
Published as a conference paper at ICLR 2024

A RELATED WORKS

Graph Neural networks We detail the message passing graph neural networks (Kipf & Welling,
2017; Veličković et al., 2018; Hamilton et al., 2017) for semi-supervised node classification. Graph
neural networks innovates on capturing the dependency among nodes via message propagation.
GNNs repeatedly aggregate the embedding of neighbors and combine the aggregated information
with the original embedding. Generally, GNNs are categorized into spatial-domain and spectral-
domain approaches. Based on the spectral graph theory, Bruna et al. (2014) first defines the graph
convolution in the spectral domain through the eigen-decomposition of the graph Laplacian, de-
fectively causing high computational cost. Graph Convolution Network (GCN) (Kipf & Welling,
2017) is utilized for our PAC-Bayes bounds analysis and feature extractor, which utilizes the 1-st
approximation of the Chebyshev expansion to simplify the calculation. The k-th layer of GCN can
be formally defined as:

Hk = σk(L̃Hk−1Wk), (12)

where σk(·) is the non-linear activation function, e.g., ReLU activation function, Wk is the trainable
weight matrix of the k-th layer, Hk are node embeddings of the k-th layer and H0 = X . The graph
Laplacian is defined as L̃ = D

1
2 ÃD

1
2 , Ã = A + I , where D is the degree matrix Dii =

∑
j Ãij .

Spatial-based approaches follow a message passing scheme (Abu-El-Haija et al., 2019), where each
node collects the information from its neighbors iteratively. GraphSAGE (Hamilton et al., 2017)
aggregates the information from randomly sampled neighborhoods to scale to large graphs. GAT
(Veličković et al., 2018) introduces the attention mechanism to assign scores for each node pair.
GIN (Xu et al., 2019) generalizes the Weisfeiler-Lehman test and reaches the most expressive power
among GNNs. Ma et al. (2020); Khasahmadi et al. (2020) adds the memory layer on graph neural
networks to model the long-range dependency. However, these memory-based GNNs do not con-
sider the use of attention mechanisms to filter important nodes, while also neglecting the effect of
positional encoding in node coordination, as demonstrated in our ablation studies.

Theoretical Study on GNN’s Generalization Bounds. Generalization refers to the difference in
model performance between the training and test sets. The first GNN generalization bound (Scarselli
et al., 2018) directly links the generalization error with the VC dimension of GNN class. Since all
subsequent GNN generalization bounds involve model size, training set size etc., we will only dis-
cuss parameters unique to graphs in the following. Du et al. (2019a) introduce Graph Neural Tangent
Kernel, i.e., infinitely wide GNNs and establishes the generalization bound for graph classification.
Oono & Suzuki (2020); Garg et al. (2020); Esser et al. (2021) derive bounds using Rademacher
complexity. Liao et al. (2021) applies PAC-Bayesian analysis to message passing GNNs, revealing
dependency on maximum node degree. Ma et al. (2021) analyze the transductive non-i.i.d. node
classification task, same as our setting, and finds that the difference of aggregated features between
training and test node affects generalization bounds. Table 1 thoroughly compares GNN generaliza-
tion bounds, considering settings, frameworks, and graph-specific information affecting the bounds.
Existing researches overlook the influence of graph topology on GNN generalization bounds.

PAC-Bayesian The PAC-Bayesian framework are Probably Approximately Correct (PAC) perfor-
mance bounds for Bayesian learning algorithms. Initially introduced by McAllester (1998; 1999),
the PAC-Bayesian framework has been further developed in subsequent works (Seeger, 2002;
McAllester, 2003a;b; Maurer, 2004). A PAC bound (Valiant, 1984) represents the upper bound ϵ
for the error-rate of the algorithm with high probability (probably). The algorithm is approximately
correct when this bound is small. The result is referred to as PAC-Bayesian bounds when PAC
bounds are applied to (generalized) Bayesian learning. Recently, the PAC-Bayesian has regained in-
terest for deriving generalization bounds for neural networks. Neyshabur et al. (2017) and Dziugaite
& Roy (2017) prove theoretical generalization bounds for deep neural networks based on results in
McAllester (1998). leveraging the perturbation analysis from Neyshabur et al. (2017), Liao et al.
(2021) derive a generalization bound for graph neural network on graph classification tasks, which
is related to the maximum node degree and the spectral norm of the weights. Ma et al. (2021) obtain
PAC-Bayesian generalization bounds for GNN in terms of the discrepancy between node features in
the training set and the testing set. However, current PAC-Bayesian Analysis on GNNs overlook the
the bias induced by the graph structure.

