθ(xt, t) dt.

We can generate samples by numerically solving this ODE from T down to 0. Given an initial value
xs at time s > 0, Lu et al. (2022) show that the solution xt for t ∈ [0, s] can be written in integral
form as

xt =
αt

αs
xs + αt

∫ λt

λs

e−λ ϵθ(xλ) dλ, (2)

which in discrete form approximates

xt =
αt

αs
xs − αt

k−1∑
n=0

ϵ
(n)
θ (xλt

)

∫ λt

λs

F (λ) dλ, (3)

where F (λ) collects certain integral factors (see Lu et al. (2022)), and ϵ
(n)
θ (·) is the n-th order

derivative for n ≤ k−1. For k ≥ 2, they approximate these derivatives using intermediate points
(Runge–Kutta). Although evaluating the integral more finely can reduce the discretization error,
in practice it is typically done via finite-difference approaches like Runge–Kutta Hochbruck &
Ostermann (2005). In our paper, however, we propose directly computing the second-order derivatives
by taking gradients of the neural network model.

3.2 BACKGROUND FOR INVERSE PROBLEM SOLVER

Super-resolution (SR) is an ill-posed inverse problem, where the goal is to recover the high-resolution
(HR) image x from its degraded low-resolution (LR) observation y. The forward measurement
process can be expressed as y = A(x) + n, y,n ∈ Rn, x ∈ Rd where A(·) : Rd → Rn is
the degradation operator (e.g., bicubic downsampling, blur, or camera pipeline), and n denotes
measurement noise. From a Bayesian perspective, the posterior distribution is given by

p(x|y) = p(y|x) p(x)/p(y)

where p(x) the prior over natural images, p(y|x) the likelihood for degradation, p(x|y) the posterior.
In Diffusion Prior methods Saharia et al. (2021); Li et al. (2022b); Wang et al. (2023c); Wu et al.
(2024b), the diffusion model serves as the image prior p(x). The likelihood p(y|x) is typically
assumed to be a Gaussian degradation model: p(y|x) = N (y;A(x), σ2I). Conditioning the
diffusion process on y yields a posterior-guided reverse ODE:

dxt =
[
f(t)xt − 1

2g
2(t)∇x log pt(xt|y)

]
dt, (4)

where the score term ∇x log pt(xt|y) incorporates the assumed likelihood. Thus, the accuracy of
prior-based SR crucially depends on the correctness of the degradation model.
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Posterior learning approaches Yue et al. (2023) directly learn the conditional distribution p(x|y)
from paired LR–HR data, bypassing the need for an explicit likelihood model. In this case, the
degradation process A(·) does not need to be analytically specified; it is implicitly encoded through
the training dataset. The training objective is to maximize the conditional log-likelihood: L(θ) =
E(x,y)∼D

[
log pθ(x|y)

]
. This makes posterior approaches attractive for real-world SR, where the

degradation is complex or unknown. However, posterior SR is sensitive to discretization errors during
sampling and currently lacks plug-and-play quality control mechanisms, which are more natural in
prior-based frameworks.

3.3 THEORETICAL FOUNDATION

Error estimation in diffusion models has been addressed by Lu et al. (2022; 2023); Zheng et al. (2023);
Li & van der Schaar (2024); Li et al. (2024). Most prior work focuses on measuring the difference
between forward and reverse processes or errors from sampling intervals but their restoration has
been less studied. Our interest lies in the discretization errors of finite-difference methods Strang
(2007) and SDEs Peter & Eckhard (1992). Below, we define how we measure discretization error and
Kullback–Leibler(KL)-based divergence error in our diffusion model for image restoration.

Assumption 1. (Definition of Error in the Diffusion Path) In Li & van der Schaar (2024), they
defined the error in path of diffusion trajectory. The modular error Emodular

t measures the accuracy
that every module maps its input to the output. Emodular

t = E
[
DKL

(
pθ(xt−1 | xt) ∥ q(xt−1 | xt)

)]
The cumulative error Ecumu

t measures the amount of error which are accumulated for sequentially
running the first T − 1 denoising modules. Ecumu

t = DKL

(
pθ(xt−1) ∥ q(xt−1)

)
Here pθ(·) and

q(·) denote the model distribution in the backward process and reference distribution in the forward
process, following the notation of Li & van der Schaar (2024).

Assumption 2. (Predefined Variance Schedule) As in DDPM or DDIM, we assume each timestep
t has a predefined fixed variance σ2

t that applies uniformly across temporal coordinates. This allows
us to simplify the SDE-based error formulation into a constant-variance expression at each step.

Definition 3.2.1 (Second-order derivative as the numerical error) We define the numerical error
(DE) of the first-order derivative solution as

xExact
t − x

Euler(1st)
t ≈ ∇t

[
f(t)xt − 1

2g
2(t)∇x log pt(xt)

]
.

It is the local truncation error of numerically integrating the backward ODE by Euler’s method.

