
Appendices394

A KODex Pseudo-code395

The overall pseudo-code for KODex is shown below.

Algorithm 1: KODex
Demonstration Data Collection
Initialize D = ∅;
for n ∈ {1, ..., N} do

Generate a T (n)-horizon trajectory of states and torques {[xn(t), τn(t)]}t=T (n)

t=1 ;
Add {[xn(t), τn(t)]}t=T (n)

t=1 to D;
end
Koopman Operator Approximation
Determine lifting function ϕ(x(t));
Compute K on D (6, 9);
Controller Design
Build a controller C as a neural network with inputs as (xr(t), xr(t+ 1)) and output as τ(t);
Train C using state-torque pairs (xnr (t), x

n
r (t+ 1), τn(t)) in D (10);

Implementation
Specify the initial states x(1);
for t ∈ {1, ..., T − 1} do

Predict the next robot states x̂r(t+ 1) using K (3 8);
Read the current robot states xr(t);
Generate the torque τ(t) using C on (xr(t), x̂r(t+ 1)) and execute it;

end

396

B State Design397

In this section, we show the state design for each task in detail. It should be noted that the motion398

capability of the hand for each task were suggested from the work [8] that originally introduced399

these tasks. For a decent implementation, we employed the same setting.400

Tool use For this task, the floating wrist base can only rotate along the x and y axis, so we have401

xr(t) ∈ Xr ⊂ R26. Regarding the object states, unlike the other tasks, where the objects of402

interest are directly manipulated by the hand, this task requires to modify the environment it-403

self. As a result, except for the hammer positions, orientations and their corresponding veloci-404

ties ptool
t , otool

t , ṗtool
t , ȯtool

t (R3), we also define the nail goal position pnail (R3). Finally, we have405

xo(t) = [ptool
t , otool

t , ṗtool
t , ȯtool

t ,pnail] ∈ Xo ⊂ R15. As a result, x(t) includes 41 states in total and we406

use T = 100.407

Door opening For this task, the floating wrist base can only move along the direction that is perpen-408

dicular to the door plane but rotate freely, so we have xr(t) ∈ Xr ⊂ R28. Regarding the object states,409

we define the fixed door position pdoor, which can provide with case-specific information (similar to410

pnail in Tool Use), and the handle positions phandle
t (both R3). In order to take into consideration the411

status of door being opened, we include the angular velocity of the opening angle vt(R1). Finally,412

we have xo(t) = [phandle
t , vt,p

door] ∈ Xo ⊂ R7. As a result, x(t) includes 35 states in total and we413

use T = 70.414

Object relocation For this task, the ADROIT hand is fully actuated, so we have xr(t) ∈ X r ⊂ R30415

(24-DoF hand + 6-DoF floating wrist base). Regarding the object states, we define ptarget and pball
t416

as the target and current positions. Then, we compute p̄ball
t = pball

t − ptarget, which is the component417

of pball
t in a new coordinate frame that is constructed by ptarget being the origin. We additional in-418

clude the ball orientation oball
t and their corresponding velocities ṗball

t , ȯball
t (all R3). Finally, we have419

xo(t) = [p̄ball
t , oball

t , ṗball
t , ȯball

t ] ∈ Xo ⊂ R12. As a result, x(t) includes 42 states in total and we use420

12



T = 100.421

In-hand reorientation For this task, the floating wrist base is fixed, so we only consider the 24-DoF422

hand joints. Therefore, we have xr(t) ∈ Xr ⊂ R24. Regarding the object states, we define ogoal423

and open
t as the goal and current pen orientations, which are both unit direction vectors. Then, we424

transform open
t to a new rotated coordinate frame that is constructed by ogoal being x axis ([1,0,0]).425

Note that the vector ōpen
t after transformation is also a unit vector and it converges to x axis if426

the pen is perfectly manipulated to goal orientation ogoal. In addition, we also include the cen-427

ter of mass position ppen
t and their corresponding velocities ṗpen

t , ȯpen
t (all R3). Finally, we have428

xo(t) = [ppen
t , ōpen

t , ṗpen
t , ȯpen

t ] ∈ Xo ⊂ R12. As a result, x(t) includes 36 states in total and we use429

T = 100.430

In this work, we only included the joint positions as the robot states (with the only exception of431