Methods for Boosting GNNs’ Generalization Ability. Enhancing the interplay between distant
nodes can boost GNNs’ generalization ability but is challenging due to the over-smoothing. Meth-
ods for enhancing long-range interplay between nodes include three categories: 1) Alleviating over-

15

Published as a conference paper at ICLR 2024

smoothing for deep GNNs. Researchers employ residual mechanisms (Li et al., 2019; Xu et al.,
2018; Liu et al., 2021), edge dropping (Rong et al., 2020; Hasanzadeh et al., 2020), and normal-
ization Zhao & Akoglu (2020); Bodnar et al. (2022) techniques to deepen GNNs. To address the
neighbor explosion problem, Wu et al. (2019); Zeng et al. (2021) decouple the message passing and
feature transformation procedures. 2) Implicit connection. Zhang et al. (2022a); Liu et al. (2022) in-
troduce global dummy nodes connected to all nodes on the original graph, enabling long-range nodes
to interact via dummy nodes. Graph transformers (Veličković et al., 2018; Wu et al., 2022; 2023;
Ying et al., 2021) employ attention mechanisms to create virtual connections between arbitrary node
pairs, allowing each node to aggregate information from all nodes. Alon & Yahav (2021) propose
a rewiring method based on Balanced Forman curvature to solve the over-squashing problem. 3)
Historical embedding for large-scale graph. As a mainstream method for scalable GNNs (Hamilton
et al., 2017; Chiang et al., 2019; Zeng et al., 2020), mini-batch training based on subgraph sampling
faces generalization reduction due to the absence of message passing between neighbor nodes across
different batches. GNNAutoscale (Fey et al., 2021) stores historical node embeddings on the CPU
and transfers 1-hop neighbor embeddings to the GPU for training of each epoch.

Key-value attention and graph transformer. In recent years, transformers (Vaswani et al.,
2017) have shown superior performance across various field including computer vision (Dosovit-
skiy et al., 2020), natural language processing (Devlin et al., 2019) and graph (Kreuzer et al.,
2021). As the backbone of transformer, key-value attention encodes relationships among input
entities. selectively focusing on them. Key-value attention calculate the similarity between each
query vector and corresponding key vector as the current state of the model. The obtained simi-
larity score can then be used to measure the importance of the input value, and to guide the up-
dating process for the global workspace in this paper. Specifically, the attention mechanism first
projects an input tensor X into queries Q, keys K, and values V with different linear layers:
Q = XWQ,K = XWK ,V = XWV . Apply the Softmax on query-key products to establish
a probability distribution, subsequently generating output through the weighted summation of val-
ues based on similarity scores: Z := Softmax(QK⊺

√
d
)V. Given the success of transformers, scholars

have extended it to the graph domain, especially for over-smoothing (Chen et al., 2020a) and over-
squashing (Alon & Yahav, 2021) in Graph Neural Networks by modeling the long-range nodes
dependency with attention. GraphTrans (Wu et al., 2021) applies a transformer module on top
of a standard GNN layer to compute the pairwise node correlations in a position-agnostic way.
GT (Dwivedi & Bresson, 2020) utilize the Laplacian eigen-vectors as the positional encoding and
generalize the Transformer on graphs. Due to the quadratically computational complexity of trans-
former, most existing graph transformers are designed for small graph, which are hard to be applied
on large-scale graph dataset with millions of nodes (Hu et al., 2020). Recent attempts to scale up the
graph transformer to large graphs lie in sampling strategies. NAGphormer (Chen et al., 2023) aggre-
gates multi-hop neighborhood features for each node as sequences of token. By taking each node as
a sequence, the NAGphormer can be trained in a mini-batch method. NodeFormer (Wu et al., 2022)
propose a kernelized Gumbel-Softmax operator which fuse random feature map and approximated
sampling strategy to distil latent graph structures. Present researches try to employ transformer
architectures to resolve the long-range node dependency challenges. However, these methods, pre-
dicted on pairwise attention, face difficulties when scaling to large graphs. Some approaches utilize
sampling techniques for model training, yet they lack global consistency.

B PROOFS IN SECTION 2

We first introduce following lemma which is commonly used in PAC-Bayesian.