Lemma 3.2.1 (KL gradient in the Gaussian case) For two normal distributions P : N (xt, σ
2
1),Q :

N (µt, σ
2
2), this shows that the difference between two Gaussian distributions can be expressed as a

distance between their means.
∇DKL

(
P||Q)

)
≈ (xt−µt)

σ2
2

.

Proposition 3.2.1 (Constant Variance Leads to a Simpler Form). Let σ2 be a predefined constant
over the spatial dimensions. Then, the gradient with respect to t of the modified score function from
Definition 3.2.1 satisfies

∇t

[
f(t)xt − 1

2g
2(t)∇x log pt(xt)

]
≈ A · (xt−µt)

σ2 +B.

where A,B ∈ R is the optimization constant to minimize discretization error. With constant variance,
the numerical error can be found as a linear equation of the distance of two distributions.

Theorem 3.2.1 (Approximation Error and KL Gradient Scaling). For a given step t, the
difference between the exact solution xExact and the Euler discretization xEuler can be expressed as

xExact − xEuler ≈ A · ∇DKL(P ∥Q) +B.

where P is discrete distribution, Q is continuous exact distribution. Here, A,B can be derived
exactly through linear regression between latant spaces of SR and HR . Intuitively, this tell us that
discretization error at each step behaves like the KL gradient between the continuous and discrete
processes.

5
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Discussion. The detailed proofs of the lemma, proposition, and theorem are provided in the
supplemental material. In summary, starting from Assumption 2, we derive Theorem 3.2.1, which
establishes that the numerical error—characterized by a second-order derivative—can be formulated
as the Kullback–Leibler (KL) divergence between distribution from the discrete process and the
continuous process. Assumption 1 defined that cumulative error in a path is defined as divergence
of the forward and backward process. Likewise, we assume that exact distribution is substituted
with the distribution of the forward process and Euler distribution is with the distribution of the
backward process. Theorem 3.2.1 define the error in a single step depends linearly on the gradient of
KL divergence of the forward and backward process.

The distribution of the continuous process becomes the reference of the discrete process, which can
be substituted with the forward process of HR image because it has better accuracy than the reverse
process starting from LR image. Specifically, in the context of a conditional diffusion framework,
the backward process is initialized from the low-resolution (LR) image, while the forward process
originates from the high-resolution (HR) image. Consequently, we demonstrate that the second-order
numerical discretization error exhibits a linear dependency on the KL divergence between the latent
representations of the HR and LR images, as governed by the conditional posterior learning model.

In the preceding paragraphs, we defined how the second-order numerical error can be evaluated and
corrected. The next step is to formulate the theorectical framework for appyling these equations to
the existing posterior model. From Yue et al. (2023), the reverse process for estimating the posterior
distribution p(x0 | y0) is defined by:

p(x0 | y0) =

∫
p(xT | y0)

T∏
t=1

pθ(xt−1 | xt,y0) dx1:T . (5)

where x0 is the data distribution and y0 is a measurement or LR. From above equation, we need to
incorporate numerical error correction term from Theorem 3.2.1 into the above equation. For this
purpose, we provide an additional LR image as a condition for inference to the existing conditional
diffusion model. To achieve this, we extend the ResShift formula with the explicit guided diffusion
approach from Dhariwal & Nichol (2021). In Eq. equation 5, x0 and y0 represent the HR and LR
images, respectively.

p(x0 | y0, c) =

∫
p(xT | y0, c)

T∏
t=1

pθ(xt−1 | xt,y0, c) dx1:T , (6)

where c is an additional LR condition.

Proposition 3.3.1 (Guidance for LR-based Conditioning) The target distribution p(x0 | y0, c)
with LR guidance is given by

N
(
µ + Σ∇pθ(c | xt,y0, t), Σ

)
, (7)

where c indicates the additional image guidance.

Remark 3.3.1 (Implementation and Partial Guidance). From Theorem 3.2.1 and Proposition
3.3.1, one obtains:

∇xt
log p

(
c | xt,y0

)
= ∇DKL

(
pθ(xt) ∥ pθ(c)

)
, (8)

for an image-based guidance approach. This remark connects numerical theory to practice: numerical
correction and classifier guidance have the equivalence.

Discussion. With Remark 3.3.1, we derive a theoretical basis for using an input image as an
additional condition alongside the conventional LR input. In practical scenarios, the conventional
condition is passed through a noise-added pipeline as part of the diffusion process, while the newly
introduced condition is incorporated through a noise-free path. This dual-conditioning strategy allows
us to correct the discretization error accumulated during few-step sampling. Please note that the
numerical error correction term is equivalent to our image-based classifier guidance term, up to a
constant. This demonstrates that numerical error correction can be realized through image-based
classifier guidance, thereby establishing a plug-and-play model. More detailed description about
practical usage will be introduced in the next section.

6
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3.4 IMAGE CONTROL VIA IMAGE-BASED GUIDANCE

Based on previous formulations, the second-order numerical error can be represented by the gradient
of the KL divergence between the SR and HR distributions. This implies that the second-order
numerical error can be linearly regressed using the gradient of the KL divergence, thereby making
numerical error restoration theoretically feasible. Simultaneously, from Remark 3.3.1, we defined a
method how to supply additional image to the diffusion pipeline as the classifier condition where it is
also the gradient of the KL divergence of latant vector and classifier condition. Therefore, if we want
to restore numerical error of the posterior model with HR image or LR image, we just need to supply
HR image or LR image as classifier condition.