NGF’s second-order policy) for the following reasons: 1) Given that these tasks are not repetitive,432

we found that joint position information was sufficient to disambiguate the robot’s next action, 2)433

even when ambiguity arises for a given joint position, object state information can help with disam-434

biguation. Further, the impressive performance achieved by KODex in our experiments support this435

design choice. Indeed, KODex is agnostic to this specific state design. One can incorporate velocity436

information into the robot state space without the need of any changes to the training procedure.437

C Task Success Criteria438

The task success criteria are listed below. The settings were the same as proposed in [8].439

Tool Use: The task is considered successful if at last time step T , the Euclidean distance between440

the final nail position and the goal nail position is smaller than 0.01.441

Door Opening: The task is considered successful if at last time step T , the door opening angle is442

larger than 1.35 rad.443

Object Relocation: At each time step t, if
√
|ptarget − pball

t |2 < 0.10, then we have ρ(t) = 1. The444

task is considered successful if
∑T

t=1 ρ(t) > 10.445

In-hand Reorientation: At each time step t, if ogoal · open
t > 0.90 (ogoal · open

t measures orientation446

similarity), then we have ρ(t) = 1. The task is considered successful if
∑T

t=1 ρ(t) > 10.447

D Sampling Procedure448

We describe the sampling procedure in this section. The sample distributions used for RL training449

and demo collection were identical, as suggested in [8]. The out-of-distribution data were generated450

to evaluate the zero-shot out-of-distribution generalizability of each policy.451

Tool Use: We randomly sampled the nail heights (h) from a uniform distributions. Within distri-452

bution: we used h ∈ H ∼ U(0.1, 0.25); Out of distribution: we used h ∈ H ∼ U(0.05, 0.1) ∪453

U(0.25, 0.3).454

Door Opening: We randomly sampled the door positions (xyz) from uniform distributions. Within455

distribution: we used x ∈ X ∼ U(−0.3, 0), y ∈ Y ∼ U(0.2, 0.35), and z ∈ Z ∼ U(0.252, 0.402);456

Out of distribution: we used y ∈ Y ∼ U(0.15, 0.2) ∪ U(0.35, 0.4) (x, z remained unchanged).457

Object Relocation: We randomly sampled the target positions (xyz) from uniform distributions.458

Within distribution: we used x ∈ X ∼ U(−0.25, 0.25), y ∈ Y ∼ U(−0.25, 0.25), and459

z ∈ Z ∼ U(0.15, 0.35); Out of distribution: we used z ∈ Z ∼ U(0.35, 0.40) (x, y remained460

unchanged).461

In-hand Reorientation: We randomly sampled the pitch (α) and yaw (β) angles of the goal462

orientation from uniform distributions. Within distribution: we used α ∈ A ∼ U(−1, 1) and463

β ∈ B ∼ U(−1, 1); Out of distribution: we used {(α, β) ∈ (A,B) ∼ (U(−1, 1.2)),U(1, 1.2)) ∪464

(U(1, 1.2)),U(−1.2, 1)) ∪ (U(−1.2, 1)),U(−1.2,−1)) ∪ (U(−1.2,−1)),U(−1, 1.2))}.465

13



E Policy Design466

We show the detailed policy design in this section. All the baseline policies were trained to minimize467

the trajectory reproduction error.468

KODex: The representation of the system is given as: xr = [x1r, x
2
r, · · · , xnr ] and xo =469

[x1o, x
2
o, · · · , xmo ] and superscript is used to index states. The details of the state design for each470

task is provided in Appendices B. In experiments, the vector-valued lifting functions ψr and ψo in471

(8) were polynomial basis function defined as472

ψr ={xirxjr} ∪ {(xir)3} for i, j = 1, · · · , n
ψo ={xioxjo} ∪ {(xio)2(xjo)} for i, j = 1, · · · ,m

(11)

Note that xirx
j
r/xjrx

i
r only appears once in lifting functions (similar to xiox

j
o/xjox

i
o), and we ignore t473

as the lifting functions are the same across the time horizon.474

The choice of lifting functions can be viewed as the hyper-parameter of KODex. We make this475

choice as inspired from [24] and experimental results also indicate its effectiveness. Through all476

the experiments, we sticked with the same set of lifting functions, which helped to relieve us from477

extensive efforts of tuning the hyper-parameters, e.g. network layer size, that were necessary for478

baseline policies as shown in Appendices F.479

Full-connected Neural Network (NN): The first baseline is a feedforward network that ingests the480

states x(1) and iteratively produces the predictions x(t), t = 2, · · · , T via the rollout of a Multilayer481