Lemma 2 (Change of measure inequality (Germain et al., 2015)) For any hypothesis class H,
for any distributions P and Q onH, and for any measurable function ϕ : H → R

Ef∼Q[ϕ(f)] ≤ DKL(Q∥P) + ln (Ef∼P [ϕ(f)])

Lemma 3 (Markov’s inequality) Let X be a non-negative random variable and α > 0, we have:

Pr(X > aE[X]) < 1/a

Lemma 4 (Jensen’s Inequality (Jensen, 1906)) If f is a convex function, and E[f(X)] and
f(E[X]) are finite, then

f(E[X]) ≤ E[f(X)]

16

Published as a conference paper at ICLR 2024

Lemma 5 (Hoeffding inequality (Hoeffding, 1994)) Let X1, X2, · · · , XN be i.i.d. random vari-
ables bounded in [0,1]. Then for all ϵ > 0,

Pr

[∣∣∣∣∣ 1N
N∑

n=1

Zn − E [Zn]

∣∣∣∣∣ > ϵ

]
≤ 2e(−2Nϵ2) (13)

Lemma 6 (Perturbation Bound of GCN) (Adopted from Lemma 2 in Neyshabur et al. (2017))
For any B,L > 0, let fW be a L-layer graph convolution network with ReLU activation. Then for
any w and x, and any perturbation u = vec({Ui}Li=1) such that ∥Ui∥ ≤ 1

L∥Wi∥2, the change in
the output of the network can be bounded as follows:

|fu+w(A,X)[i, :]− fw(A,X)[i, :]|2 ≤ eB(

L∏
i=1

∥Wi∥2)
L∑

i=1

∥Ui∥2
∥Wi∥2

. (14)

B.1 PROOF OF LEMMA 1

Lemma 1 (PAC-Bayesian bound for transductive learning) Given a full set V with N examples
where each example (x, y) is i.i.d drawn from distribution D, for any prior distribution P on the
hypothesis space of classifierH, for any δ ∈ (0, 1], with probability at least 1− δ, we have,

rU,γ(Q) ≤ RS,γ(Q) +

√
DKL(Q||P) + ln 2m+2

δ +D(P)

2m
(15)

Proof. Consider the random variable ∆(rU,0(Q), RS,γ(Q)) := (rU,γ(Q)− rS,γ(Q))
2. We aims to

upper bound ∆ with high probability. Since the ∆ is convex, with Jensen’s inequality,

∆(rU,γ(Q), RS,γ(Q)) ≤ E
f∼Q

[(rU,γ(f)−RS,γ(f))
2]. (16)

To transform the expectation on Q into the expectation on P which is independent on S, set ϕ(f) =
2(m− 1)(rU,γ(f)−RS,γ(f))

2 in Lemma 2, we have:

E
f∼Q

[
(rU,γ(f)−RS,γ(f))

2
]
≤ 1

2(m− 1)

(
DKL[Q∥P] + ln E

f∼P

[
e2(m−1)(rU,γ(f)−RS,γ(f))

2
])

.

(17)

Applying Markov’s inequality to Ef∼P

[
e2(m−1)(rU,γ(f)−RS,γ(f))

2
]
, we have for any δ > 0, with

probability at least 1− δ,

ln E
f∼P

[
e2(m−1)(rU,γ(f)−RS,γ(f))

2
]

≤ ln
1

δ
E

y∼D

[
E

f∼P

[
e2(m−1)(rU,γ(f)−RS,γ(f))

2
]]

= ln
1

δ
E

f∼P
E

y∼D

[
e2(m−1)(rU,γ(f)−RS,γ(f))

2
]

(18)

For any f ∈ H, we have,

E
y∼D

[
e2(m−1)(rU,γ(f)−RS,γ(f))

2
]

= E
y∼D

[
e2(m−1)(rU,γ(f)+rS,γ(f)−rS,γ(f)−RS,γ(f))

2
]

≤ E
y∼D

[
e2(m−1)(rU,γ(f)−rS,γ(f))

2+2(m−1)(rS,γ(f)−RS,γ(f))
2
]

= e2(m−1)(rU,γ(f)−rS,γ(f))
2

E
y∼D

[
e2(m−1)(rS,γ(f)−RS,γ(f))

2
]

(19)

17

Published as a conference paper at ICLR 2024

Let X be a non-negative random variable, then we have,

E[X] =

∫ ∞

0

XPr(X)dX

=

∫ ∞

0

∫ X

0

1dϵPr(X)dX

=

∫ ∞

0

∫ X

0

Pr(X)dϵdX

=

∫ ∞

0

∫ ∞

ϵ

Pr(X)dXdϵ

=

∫ ∞

0

Pr(X ≥ ϵ)dϵ

Let X = |rS,γ(f)−RS,γ(f)|, we have

E
y∼D

[|rS,γ(f)−RS,γ(f)|] =
∫ ∞

0

Pr(|rS,γ(f)−RS,γ(f)| > ϵ)dϵ (20)

By Hoeffding inequality in Lemma 5, we have,

Pr (|rS,γ(f)−RS,γ(f)| ≥ ϵ) ≤ 2e−2mϵ2 (21)

Substitute Eq. 20 and Eq. 21 into Eq. 19 we have,

E
y∼D

[
e2(m−1)(rS,γ(f)−RS,γ(f))

2
]