Reference Region The following procedure demonstrates how to estimate the constants A and B
by measuring the difference in the latent space between SR and HR within the diffusion model and
regressing it against the divergence between the two distributions.

∆ = µt(HR)− µt(SR) (9)

A,B = arg min
a∈R, b∈R

∥∆− (a · ∇xDKL (SR ∥HR) + b)∥22 (10)

µnew(SR) = µold(SR) +B +A · ∇xDKL (SR ∥HR) (11)

where A,B ∈ R. ∇xDKL (HR ∥SRt) follows the trajectory of the surface between SR and HR.Chen
et al. (2024b) Therefore, it can restore truncation error in Theorem 3.2.1. This will be validated in
Figure 1, 9, 10.

Non-Reference Region In real-world blind super-resolution, it is not feasible to access HR references,
and thus the difference between HR and SR (Eq. 9) as well as the corresponding trajectory (Eq. 10)
are unavailable. To address this, we propose to estimate the parameters A and B from regions
where LR–HR pairs exist, and then apply them to LR-only regions. Since Eq. 10 does not exist
in such settings, we instead utilize ∇xDKL(SR|LR). While Eq. 10 corresponds to the gradient at
each time step along the SR–HR trajectory, if the LR–SR trajectory resided in the extrapolated space
of the SR–HR trajectory, one could substitute DKL(SR|HR) with DKL(SR|LR) and compute A
and B to construct the correction term. Our validation experiments in Fig. 5 confirmed that they
are well aligned in the same trajectory, particularly in the pretrained model of Yue et al. (2023).
Instead, we propose a scheme that approximates numerical errors using DKL(SR|LR). This scheme
is summarized in Algorithm 1 and Algorithm 2.

The process of determining parameters A and B can be regarded as a calibration step, where multiple
LR–HR image pairs are used to identify numerical errors and extract the corresponding parameters,
which are then provided during inference. Linear regression over multiple images failed to yield
optimized parameters for both A and B. Consequently, we abandon the estimation of B and instead
focus solely on finding A, which minimizes numerical errors across multiple images and is supplied
during inference. More details about how to derive algorithm 1 and algorithm 2 will be provided in
Fig. 4 and in section 6.

4 EXPERIMENT

Testing Environment To validate our theoretical framework, we conducted experiments using the
DIV2K validation dataset Agustsson & Timofte (2017) , the RealSR dataset Cai et al. (2019b),
and Flickr30k Dataset Young et al. (2014). Since datasets contain images of varying sizes, we
cropped 128× 128 center region and further divided them into four 128× 128 patches. We used 100
images for DIV2K and RealSR for generation of quantitative table. Calibration of Guidance scale is
performed over Imagenet Dataset Deng et al. (2009) which is used in training the pretrained model of
Yue et al. (2023). We conducted all experiments on Nvidia H100 machine.
Metrics for comparison For a comprehensive image quality assessment, we employ both
full-reference and no-reference metrics. Reference-based fidelity measures: PSNR and SSIM Wang
et al. (2004) / Reference-based perceptual quality measures: LPIPS Zhang et al. (2018) and DISTS
Ding et al. (2020) / No-reference image quality measures: NIQE Zhang et al. (2015), MANIQA
Yang et al. (2022), and CLIPIQA Wang et al. (2023b) / Image distribution-based metric: FID Heusel
et al. (2017), which evaluates the distance between restored images and ground truth.
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Algorithm 1 Calibrate Guidance Scale
Require: A set of LR–HR pairs (LRi, HRi) model

parameters θ, candidate scale set {αt}
Ensure: A chosen guidance scale α∗

t .
1: for i = 1 to n do
2: Z(HR)

T ← ForwardODE(HRi)
3: xT ← LRi

4: for t = T down to 1 do
5: (µ,Σ)← µθ(xt), Σθ(xt)

6: ∆ = µθ(Z(HR)
T )− µ

7: GLR = ∇xt DKL

(
pθ(xt) ∥ LRi

)
8: Li(αt) =

∥∥∥∆∥∥∥ − ∥∥∥αt ·GLR

∥∥∥
9: end for

10: end for

11: α∗
t = argmin

αt

n∑
i=1

Li(αt).

12: return α∗
t

Algorithm 2 Inference with LR Guidance
Require: LR image (or condition) c, guidance scale

α∗
t , diffusion model parameters θ,

Ensure: Reconstructed SR image x0.
1: xT ← LRi

2: for t = T down to 1 do
3: (µ,Σ)← µθ(xt), Σθ(xt)
4: xt−1 ←
5: N

(
µ + α∗

t Σ∇xt DKL

(
pθ(xt) ∥ LRi

)
6: end for
7: return x0

Figure 1: Reference Region. Ours (s4) and Ours (s15) represent ResShift (s4 and s15) with the
proposed correction module in Eq. 11. In the region with reference overlap, the KL divergence
gradient between HR and SR is used to restore the numerical error. This demonstrates that the
proposed method effectively corrects the error in the overlapped region. After numerical error
correction, architectural features such as the text on travel signboards were successfully restored. In
particular, the s15 model achieved restoration results nearly indistinguishable from the HR image
because its truncation error is already lower than that of the s4 model.