Perceptron (MLP). The reference joint trajectories (xr(t)) are then used to execute the robot with482

the learned controller C. The significance of this baseline is to evaluate a policy that produces a483

high-dimensional motion without any additional structure.484

Long Short-Term Memory (LSTM): We create an LSTM-based policy under the same input-485

output flow as the NN policy. We also apply two fully-connected layers between the task in-486

put/output and the input/hidden state of the LSTM network. Similarly, the same controller C is487

deployed to track the reference joint trajectory. LSTM networks are known to be beneficial to imi-488

tation learning [30] and suitable for sequential processing [37], e.g, motion generation. Therefore,489

we expect to evaluate the performance of the recurrent structures in these tasks.490

Neural Dynamic Policy (NDP): The Neural Dynamic Policy [17] embeds desired dynamical struc-491

ture as a layer in neural networks. Specifically, the parameters of the second order Dynamics Motion492

Primitives (DMP) are predicted as outputs of the preceding layers (MLP in [17]). As a result, it al-493

lows the overall policy easily reason in the space of trajectories and can be utilized for learning from494

demonstration. We train an NDP policy following the imitation learning pipeline described in [17].495

For each task, given x(1), the neural network components in NDP generate the parameters of DMPs496

(radial basis functions (RBFs) in [17]), which are forward integrated to produce the reference joint497

trajectories for tracking.498

Neural Geometric Fabrics policy (NGF): The Neural Geometric Fabrics [4], a structured pol-499

icy class, that enables efficient skill learning for dexterous manipulation from demonstrations by500

leveraging structures induced by Geometric Fabrics [38]. Geometric Fabrics is a stable class of501

the Riemannian Motion Policy (RMP) [39]. It has been demonstrated that NGF outperforms RMP502

in policy learning for dexterous manipulation task in [4]. The NGF policy is defined in the con-503

figuration space of the robot, which is composed of a geometric policy, a potential policy and a504

damping term. More specifically, the NGF policy is constructed as follows: (1) define a geometric505

policy pair [M, π] and a potential policy pair [Mf , πf ] in the configuration space q, (2) energize506

the geometric policy (project orthogonal to the direction of motion with pe) to create a collection of507

energy-preserving paths (the Geometric Fabric), and (3) force the Geometric Fabric with a potential508

defined by [Mf , πf ] and damp via b applied along q̇, which ensures convergence to the potential’s509

minima. The potential policy πf is the gradient of a function of position only. Note that we param-510

eterize the geometric policy pair [M, π], the potential policy pair [Mf , πf ], and the damping scalar511

b with MLP networks and learn them from demonstration data.512

14



F Optimizing baseline model size513

As described in Appendices E, we sticked with the same set of lifting functions for KODex and514

report the task success rate when we trained KODex on training set and tested it on validation set515

in Table. 1. However, for baselines, the hyper-parameters were selected through a set of ablation516

experiments for each task using the training set over three choices of model size, including small517

size, median size and large size. We generated five random seeds for parameter initialization per518

model size, per baseline, and per task, as all learning based baseline models are sensitive to param-519

eter initialization [23]. For each baseline policy, we report the mean and standard deviation of the520

task success rate on the validation set over five random seeds in Tables. 2-5.521

Based on these results, we selectd the model size that offers the best performance in terms of task522

success rate. In addition, these results indicate that, unlike KODex, extensive hyper-parameter tun-523

ing and various trials on parameter initialization for baseline models are necessary. Note that we use524

l to denote dim(x(t)).