=

∫ ∞

0

Pr
(
(rS,γ(f)−RS,γ(f))

2 ≥ ln ϵ

2(m− 1)

)
dϵ

≤
∫ ∞

0

Pr

(
(rS,γ(f)−RS,γ(f)) ≥

√
ln ϵ

2(m− 1)

)
dϵ+

∫ ∞

0

Pr

(
rS,γ(f)−RS,γ(f) ≤ −

√
ln ϵ

2(m− 1)

)
dϵ

∫ ∞

0

Pr

(
(rS,γ(f)−RS,γ(f)) ≥

√
ln ϵ

2(m− 1)

)
dϵ

=

∫ 1

0

Pr

(
(rS,γ(f)−RS,γ(f)) ≥

√
ln ϵ

2(m− 1)

)
dϵ+

∫ ∞

1

Pr

(
(rS,γ(f)−RS,γ(f)) ≥

√
ln ϵ

2(m− 1)

)
dϵ

≤ 1 +

∫ ∞

1

e−2m ln ϵ
2(m−1) dϵ

= m∫ ∞

0

Pr

(
(rS,γ(f)−RS,γ(f)) ≤ −

√
ln ϵ

2(m− 1)

)
dϵ ≤ m (22)

E
y∼D

[
e2(m−1)(rS,γ(f)−RS,γ(f))

2
]
≤ 2m (23)

Substitute Eq. 23 and Eq. 19 into Eq. 18, we have,

ln
1

δ
E

f∼P
E

y∼D

[
e2(m−1)(rU,γ(f)−RS,γ(f))

]
≤ ln E

f∼P

(
2m

δ
· E
y∼D

[
e2(m−1)(rU,γ(f)−rS,γ(f))

])
(24)

18

Published as a conference paper at ICLR 2024

Then we finally have,

rU,0(Q)−RS,γ(Q) = E
f∼Q

[(rU,γ(f)−RS,γ(f))]

≤

√√√√DKL[Q∥P] + ln E
f∼P

[
e2(m−1)(rU,γ(f)−RS,γ(f))

2]
2(m− 1)

≤

√√√√√DKL[Q∥P] + ln E
f∼P

(
2m
δ · E

f∼P

[
e2m(rU,γ(f)−rS,γ(f))

2])
2(m− 1)

=

√
DKL[Q∥P] +D(P) + ln 2m

δ

2(m− 1)
(25)

where D(P) = ln E
f∼P

[
e2(m−1)(rU,γ(f)−rS,γ(f))

2
]
. □

B.2 PROOF OF THEOREM 1
We first introduce the following lemma adpoted from Lemma 1 in Neyshabur et al. (2017).
Lemma 7 Let fw be any classifier with parameters w (not necessarily a graph neural network),
For any prior distribution P , the posterior Q is built by adding a random perturbation u to w s.t.,
Pr(maxi∈V |fw+u(A,X)[i, :]− fw(A,X)[i, :]|∞ ≤ γ

4) >
1
2 . For any γ, δ > 0, with probability at

least 1− δ of the choice of training set, we have:

rU,0(fw) ≤ RS,γ(fw) +

√
2DKL(Q||P) + ln 8m

δ
+D(P)

2(m− 1)

Proof. Let w̃ = w + u. Let P be the set of perturbations s.t.:

P =

{
w̃

∣∣∣∣ max
i∈S∪U

|fw′(A,X)[i, :]− fw(A,X)[i, :]|∞ <
γ

4

}
We construct a new posterior Q̃ as

Q̃(w̃) =

{
1
ZQ(w̃), w̃ ∈ P
0, otherwise (26)

where Z = Prw̃∼Q(w̃ ∈ P) ≥ 1
2 is a normalizing constant. By definition of Q̃, for any w̃ ∼ Q̃ and

any nodes i, we have

max
k1,k2∈[K]

||fw̃(A,X)[i, k1]− fw̃(A,X)[i, k2]| − |fw(A,X)[i, k1]− fw(A,X)[i, k2]|| ≤
γ

2
(27)

Let Mw(xi, yi) = fw(A,X)[i, yi] − maxk ̸=yi
fw(A,X)[i, k] and Mw̃(xi, yi) =

fw̃(A,X)[i, yi]−maxk ̸=yi
fw(A,X)[i, k]. Recall that

Φ0(Mw(xi, yi)) =

{
0 0 ≤Mw(xi, yi)
1 Mw(xi, yi) ≤ 0

Φγ/2(Mw̃(xi, yi)) =

{
0 γ ≤Mw̃(xi, yi)
1− 2Mw̃(xi, yi)/γ 0 ≤Mw̃(xi, yi) ≤ γ
1 Mw̃(xi, yi) ≤ 0

(28)