Quantitative Comparison with State-of-the-art methods To validate the effectiveness of our
proposed method, we conducted quantitative and qualitative comparisons against various state-of-
the-art (SOTA) methods, including: SwinIR Liang et al. (2021b), Real-ESRGAN Wang et al. (2021),
StableSR Wang et al. (2023c), ResShift Yue et al. (2023), PASD Yang et al. (2024), DiffBIR Lin
et al. (2024), SinSR Wang et al. (2024b), OseDiff Wu et al. (2024a), InvSR Yue et al. (2025). Our
comparative analysis includes regression-based, GAN-based, and diffusion-based super-resolution
methods. In Table 2, the best and second-best results are highlighted in red and blue, respectively,
while regression- and GAN-based methods were excluded from this ranking. To the best of our
knowledge, ResShift Yue et al. (2023) is currently the only posterior-based super-resolutin model.
Thereby, we adopt ResShift Yue et al. (2023) as our backbone framework. Other methods based on
pretrained diffusion prior such as Rombach et al. (2022b) are PASD Yang et al. (2024), StableSR
Wang et al. (2023c), and DiffBIR Lin et al. (2024). They incorporate additional neural networks
into the diffusion prior model. This could lead to overlapping effects between our theoretical
enhancement and their inherent framework improvements. From Table 2, our algorithm achieves
SOTA performance in non-reference metrics such as MANIQA, CLIPIQA, and FID, as well as
in perception-related reference metrics such as LPIPS while minimizing degradation in reference
based metrics. This demonstrates that our method effectively restores the perceptual quality of
posterior models. Our method is implemented as a plug-in module integrated into the ResShift-4s
or ResShift-15s framework. As such, its performance fundamentally converges to the quality of the
base model. Due to discretization error, the image quality of ResShift-4s is inherently lower than
that of the ResShift-15s model and can be identified in Figure 2. In the HR ground truth, all wires

8
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Figure 2: Non-Reference Region Qualitative comparisons in the non-reference region. Ours shows
perceptual quality enhancement in the non-overlapped region with the reference according to the
Remark 3.3.1

Table 2: Quantitative comparison with contemporary state-of-the-art image super resolution algo-
rithms for non-overlapped region. ‘s’ denotes the number of diffusion steps. The best and second-best
results of each metric are highlighted in red and blue, respectively.

Datasets Methods PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓ MANIQA↑ CLIPIQA↑ FID↓
RealSR SwinIR 26.401153 0.822698 0.198882 0.212861 5.533595 0.482269 0.520561 34.319923

Realesrgan 24.824283 0.690881 0.228614 0.211228 5.554380 0.515528 0.602108 68.559638
StableSR(s200) 23.141011 0.700490 0.251224 0.218401 5.993226 0.445875 0.619377 66.324215
DiffBIR(s50) 24.044400 0.680713 0.274067 0.221713 5.538441 0.618653 0.707664 61.714618
PASD(s20) 24.608645 0.712806 0.242913 0.209351 4.795048 0.540107 0.625039 52.826575

Resshift(s15) 24.932412 0.734073 0.198175 0.187559 5.319726 0.557401 0.677602 46.756755
Resshift(s4) 25.262886 0.729898 0.207532 0.193287 5.930618 0.481287 0.646861 47.521572
SinSR(s1) 24.814703 0.732119 0.264237 0.204537 5.189266 0.504561 0.639777 49.655490
Osediff(s1) 23.221523 0.658442 0.279372 0.221037 5.464938 0.477634 0.661837 69.084736
InvSR(s1) 23.163527 0.660025 0.274930 0.226382 4.827873 0.588372 0.704826 45.806334

Ours(s4, HR) 27.563256 0.859821 0.169382 0.232162 5.158372 0.553831 0.651693 35.052837
Ours(s4, LR) 24.537216 0.730573 0.201882 0.188932 5.366422 0.649319 0.757744 44.208402

DIV2k SwinIR 25.524262 0.756364 0.196358 0.253459 6.574358 0.236129 0.369175 66.022553
Realesrgan 25.017905 0.729274 0.208930 0.231028 4.377671 0.323017 0.440141 64.281207

StableSR(s200) 25.089883 0.723934 0.230532 0.241219 6.143113 0.334181 0.402819 63.208495
DiffBIR(s50) 24.952325 0.664533 0.245898 0.222816 5.170970 0.519603 0.694852 64.320329
PASD(s20) 25.268907 0.730030 0.239548 0.222048 5.840237 0.409314 0.503350 66.624089