Table 1: Task success rate on validation set (KODex)
Tool Door Relocation Reorientation

100.0% 96.0% 88.0% 62.0%

Table 2: Hyper-parameters on NN Network Sizes

Model Size

Success Rate Task
Tool Door Relocation Reorientation(%)

MLP: (32, 64, 32) 0.4(±0.8) 0.0(±0.0) 0.4(±0.8) 6.8(±3.9)
MLP: (64, 128, 64) 0.0(±0.0) 0.4(±0.8) 1.2(±2.4) 10.4(±6.6)

MLP: (128, 256, 128) 0.0(±0.0) 0.0(±0.0) 0.8(±1.6) 6.0(±1.5)

525

Table 3: Hyper-parameters on LSTM Network Sizes

Model Size

Success Rate Task
Tool Door Relocation Reorientation(%)

LSTM: 200 28.8(±25.0) 87.6(±10.3) 7.6(±5.9) 56.4(±7.4)fc: (l, 100), (200, l)
LSTM: 250 60.8(±36.6) 80.8(±24.5) 7.6(±7.5) 48.0(±17.0)fc: (l, 175), (250, l)
LSTM: 300 44.8(±31.8) 82.0(±13.9) 16.4(±14.5) 54.0(±11.0)fc: (l, 250), (300, l)

Table 4: Hyper-parameters on NDP Network Sizes

Model Size

Success Rate Task
Tool Door Relocation Reorientation(%)

MLP: (32, 64, 32) 0.0(±0.0) 8.0(±2.5) 30.0(±9.3) 57.2(±8.6)10 RBFs
MLP: (64, 128, 64) 16.8(±29.8) 40.8(±8.1) 74.0(±4.9) 59.2(±6.5)20 RBFs

MLP: (128, 256, 128) 18.4(±31.9) 66.0(±5.2) 79.2(±7.7) 62.4(±7.8)30 RBFs

15



Table 5: Hyper-parameters on NGF Network Sizes

Model Size

Success Rate Task
Tool Door Relocation Reorientation(%)

MLP: (64, 32) 99.2(±1.6) 87.2(±12.0) 87.6(±8.5) 77.6(±2.3)
MLP: (128, 64) 100.0(±0.0) 90.0(±5.9) 94.4(±3.2) 72.4(±4.5)
MLP: (256, 128) 83.6(±20.1) 90.8(±4.3) 95.2(±1.6) 78.4(±3.4)

G Hyper-parameters for controller learning526

The hyper-parameters we used to learn the inverse dynamics controller C for each task were the527

same as listed in Table. 6. Note that we use lr to denote dim(xr(t)).

Table 6: Hyper-parameters on controller learning
Hidden Layer Activation Learning Rate Iteration
(4lr, 4lr, 2lr) ReLU 0.0001 300

528

H Zero-Shot Out-of-Distribution Generalization529

We generated a new set of 10,000 out-of-distribution samples to evaluate how the policies that were530

trained on 200 demonstrations generalize to unseen samples (see Appendices D for details on the531

sampling procedure). In Fig. 5, we report the task success rates of each method trained on the 200532

demonstrations and tested on the 10,000 out-of-distribution samples. In addition, we also report the533

task success rate of the expert policy on the same 10,000 out-of-distribution samples to establish534

a baseline. Perhaps unsurprisingly, none of the methods are able to consistently outperform the535

expert policy in most tasks. We observe that KODex is able to outperform the four baselines in Tool536

Use task. In the other tasks, the highly-structured NGF performs the best, and KODex’s performs537

comparably to NDP and LSTM.538

Tool Door Reloc Reorient
Tasks

0

25

50

75

100

Ta
sk

Su
cc

es
s

R
at

e
(%

)

Task Success Rate

Figure 5: Zero-Shot Out-of-distribution task success rates

I Robustness to changes in physical properties539

We evaluate the robustness of the reference dynamics learned by each method to changes in hand540

mass or object mass for each task. This experiment is motivated by the fact that sim-to-real transfer541

often involves changes in physical properties. Further, consistent use of robotic hardware could542

result in changes to physical properties. Specifically, we consider four variations per task:543

16



• Tool Use: i) Heavy Object (Hammer): 0.25 (default) → 0.85 (new), ii) Light Object (Hammer):544

0.25 (default) → 0.10 (new), iii) Light Hand (Palm): 4.0 (default) → 1.0 (new), and iv) Heavy545

Hand (Palm): 4.0 (default) → 8.0 (new)546

• Door: i) Heavy Object (Latch): 3.54 (default) → 12.54 (new), ii) Light Object (Latch): 3.54547

(default) → 0.54 (new), iii) Light Hand (Palm): 4.0 (default) → 1.5 (new), and iv) Heavy Hand548