From Eq. 27, we have,

|Mw(xi, yi)−Mw̃(xi, yi)| ≤ γ/2 (29)

IfMw(xi, yi) >Mw̃(xi, yi), we have,

Mw(xi, yi) ≤Mw̃(xi, yi) +
γ

2

19

Published as a conference paper at ICLR 2024

Thus we surely have,

Φ0(Mw(xi, yi)) ≤ Φγ/2(Mw̃(xi, yi)) (30)

IfMw(xi, yi) <Mw̃(xi, yi), we directly have

Φ0(Mw(xi, yi)) ≤ Φγ/2(Mw̃(xi, yi)) (31)

Eq. 30 and Eq. 31 indicates that

rU,0(fw) ≤ rU,γ/2(fw̃) (32)

Similarly, we have

RS,γ/2(fw̃) ≤ RS,γ(fw) (33)

Then, with probability 1− δ over the sample of label, we have:

rU,0(fw)

≤ E
w̃∼Q̃

[rU,γ/2(fw̃)]

≤ E
w̃∼Q̃

[RS,γ/2(fw̃)] +

√
DKL(Q̃||P) + ln 2m

δ +D(P)

2(m− 1)

≤ RS,γ(fw) +

√
DKL(Q̃||P) + ln 2m

δ +D(P)

2(m− 1)

(34)

Denote Pc as the complement of P . Define H(Z) := −Z lnZ − (1 − Z) ln(1 − Z) as the binary
entropy function,

DKL(Q||P)

=

∫
w̃∈P

Q ln
Q

P
dw̃ +

∫
w̃∈Pc

Q ln
Q

P
dw̃

= ZDKL(Q̃||P) + (1− Z)DKL(Q̃
c||P)−H(Z),

where Q̃c is the normalized density of Q restricted to Pc. Since KL divergence is always positive,
so we have,

DKL(Q̃||P) =
1

Z
[DKL(Q||P) +H(Z)− (1− Z)DKL(Q

c||P)] ≤ 2(DKL(Q||P) + ln 2) (35)

Thus,

rU,0(fw) ≤ RS,γ(fw) +

√
2DKL(Q||P) + ln 8m

δ +D(P)

2(m− 1)
. (36)

□

Theorem 1 (PAC-Bayes bounds with L-hop interplay for transductive GCN) Let f ∈ H be
an L-layer GCN with parameters {Wi}Li=1, for any B > 0, L, h ≥ 1, and any δ, γ > 0, with
probability at least 1− δ over a training set S of size m we have,

rU,0(f) ≤ RS,γ(f) +O

√
B2L2h ln(4Lh)ΠΣ + ln Lm

δ

γ2m
+K2B2(1− 2IL

dmax
)2Π


where Π =

∏L
l=1 ∥Wi∥2F and Σ =

∑L
l=1

∥Wl∥2
F

∥Wl∥2
2

are product and sum of spectral norm of weights,
dmax is the maximum node degree.

Proof. In transductive learning, we can assume that the randomness of selecting the training and test
sets is attributed to the sample of node labels with out loss of generality. For simplicity, we denote
f(A,X)[j, :] as fj and denote true label-generating probability Pr(yj = k|X, G) as ηk(j). We also
denote the loss for one sample as Lγ(fj , yj) = Φγ(Mf (j, yj)) = Φγ(fj [yj] − maxk ̸=yj hj [k])

20

Published as a conference paper at ICLR 2024

where Φγ is defined in Eq. 2. We first bound the term ln E
f∼P

[
e2(m−1)(rU,γ(f)−rS,γ(f))

2
]

which is

the expected loss between training and test sets. For any f ∼ P , we have:

rU,γ(f)− rS,γ(f)

= E
y∼D

 1

N −m

∑
j∈U

Lγ(fj , yj)

− E
y∼D

[
1

m

∑
i∈S

Lγ(fi, yi)

]

=
1

N −m

∑
j∈U

K∑
k=1

(ηk(j)Lγ(fj , k))−
1

m

∑
i∈S

K∑
k=1

(ηk(i)Lγ(fi, k))

=
1

(N −m) ·m
∑
j∈U

∑
i∈S

K∑
k=1

(ηk(j)Lγ(fj , k))−
1

m · (N −m)

∑
i∈S

∑
j∈U

K∑
k=1

(ηk(i)Lγ(fi, k))

=
1

(N −m) ·m
∑
j∈U

∑
i∈S

K∑
k=1

(ηk(j)Lγ(fj , k)− ηk(i)Lγ(fi, k))

=
1

(N −m) ·m
∑
j∈U

∑
i∈S

K∑
k=1

(ηk(j)Lγ(fj , k) + ηk(j)Lγ(fi, k)− ηk(j)Lγ(fi, k)− ηk(i)Lγ(fi, k))