Resshift(s15) 25.195770 0.682318 0.236521 0.230849 6.443043 0.367619 0.565044 69.377387
Resshift(s4) 25.195317 0.682465 0.210933 0.236403 6.325634 0.324337 0.526237 68.193004
SinSR(s1) 25.323979 0.700209 0.226813 0.238258 6.067024 0.359430 0.557111 87.956015
Osediff(s1) 24.794832 0.714938 0.2194821 0.213805 5.859347 0.427836 0.689721 67.801938
InvSR(s1) 24.143282 0.670584 0.2415381 0.253827 5.981039 0.471184 0.691187 74.120972

Ours(s4,LR) 24.910596 0.682398 0.215568 0.235888 6.024669 0.475017 0.707421 68.141436

are structured as dual wires, but among the SR results, only SwinIR, ResShift-15s, and our method
successfully reconstruct the dual-wire structure. Naturally, a 15-step model is expected to suffer less
from discretization error than a 4-step model (as long as the model is properly trained). Nonetheless,
despite operating with only four steps, our method succeeds in reconstructing the dual-wire structure
by effectively restoring its discretization error. Our framework is the first to provide a controllable
knob for navigating this trade-off without retraining.
Ablation Study, Qualitative Results is available in section 6 and 8 in the supplemental material.

5 CONCLUSION

In this work, we introduced a plug-and-play module for posterior learning-based super-resolution
models. From a theoretical perspective, we derived that discretization errors inherent in first-order
ODE formulations can be corrected by incorporating second-order differential terms. We further
showed that this correction can be formulated within the conditional diffusion framework, and that
the resulting expression naturally coincides with the structure of image-based classifier guidance.
This provides a new theoretical understanding of posterior diffusion trajectories.

From a practical perspective, we demonstrated that applying the correction term can reduce numerical
errors in pretrained models without retraining. While fidelity enhancement through this correction
requires HR supervision and is thus limited in blind SR scenarios, we proposed instead to exploit
LR-based classifier guidance in a sign-flipped manner to enhance perceptual quality. This design
enables posterior SR models to achieve perceptual results competitive with state-of-the-art methods,
thereby bridging theoretical insight with practical applicability.

9
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6 NUMERICAL ERROR RESTORATION: REFERENCE-BASED AND
REFERENCE-FREE APPROACHES

6.1 RESTORATION IN REFERENCE REGION AND NON-REFERENCE REGION

We first estimate correction parameters A and B in reference regions by linear regression of numerical
errors and apply them via classifier guidance. As shown in Table 2, fidelity enhancement (e.g.,
Ours(s=4, HR)) requires guidance forms such as option 1 or 5 in Fig. 4. However, in non-reference
regions, only options 3/7 (LR-only regression) can be used, which yield overly smoothed results.
Fig. 5 shows that cosine similarity between LR–SR and SR–HR trajectories remains below 0.8 in most
regions, confirming misalignment. Thus, fidelity-oriented correction is infeasible in non-reference
regions. Exploring pretrained models with better trajectory alignment is left as future work.

Fidelity vs. Perception Trade-off Numerical correction improves reference-based metrics (PSNR,
SSIM, LPIPS) but not perceptual quality. To address this, we flip the sign of the correction term. As
seen in Fig. 4, cases 2/4/6/8 do not increase fidelity but yield sharper perceptual appearance, even
for LR-only guidance (cases 6/8). In contrast, direct fidelity correction (cases 1/5) recovers small
details (e.g., text) but increases blur. We therefore propose to use sign-flipped image-based classifier
guidance as a practical plug-in for perceptual enhancement in non-reference regions.

Calibration Strategy In practice, estimating both A and B is unnecessary; A alone suffices. Fig. ??
shows error curves when sweeping A from −300 to 300 in an AX+B correction form (with B = 0).
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LR SR(4s) 1.A∇DKL(SR(4s) | HR) +B 2.−A∇DKL(SR(4s) | HR)−B 3.A∇DKL(SR(4s) | LR) +B 4.−A∇DKL(SR(4s) | LR)
HR SR(15s) 5.A∇DKL(SR(15s) | HR) +B 6.−A∇DKL(SR(15s) | HR)−B 7.A∇DKL(SR(15s) | LR) +B 8.−A∇DKL(SR(15s) | LR)−B

Figure 4: Reference region restoration result by various guidance schemes. The guidance schemes
applied to the images above are summarized in the table below. Detailed description is available in
section 6.1

Figure 5: (a) The range of scale values used to compensate for the error in the forward and backward
processes varies slightly depending on the camera type. The error was measured using ResShift Yue
et al. (2023) with step=4. As the step point progresses from t = 3 to t = 0, the error accumulates.
Each line corresponds to the error vector from an image. (b) cosine similarity between the trajectory
between ∇DKL(SR|HR) and ∇DKL(SR|LR) for step 4 and (c) for step 15 pretrained models of
Yue et al. (2023)

Most images exhibit a clear error minimum, which can be transferred from reference to non-reference
regions. Fig. 7 further illustrates that perceptual quality improves with calibrated A until an optimal
value, beyond which artifacts increase. Accurate guidance scale calibration is therefore crucial.