(Palm): 4.0 (default) → 7.0 (new)549

• Relocation: i) Heavy Object (Ball): 0.18 (default) → 1.88 (new), ii) Light Object (Ball): 0.18550

(default) → 0.05 (new), iii) Light Hand (Palm): 4.0 (default) → 3.0 (new), and iv) Heavy Hand551

(Palm): 4.0 (default) → 5.0 (new);552

• Reorientation: i) Heavy Object (Pen): 1.5 (default) → 9.5 (new), ii) Light Object (Pen): 1.5553

(default) → 0.2 (new), iii) Light Hand (Finger Knuckles): 0.008 (default) → 0.0001 (new), and554

iv) Heavy Hand (Finger Knuckles): 0.008 (default) → 0.20 (new)555

It is important to note we held the reference dynamics learned by each method constant for this556

experiment, irrespective of the changes to the hand or the object. Instead, we relearned the tracking557

controller using 200 rollouts from the expert agent, following the procedure detailed in Section. 4.3.558

In Tables. 7-10, we report the task success rate of KODex, and other baseline policies (all trained on559

200 demonstrations) before and after relearning the controller. We also report the task success rates560

of the expert agents to establish baselines.561

We find that the Light Hand variation results in the lowest drop in performance across all methods562

and all tasks, thus consequently relearning controllers does not offer any considerable improve-563

ments. In contrast, all methods benefit from relearning the controller in the Heavy Hand variations,564

as evidenced by the increased task success rates. Overall, we find that KODex outperforms all base-565

lines, with the exception of NGF which performs better than KODex under a few variations and566

tasks. Surprisingly, KODex (and some baselines) when used with the original controller outperform567

the expert policy under a few variations (e.g., Heavy Object in Relocation task, and Heavy Object568

in Door task). We believe this is due to the fact that KODex and the baselines learn to generate and569

track desired trajectories separately, while the expert RL directly generates control inputs from state570

information. In particular, the learned desired trajectories for a given tasks are likely invariant to571

slight changes in physical properties. On rare occasions where this is not the case, we indeed find572

that fine-tuning the tracking controllers worsens the performance.573

These results demonstrate that changes to the robot/system dynamics can be handled by fine tuning574

the tracking controller without the need for relearning the reference dynamics. Once again, KODex575

is able to perform comparably to or outperform SOTA approaches despite its simplicity.576

Table 7: Robustness to variations in the physical properties (Tool Use)

Controller

Success Rate Variation
Heavy Object Light Object Light Hand Heavy Hand(%)

Expert agent 93.5 66.2 65.4 71.2
KODex + Original controller 46.0 64.0 99.5 46.5

NN + Original controller 0.0(±0.0) 0.0(±0.0) 0.0(±0.0) 0.7(±1.4)
LSTM + Original controller 32.7(±18.7) 35.0(±22.1) 44.3(±23.1) 52.7(±27.5)
NDP + Original controller 0.0(±0.0) 68.0(±20.8) 45.4(±37.4) 0.0(±0.0)
NGF + Original controller 33.4(±11.5) 62.9(±27.5) 83.2(±26.3) 40.3(±20.2)

KODex + Expert-tuned controller 53.5 44.0 89.0 92.5
NN + Expert-tuned controller 0.0(±0.0) 0.0(±0.0) 0.2(±0.4) 0.0(±0.0)

LSTM + Expert-tuned controller 42.4(±34.3) 33.7(±14.9) 52.2(±22.7) 69.9(±19.4)
NDP + Expert-tuned controller 33.3(±20.0) 23.8(±24.4) 29.4(±37.1) 39.8(±24.5)
NGF + Expert-tuned controller 48.2(±18.0) 48.7(±12.2) 94.6(±8.9) 82.1(±7.5)

17



Table 8: Robustness to variations in the physical properties (Door)

Controller

Success Rate Variation
Heavy Object Light Object Light Hand Heavy Hand(%)

Expert agent 45.2 91.7 82.0 74.9
KODex + Original controller 57.0 97.0 56.5 33.5

NN + Original controller 0.0(±0.0) 0.2(±0.4) 1.3(±2.1) 0.0(±0.0)
LSTM + Original controller 34.4(±8.7) 75.8(±19.5) 38.1(±10.4) 33.5(±11.4)
NDP + Original controller 22.1(±1.9) 62.8(±5.2) 51.1(±4.9) 3.1(±2.3)
NGF + Original controller 48.7(±6.7) 95.0(±2.1) 42.1(±11.0) 33.8(±10.0)