=
1

m · (N −m)

∑
j∈U

∑
i∈S

K∑
k=1

(ηk(j) (Lγ (fj , k)− Lγ (fi, k)) + (ηk(j)− ηk(i))Lγ (fi, k)) (37)

Since ηk(j) and L(hi, k) are both bounded by 1:

rU,γ(f)− rS,γ(f)

≤ 1

m · (N −m)

∑
j∈U

∑
i∈S

K∑
k=1

(1 · (Lγ (fj , k)− Lγ (fi, k)) + (ηk(j)− ηk(i)) · 1) (38)

And we have:

1

m · (N −m)

∑
j∈U

∑
i∈S

K∑
k=1

((ηk(j)− ηk(i)))

=
1

m · (N −m)

∑
j∈U

∑
i∈S

(
K∑

k=1

ηk(j)−
K∑

k=1

ηk(i)

)
= 0 (39)

Chose coordinate k′ ̸= k so thatM(fi, k) = fi[k]− fi[k
′]. Then

Lγ(fj , k)− Lγ(fi, k)

= Φγ(M(fj , k))− Φγ(M(fi, k))

≤ 1

γ
|Mf (j, k)−Mf (i, k)| (Lipschitz property of ramp loss)

=
1

γ
|
(
fj [k]−max

l ̸=k
fj [l]

)
− (fi[k]− fi[k

′])|

=
1

γ
|fj [k]− fi[k] + fi[k

′] + min
l ̸=k

(−vl)|

≤ 1

γ
|(fj [k]− fi[k]) + (fi[k

′]− fj [k
′])|

≤ 2

γ
∥fj − fi∥∞ ≤

2

γ
∥fj − fi∥2 =

2

γ
∥H[i, :]−H[j, :]∥2 (40)

21

Published as a conference paper at ICLR 2024

where H is the output of GNNs’ final layer. When consider the final layer of the GCN, we only need
to aggregate the 1-hop neighbors of the nodes, we have:

1

m · (N −m)

∑
j∈U

∑
i∈S

K∑
k=1

(Lγ (fj , k)− Lγ (fi, k))

≤ 2K

γ ·m · (N −m)

∑
j∈U

∑
i∈S

∥H[i, :]−H[j, :]∥2

=
2K

γ ·m · (N −m)

∑
j∈U

∑
i∈S

∥σ(ÃH′WL[j, :])− σ(ÃH′WL[i, :])∥2

≤ 2K

γ ·m · (N −m)

∑
j∈U

∑
i∈S

∥ÃH′WL[j, :]− ÃH′WL[i, :]∥2 (Lipschitz property of ReLU)

=
2K

γ ·m · (N −m)

∑
j∈U

∑
i∈S

∥
∑
p∈N 1

j

Ã[j, p]H′[p, :]WL −
∑
q∈N 1

i

Ã[i, q]H′[q, :]WL∥2

where Ã[j, p] indicates the connectivity between node j and p, N 1
j denotes the 1-hop neighbors of

node j, and H′[p, :] represents the embeddings of node p from previous layer. When considering the
final layer of the GNN, for any test node j ∈ U , the update of its embedding aggregated embeddings
of nodes including itself and its 1-hop neighbors. These 1-hop neighbors can be categorized into
training and test nodes, i.e., N 1

j = N 1
j ∩ S + N 1

j ∩ U . We choose the adjacency matrix to be
normalized by degree for simplicity. Given Ã[j, p] = 1

dj
if p ∈ N 1

j and 0 otherwise, the above
equation becomes:

1

m · (N −m)

∑
j∈U

∑
i∈S

K∑
k=1

(
Lγ/2 (fj , k)− Lγ (fi, k)

)
≤ 2K

γ ·m · (N −m)

∑
j∈U

∑
i∈S

∥ 1
dj

∑
p∈N 1

j

H′[p, :]WL −
1

di

∑
q∈N 1

i

H′[q, :]WL∥2

=
2K

γ ·m · (N −m)

∑
j∈U

∑
i∈S

∥∥∥∥∥∥ 1

dj

H′[j] +
∑

p∈N 1
j ∩U

H′[p] +
∑

p∈N 1
j ∩S

H′[p]

WL

− 1

di

H′[i] +
∑

q∈N 1
i ∩U

H′[q] +
∑

q∈N 1
i ∩S

H′[q]

WL

∥∥∥∥∥∥
2

(41)

Only the nodes on the boundary can conduct message passing across training and test sets. The
message passing across training and test nodes can decrease the difference between embedding of
training and test nodes. We choose the coordinate of one training node i∗ and of one test node j∗

such that the difference between them is maximum, i∗, j∗ = argmaxj∗∈U,i∗∈S ∥H′[j∗, :]−H′[i∗, :

]∥2. We also denote H̃′ := ∥H′[j∗, :] − H′[i∗, :]∥2. Next, we will discuss based on condition of
distance between i and j.