Practical Implications Correction via ∇DKL(SR∥LR) quantitatively improves fidelity but degrades
perceptual plausibility (Fig. 4). For practical deployment, our plug-in sacrifices fidelity in favor of
perceptual enhancement, as confirmed by improved MTF (Fig. 2) and perceptual scores (Table 2,
Figs. 11, 12). Reference-based SR systems (e.g., Lee et al. (2022)) suggest that overlap–nonoverlap
calibration is possible, but real smartphone images suffer from heavy postprocessing. Developing a
raw-image pipeline to fully validate this strategy is left as future work.
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Figure 6: Block diagram for inferring the non-overlapped region using optimized parameters extracted
from the overlapped region. A score S∗ means the scale score calibrated in Algorithm 1 stage.
Calibrated scale score is delivered to Inference pipeline which is described in Algorithm 2.

Table 2: Computation costs of existing methods to process 1000 tiles(64x64) with from DIV2K
dataset.

SwinIR Esrgan Realesrgan StableSR DiffBir SeeSR PASD ResShift(s15) ResShift(s4) SinSR OseDiff InvSR Ours(s4)
Time(s) 191 23 12 148 1948 994 3105 808 229 2877 181 115 235

6.2 PERFORMANCE COMPARISON

Table 2 reaffirms the value of our approach. Although ResShift s4 version has more numerical errors
than s15 version and makes it less favorable in image quality metrics, it has the advantages in the
limited runtime environment. However, after applying our method, the image quality metrics become
comparable to those of s15 version, while the speed remains at the s4 level. Therefore, our approach
serves as an option for maintaing optimal image quality while satisfying limited runtime constraints.

6.3 ABLATION STUDY

In Figure 8, we present the error plots for the s4 and s15 version. The overall error reduction is highly
sensitive to the choice of optimized parameters: negative values of the parameters tend to increase
cumulative error, while appropriately optimized parameters significantly reduce it.

Figure 7: Non-overlap region. Image quality comparison for various scale value. The images from
the left to the right have scale values such as (A∗), (−0.5 ·A∗), (−A∗),(−2 ·A∗),HR. The first row
uses step 4 and the second row uses step 15

15
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Figure 8: Non-overlap region. Cumulative Error at each diffusion step. Left Column denotes Ecumu
t

and Right Column denotes Ecumu
t (before)-Ecumu

t (after). According to the row sequence: (1)−A∗ (2)
0.5 ·A∗ (3) 1 ·A∗ (4) 2 ·A∗ (5)−A∗ (6) A∗
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7 MATHEMATICAL DETAILS

Lemma 3.2.1 (KL gradient in the Gaussian case) For two normal distributions P : N (x, σ2
1),Q :

N (µt, σ
2
2)

∇DKL

(
P||Q)

)
≈ (x− µt)

σ2
2

.

Proof. From Joram Soch (2024), Kullback-Leibler divergence for two normal distributions P and
Q is as follows:

KL[P||Q] =
1

2

(
log

σ2
2

σ2
1

+
σ2
1

σ2
2

+
(x− µ2)

2

2σ2
2

)
We assume same variance in two distributions. For two distributions DKL(N (x, σ2

1),N (µt, σ
2
2)) ,

we get their KL divergence as follows.

∇xKL = ∇x [KL[P||Q]] =
x− µt

σ2
2

.

Definition 3.2.1 (Second-order derivative as the numerical error) We define the numerical error
(DE) of the first-order derivative solution as

xExact
t − x

Euler(1st)
t ≈ ∇t

[
f(t)xt − 1

2g
2(t)∇x log pt(xt)

]
.

Proof of Definition 3.2.1 From Eq. 1, discretizing with a first-order Euler step of size ∆t:

x
(Euler)
t+∆t = xt +∆t

[
f(t)xt − 1

2g
2(t)∇x log pt(xt)

]
.

Comparing to the exact solution

x
(Exact)
t+∆t = xt +

∫ t+∆t

t

[
f(s)xs − 1

2g
2(s)∇x log ps(xs)

]
ds,

Taylor expansion of the above equation yields

x(t) ≈ xs + (t−s)V +
1

2
(t−s)2∇tV +O((t−s)3),

where V = f(t)xt − 1
2g

2(t)∇x log pt(xt). (12)

A second-order (i.e., O(∆t2)) discretization error term appears upon Taylor expansion.

x
(Exact)
t+∆t = xt +∆tV +

1

2
(∆t)2∇tV +O((∆t)3)

x
(Euler)
t+∆t = xt +∆tV +O((∆t)2) (13)

Subtraction of two above equations yields

DE = x
(Exact)
t+∆t − x

(Euler)
t+∆t ≈ 1

2 (∆t)2 ∇tV ≈ ∇t

[
f(t)xt − 1

2g
2(t)∇x log pt(xt)

]
.

Proposition 3.2.1 (Constant Variance Leads to a Simpler Form). Let σ2 be a predefined constant
over the spatial dimensions. Then, the gradient with respect to t of the modified score function from
Definition 3.2.1 satisfies

∇t

[
f(t)xt − 1

2g
2(t)∇x log pt(xt)

]
≈ A · (xt − µt)

σ2
+B.

where A,B ∈ R is the optimization constant to minimize discretization error.
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Proof We apply the total derivative:

d

dt

[
f(t)x(t)− 1

2g
2(t)∇x log pt(x)

]
=

d

dt
[f(t)x(t)]− d

dt

[
1
2g

2(t)∇x log pt(x)
]
.