KODex + Expert-tuned controller 39.0 94.0 54.0 81.5
NN + Expert-tuned controller 0.0(±0.0) 0.0(±0.0) 0.7(±0.9) 0.0(±0.0)

LSTM + Expert-tuned controller 21.2(±5.3) 75.4(±18.0) 49.2(±8.1) 56.9(±18.7)
NDP + Expert-tuned controller 15.5(±3.0) 36.2(±10.6) 25.5(±4.4) 8.8(±3.0)
NGF + Expert-tuned controller 36.6(±5.1) 95.5(±1.8) 57.7(±4.7) 77.1(±6.7)

Table 9: Robustness to variations in the physical properties (Relocation)

Controller

Success Rate Variation
Heavy Object Light Object Light Hand Heavy Hand(%)

Expert agent 77.0 100.0 100.0 100.0
KODex + Original controller 19.5 89.5 82.5 21.5

NN + Original controller 0.1(±0.2) 1.6(±2.5) 1.5(±2.1) 1.7(±2.2)
LSTM + Original controller 0.4(±0.4) 15.4(±10.7) 9.5(±8.1) 7.7(±9.4)
NDP + Original controller 13.5(±5.0) 85.6(±8.1) 72.1(±9.6) 31.6(±10.0)
NGF + Original controller 25.8(±4.9) 96.4(±1.4) 96.6(±0.97) 19.3(±3.8)

KODex + Expert-tuned controller 34.0 93.0 85.0 89.0
NN + Expert-tuned controller 0.2(±0.4) 0.6(±0.7) 1.4(±1.8) 1.5(±2.3)

LSTM + Expert-tuned controller 5.8(±4.7) 15.2(±12.5) 15.5(±10.7) 14.1(±9.3)
NDP + Expert-tuned controller 19.9(±5.8) 84.5(±8.9) 63.2(±15.0) 92.4(±1.2)
NGF + Expert-tuned controller 52.6(±3.6) 98.1(±1.2) 95.6(±2.2) 94.5(±0.9)

Table 10: Robustness to variations in the physical properties (Reorientation)

Controller

Success Rate Variation
Heavy Object Light Object Light Hand Heavy Hand(%)

Expert agent 46.8 69.0 95.2 89.7
KODex + Original controller 53.5 55.0 66.5 61.5

NN + Original controller 4.7(±2.6) 9.6(±8.1) 9.5(±6.4) 7.9(±6.5)
LSTM + Original controller 34.5(±7.8) 52.3(±10.6) 60.3(±6.0) 55.6(±7.8)
NDP + Original controller 49.4(±3.6) 58.4(±6.4) 59.8(±7.6) 55.7(±9.7)
NGF + Original controller 39.9(±1.9) 57.1(±2.2) 81.6(±1.8) 73.4(±3.8)

KODex + Expert-tuned controller 52.0 63.0 71.5 65.5
NN + Expert-tuned controller 1.5(±0.9) 5.2(±4.2) 3.8(±1.7) 3.7(±2.6)

LSTM + Expert-tuned controller 43.5(±7.9) 47.7(±8.8) 61.4(±4.2) 54.4(±5.5)
NDP + Expert-tuned controller 55.5(±5.9) 59.0(±5.5) 63.0(±6.5) 57.0(±7.5)
NGF + Expert-tuned controller 49.1(±2.6) 59.7(±3.2) 79.4(±1.9) 72.6(±1.2)

J The impact of the choice of basis functions577

We evaluate if KODex’s performance is impacted by different sets of polynomial functions that are578

used as the lifting function. We trained all policies on 200 demos and tested them on 10,000 unseen579

initial conditions.580

18



Design: Specifically, we define four sets of observables (one of which was used in the original581

submission). Let robot state: xr = [x1r, x
2
r, · · · , xnr ] and xo = [x1o, x

2
o, · · · , xmo ] denote the robot582

and the object state, respectively, with superscript indexing the states. We then define four vector-583

valued lifting functions ψr and ψo in (8) as follows584

• Set 1585

ψr ={(xir)2} for i = 1, · · · , n
ψo ={(xio)2} for i = 1, · · · ,m

• Set 2586

ψr ={xirxjr} for i, j = 1, · · · , n
ψo ={xioxjo} for i, j = 1, · · · ,m

• Set 3 (used in this work)587

ψr ={xirxjr} ∪ {(xir)3} for i, j = 1, · · · , n
ψo ={xioxjo} ∪ {(xio)2(xjo)} for i, j = 1, · · · ,m