22

Published as a conference paper at ICLR 2024

1⃝: s(i, j) > 1, then i /∈ N 1
j ∩ S and j /∈ N 1

i ∩ U . Thus two nodes cannot exchange information.

∥H[j, :]−H[i, :]∥2

=

∥∥∥∥∥∥ 1

dj

H′[j, :] +
∑

p∈N 1
j ∩U

H′[p, :] +
∑

p∈N 1
j ∩S

H′[p, :]

WL

− 1

di

H′[i, :] +
∑

q∈N 1
i ∩U

H′[q, :] +
∑

q∈N 1
i ∩S

H′[q, :]

WL

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥ 1

dj

H′[j∗, :] +
∑

p∈N 1
j ∩U

H′[j∗, :] +
∑

p∈N 1
j ∩S

H′[j∗, :]

WL

− 1

di

H′[i∗, :] +
∑

q∈N 1
i ∩U

H′[i∗, :] +
∑

q∈N 1
i ∩S

H′[i∗, :]

WL

∥∥∥∥∥∥
2

≤ ∥H′[j∗, :]−H′[i∗, :]∥2∥WL∥2 (42)

2⃝: s(i, j) = 1, then i ∈ N 1
j ∩ S and j ∈ N 1

i ∩ U . Thus two nodes can exchange information.
Eq. 41 becomes:

∥H[j, :]−H[i, :]∥2

=

∥∥∥∥∥∥∥
1

dj

H′[j, :] +
∑

p∈N1
j ∩U

H′[p, :] +
∑

p∈N1
j ∩S

H′[p, :]

WL

− 1

di

H′[i, :] +
∑

q∈N1
i ∩U

H′[q, :] +
∑

q∈N1
i ∩S

H′[q, :]

WL

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
1

dj

H′[j, :] +
∑

p∈N1
j ∩U

H′[j, :] +
∑

p∈N1
j ∩S/{i}

H′[p, :] +H[i, :]

WL

− 1

di

H′[i, :] +
∑

q∈N1
i ∩U/{j}

H′[q, :] +
∑

q∈N1
i ∩S

H′[q, :] +H′[j, :]

WL

∥∥∥∥∥∥
2

≤
∥∥∥∥ (H′[j, :] + (dj − 2)H′[j∗, :] +H′[i, :])

dj
WL − (H′[i, :] + (di − 2)H′[i∗, :] +H′[j, :])

di
WL

∥∥∥∥
2

=

∥∥∥∥(H′[j∗, :]−H′[i∗, :]
)
− 2H′[j∗, :]−H′[i,]−H′[j, ;]

dj
− H′[j, :] +H′[i, :]− 2H′[i∗, :]

di

∥∥∥∥
2

∥WL∥2

≤
∥∥∥∥(H′[j∗, :]−H′[i∗, :]

)
− 2H′[j∗, :]−H′[i,]−H′[j, ;]

dmax
− H′[j, :] +H′[i, :]− 2H′[i∗, :]

dmax

∥∥∥∥
2

∥WL∥2

= (1− 2/dmax)
∥∥(H′[j∗, :]−H′[i∗, :]

)∥∥
2
∥WL∥2 (43)

23

Published as a conference paper at ICLR 2024

By substituting Eq. 42 and 43 into Eq. 41 based on the connectivity of nodes i and j, we can obtain,

2K

γ ·m · (N −m)

∑
j∈U

∑
i∈S

∥H[j, :]−H[i, :]∥2

≤ 2K

γ ·m · (N −m)

∑
j∈U

∑
i∈S

{
∥H′[j∗, :]−H′[i∗, :]∥2∥WL∥2 s(i, j) > 1
(1− 2/dmax) ∥(H′[j∗, :]−H′[i∗, :])∥2 ∥WL∥2 s(i, j) = 1

=
2K

γ ·m · (N −m)

(
m · (N −m)− 2P1

dmax

)
∥(H′[j∗, :]−H′[i∗, :])∥2 ∥WL∥2

=
2K

γ

(
1− 2I1

dmax

)
∥(H′[j∗, :]−H′[i∗, :])∥2 ∥WL∥2 (Unroll recursion)

≤ 2K

γ

(
1− 2IL

dmax

)
∥(X[j∗, :]−X[i∗, :])∥2

L∏
l=1

∥Wl∥2

≤ 2K

γ

(
1− 2IL

dmax

)
Bx

L∏
l=1

∥Wl∥2 (44)