First, since x = x(t), the chain rule gives:

d

dt
[f(t)x(t)] = f ′(t)x+ f(t)

dx

dt
= f ′(t)x+ f(t)

(
f(t)x− 1

2g
2(t)∇x log pt(x)

)
.

Now compute the second term:

d

dt
[g2(t)∇x log pt(x)] = 2g(t)g′(t)∇x log pt(x) + g2(t)

∂

∂t
(∇x log pt(x)) .

We now assume pt(x) = N (µt, σ
2
t I), so that

∇x log pt(x) = − 1

σ2
t

(x− µt),

and hence:
∂

∂t
∇x log pt(x) = −

[
d

dt

(
1

σ2
t

)
(x− µt)−

1

σ2
t

µ′
t

]
.

Now substitute all terms:

∇t

[
f(t)x− g2(t)∇x log pt(x)

]
= f ′(t)x+ f2(t)x− f(t)g2(t)∇x log pt(x)

− g(t)g′(t)∇x log pt(x)− 1
2g

2(t)

[
− d

dt

(
1

σ2
t

)
(x− µt) +

1

σ2
t

µ′
t

]
Substitute the gradient expression:

∇x log pt(x) = − 1

σ2
t

(x− µt),

we collect terms as:

∇t

[
f(t)x− g2(t)∇x log pt(x)

]
= (f ′(t) + f2(t))x+

[
f(t)g2(t) + 2g(t)g′(t)

σ2
t

]
(x− µt)

+

[
g2(t)

d

dt

(
1

σ2
t

)
(x− µt)

]
+

g2(t)

σ2
t

µ′
t

= A(t) · x+ B(t) · (x− µt) + g2(t)
d

dt

(
x

σ2
t

)
+ C(t)

where A,B,C denote the aggregated terms consisting of corresponding constant components. By
substituting d

dt

(
x
σ2
t

)
with the following equation,

d

dt

(
x

σ2
t

)
=

f(t)

σ2
t

x+
x− µt

σ4
t

− 2 · x
σ2
t

= D(t)(x− µt) + E(t)

Now, we have the decomposition:

∇t

[
f(t)x− g2(t)∇x log pt(x)

]
= α(t)(x− µt) + β(t) ≈ A · (x− µt) +B

Theorem 3.2.1 (Approximation Error and KL Gradient Scaling). For a given step t, the
difference between the exact solution xExact and the Euler discretization xEuler can be expressed as

xExact − xEuler ≈ A · ∇DKL(P ∥Q) +B.

where P is discrete distribution, Q is continuous exact distribution. Here, A,B can be derived exactly
through linear regression between latant spaces of SR and HR .
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Proof. From Definition 3.2.1 and Proposition 3.2.1, we obtain

xExact − xEuler ≈ x− µt

σ2
t

.

Meanwhile, from Corollary 3.2.1, it follows that

∇xDKL(P ∥Q) ≈ x− µt

σ2
.

Thus, we conclude that

xExact − xEuler ≈ A · ∇DKL(P ∥Q) +B,

for an appropriate scaling factor S∗.

Proposition 3.3.1 (Guidance for LR-based Conditioning) The target distribution with LR guid-
ance is given by

N
(
µ + Σ∇pθ(c | xt,y0, t), Σ

)
, (14)

where c indicates the LR guidance.

Proof First, we enumerates derivation process of ResShift algorithm Yue et al. (2023) here.

q(xt|xt−1,y0) = N (xt;xt−1 + αte0, κ
2αtI), (15)

where e0 = y0 − x0 is the residual between the c and HR images, and κ is a hyper-parameter
controlling the noise variance.The reverse process aims to estimate the posterior distribution p(x0|y0)
by follows:

p(x0|y0) =

∫
p(xT |y0)

T∏
t=1

pθ(xt−1|xt,y0)dx1:T , (16)

The targeted distribution is as follows:

pθ(xt−1|xt,y0) = N (xt−1;µθ(xt,y0, t),Σ(t)) (17)

Σ(t) = κ2 ηt−1

ηt
αtI. (18)

µθ(xt,y0, t) =
ηt−1

ηt
xt +

αt

ηt
fθ(xt,y0, t), (19)

where αt = ηt − ηt−1 for t > 1 and α1 = η1.
In the previous section, we proposed conditional diffusion process as follows:

p(x0|y0, c) =

∫
p(xT |y0, c)

T∏
t=1

pθ(xt−1|xt,y0, c)dx1:T , (20)

In the above equation, pθ(xt−1|xt,y0, c) can be simplified.

pθ(xt−1|xt,y0, c) =
p(xt−1,xt,y0, c)

p(xt,y0, c)
=

p(xt−1,xt,y0, c)

p(c|xt,y0)p(xt,y0)