• Set 4588

ψr ={xirxjr} ∪ {(xir)2(xjr)} for i, j = 1, · · · , n
ψo ={xioxjo} ∪ {(xio)2(xjo)} for i, j = 1, · · · ,m

We report the number of observables for each set and task combination in Table. 11.

Table 11: Number of observables

Set

Task
Tool Door Relocation Reorientation

n=26,m=15 n=28,m=7 n=30,m=12 n=24,m=12
Set 1 82 70 84 72
Set 2 512 469 585 414

Set 3 (ours) 763 546 759 582
Set 4 1413 1302 1629 1134

589

Figure 6: The effects of lifting function on training time (left), imitation error (center), and success rate (right).

Discussion: As shown in Fig. 6, it is clear that training time increases with the number of observ-590

ables since the Moore–Penrose inverse requires more computation for higher-dimension matrices.591

Importantly, KODex’s success rate across all tasks remained roughly the same for Sets 2, 3, and 4.592

In general, as one would expect, increasing the number of observables tends to decrease imitation593

error and increase task success rate. The only exception to this trend is observed for the Object594

Relocation task, in which KODex performs marginally better when trained on Set 2 (585 observ-595

ables) compared with it trained on Set 3 (759 observables). Taken together, these results suggest596

that KODex’s performance is not highly sensitive to the specific choice of lifting function, as long597

as sufficient expressivity is ensured.598

19



K Stability Analysis599

Another unique advantage of utilizing Koopman Operators to model the underlying dynamical sys-600

tem for dexterous manipulation tasks is that the learned policy is a linear dynamical system which601

can be readily inspected and analyzed, in stark contrast to SOTA methods built upon deep neural602

networks.603

We analyzed the stability of the learned policy. For a linear dynamical system with complex conju-604

gate eigenvalues λi = θi ± jωi, i.e., KODex with Koopman matrix K, the system is asymptotically605

stable if all of the eigenvalues have magnitude (ρi =
√
θ2i + ω2

i ) less than one. From the standpoint606

of control theory, it is beneficial to have a asymptotically stable system because of the guarantee607

that all system states will converge. However, from the standpoint of dexterous manipulation tasks608

considered in this work, strict stability might not be preferable because the final desired hand poses609

and object poses are not identical for different initial conditions. This represents a natural trade-off610

between safety and expressivity. As such, understanding how KODex addresses this trade-off can611

be illuminating.612

0.0 0.5 1.0
Eigenvalue Magnitude

0

25

50

75

100

O
cc

ur
re

nc
e

Occurrence of Eigenvalue Magnitude

(a) Tool Use

0.0 0.5 1.0
Eigenvalue Magnitude

0

20

40
O

cc
ur

re
nc

e

Occurrence of Eigenvalue Magnitude

(b) Door Opening

0.0 0.5 1.0
Eigenvalue Magnitude

0

50

100

150

O
cc

ur
re

nc
e

Occurrence of Eigenvalue Magnitude

(c) Object Relocation

0.0 0.5 1.0
Eigenvalue Magnitude

0

20

40

60

O
cc

ur
re

nc
e

Occurrence of Eigenvalue Magnitude

(d) In-hand Reorientation
Figure 7: Occurrence of Eigenvalue Magnitude

Table 12: Maximun Eigenvalue Magnitude
Tool Use Door Opening Object Relocation In-hand Reorientation
1.07888 1.00553 1.00859 1.00413

In Fig. 7, we report a histogram of the Koopman matrix’s eigenvalue magnitudes in each task. In613

addition, we report the maximum eigenvalue magnitude in Table. 12. Based on these results, we can614

see that i) most eigenvalues’ magnitudes are less than one, suggesting that KODex tends to learn615

nearly-stable policies that generate safe trajectories during execution, and ii) a few eigenvalues616

have magnitude larger than one, suggesting KODex does not prioritize stability, at the expense of617

expressivity required to achieve the reported performance.618

20