=
p(c|xt−1,xt,y0)p(xt−1,xt,y0)

p(c|xt,y0)p(xt,y0)
=

p(c|xt−1,xt,y0)p(xt−1|xt,y0)p(xt,y0)

p(c|xt, y)p(xt,y0)

=
p(c|xt−1,xt,y0)p(xt−1|xt,y0)

p(c|xt,y0)
=

p(c|xt−1,y0)p(xt−1|xt,y0)

p(c|xt)
(21)

The p(c|xt) term can be treated as a constant since it does not depend on xt−1. from Markov Chain
property, p(y0|xt,xt+1) = p(y0|xt) and p(c|xt−1,xt,y0) = p(c|xt−1,y0) is derived. Now, we
conclude as follows:

pθ(xt−1|xt,y0, c) = Zp(xt−1|xt,y0)p(c|xt−1,y0) (22)
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we already knows p(xt−1|xt,y0) and we need to handle p(c|xt−1,y0). For now, we write it as
p(c|xt,y0) in convenience. log p(c|xt,y0) can be approximated by using a Taylor expansion around
xt = µ.

log p(c|xt,y0) ≈ log p(c|xt,y0)|xt=µ + (xt − µ)∇xt
log p(c|x,y0)|xt=µ

Let G = ∇xt log p(c|xt,y0)|xt=µ. From Eq. equation 18 equation 19, we aleady got Σθ and µ.

log pθ(xt−1|xt,y0, c) ≈ −1

2
(xt − µ)TΣ−1(xt − µ) + (xt − µ)G+ C

= −1

2
(xt − µ− ΣG)TΣ−1(xt − µ− ΣG) + C

Throughout all the above equations, the original c image can be fed by the condition
N (µ+Σ∇pθ(c|xt,y0, t),Σ).

Remark 3.3.1 (Implementation and Partial Guidance). From Theorem 3.2.1 and Proposi-
tion 3.2.2, one obtains:

∇xt log p
(
c | xt,y0

)
= ∇DKL

(
pθ(xt) ∥ pθ(c)

)
,

for an image-based guidance approach. Here we assume xLR is the vector at xT prior to the diffusion
process.

Proof. According to Corollary 3.2.1, let P = N (x, σ2
1) and Q = N (µt, σ

2
2). Then

∇DKL(P ∥Q) ≈ x− µt

σ2
.

Suppose a final distribution is N (x− µ− ΣG, Σ). We introduce two distributions P ′ = N (x−
µt, σ

2) for p(x0 | y0), and Q′ = N (ΣG, σ2) for p(c | y0). Their KL divergence leads to

∇DKL(P ′ ∥Q′) ≈ x− µt − ΣG

σ2
.

Hence,
∇xt

log p
(
c | xt,y0

)
= ∇DKL

(
pθ(xt) ∥ pθ(c)

)
is justified.

8 ADDITIONAL EXPERIMENTAL RESULT

8.1 ADDITIONAL EXPERIMENT OF NUMERICAL ERROR RESTORATION IN REFERENCE REGION

Fig. 9 and Fig. 10 provides additional experimental proof to support the validness of numerical error
restoration by Eq. 11 in reference region.

8.2 ADDITIONAL EXPERIMENT OF NUMERICAL ERROR RESTORATION OUT OF REFERENCE
REGION

Fig. 11 , Fig. 12 provides additional experimental proof to support the validness of perceptual quality
enhancement by Algorithm 1 and Algorithm 2 in non-reference region.

8.2.1 FUTURE WORKS

Beyond super-resolution, our framework is applicable to a broader class of inverse problems such as
image deblurring, denoising, and compression artifact removal. Since posterior diffusion directly
leverages LR–HR supervision, future work can readily reuse existing regression-based datasets,
opening a path toward a general posterior diffusion paradigm where numerical analysis and plug-and-
play conditioning jointly enable controllable restoration across diverse domains.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Experiment for Reference region. Qualitative comparison on the Flickr30k dataset Young
et al. (2014). Ours (s4) and Ours (s15) represent ResShift (s4 and s15) with the proposed restoration
in Eq. 11. Please note that most of the collapsed patterns and text that failed to be reconstructed in
the baseline have been successfully restored.
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Figure 10: Experiment for Reference region. Qualitative comparison on the Flickr30k dataset Young
et al. (2014). Ours (s4) and Ours (s15) represent ResShift (s4 and s15) with the proposed restoration
in Eq. 11. While the collapsed patterns were successfully restored, various fine textures originally
present on the owl and the wall were rather simplified.
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Figure 11: Experiment for Non-Reference region. Qualitative comparisons of image quality across
various algorithms on the DIV2K dataset Agustsson & Timofte (2017). Our method demonstrates
outstanding performance in enhancing the restoration of unstructured objects that lack clear semantic
information. Note the significant perceptual quality enhancement compared to the baseline ResShift
network.
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Figure 12: Experiment for Non-Reference region. Qualitative comparisons of image quality across
various algorithms on the DIV2K dataset Agustsson & Timofte (2017). Note that the perceptual
quality is improved.
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