Thus we have,

ln E
f∼P

[
e2(m−1)(rU,γ(f)−rS,γ(f))

2
]

≤ ln sup
f∼P

[
e2(m−1)(rU,γ(f)−rS,γ(f))

2
]

= ln sup
f∼P

[
e
2(m−1)

(
2K
γ

(
1− 2IL

dmax

)
Bx

∏L
l=1∥Wl∥2

)2
]

≤ sup
f∼P

2(m− 1)

(
2K

γ

(
1− 2IL

dmax

)
Bx

L∏
l=1

∥Wl∥2

)2

≤ 2(m− 1)

(
2K

γ

(
1− 2IL

dmax

)
BxB

L
w

)2

≤ O

(
mK2B2

x(1− 2IL/dmax)
2B

L/2
w

γ2

)
(45)

Now we remains to bound the term DKL(Q||P) following the procedure in Neyshabur et al. (2017)
which derives the generalization bound for ReLU neural networks based on the perturbation bound.
Owing to the Lipschitz property of the ReLU function under L2 norm, we can deduce that the gap
between the outputs of two nodes under L2 norm is given by:

∥Hl[i, :]−Hl[j, :]|2 = |σ(AHl−1Wl)[i, :]− σ(AHl−1Wl)[j, :]∥2
≤ c∥ÃHl−1Wl[i, :]− ÃHl−1Wl[j, :]∥2

≤ c∥ÃLX

L∏
l=1

Wl[i, :]− ÃLX

L∏
l=1

Wl[j, :]∥2

Thus, when analyzing the generalization of a GCN, if one employs the Lipschitz activation and
considers the L2 norm of the gap between the outputs of two nodes, the GCN can be equated to an
MLP where the input X is transformed to ALX. This explains why the techniques in Neyshabur
et al. (2017) can be adapted to GCN with appropriate modifications.

Let β =
(∏L

l=1 ∥Wl∥2
)1/L

and normalize the weight of the network as W̃i = β
∥Wi∥2

Wi. Due

to the homogeneity of the ReLU, we have fw̃ = fw. We select the prior P = N (0, σ2I) for
the vectorized parameters of GNN. The posterior is defined by adding the random perturbation
u ∼ N (0, σ2I) to the prior. σ is set based on an approximation β̃ of β since the prior cannot depend
on the learned network. We will calculate the PAC-Bayes bound for each β̃, which holds for all

24

Published as a conference paper at ICLR 2024

networks W with the range |β − β̃| ≤ 1
Lβ. In the end, we will then utilize the union bound over all

β̃ to obtain the cover all possible networks. First we consider a fixed β̃ and all networks satisfying
|β − β̃| ≤ β

L . From Tropp (2012), we get the bound for the spectral norm of U ∼ N (0, σ2I),

Pr(∥Ul∥2) ≥ t) ≤ 2he−t2/2hσ2

(46)

Thus, for perturbations on all layers, we have,

Pr

(
L⋃

l=1

∥Ul∥2 < t

)
≥ 1− 2Lhe−t2/2hσ2

(47)

Setting 1− 2Lhe−t2/2hσ2

= 1
2 , we have at least probability 1

2 , the spectral norm of the perturbation
in each layer ∥Ui∥2 ≤ σ

√
2h ln(4Lh). Plugging this to perturbation bound in Lemma 6, we have

with probability a least 1
2 ,

max
i∈S∪U

|fw+u(A,X)[i, :]− fw(A,X)[i, :]|2

≤ eBx(

L∏
i=1

∥Wi∥2)
L∑

i=1

∥Ui∥2
∥Wi∥2

= eBxβ
L

L∑
i=1

∥Ui∥2
β

≤ eBxβ
L−1Lσ

√
2h ln(4Lh)

≤ e2Bxβ̃
L−1Lσ

√
2h ln(4Lh)

≤ γ

4
(48)

where in the last inequality we set σ = γ

42Bβ̃L−1
√

d ln(4Lh)
. The perturbation u with the above

chosen σ satisfy the assumptions of the Lemma 7.

Then we calculate the KL divergence term in Lemma 7.

DKL(Q||P) =
|w|2

2σ2
=

422B2
xβ̃

2L−2L2h ln(4Lh)

2γ2

L∑
l=1

∥W∥2F

≤ O

(
B2

xβ̃
2LL2h ln(4Lh)

γ2

L∑
l=1

∥W∥2F
β2

)

≤ O

(
B2

xL
2h ln(4Lh)

∏L
l=1 ∥Wi∥2F

γ2

L∑
l=1

∥Wl∥2F
∥Wl∥22

)

Thus, we have for any β̃, we probability at least 1− δ for all W with β − β̃ ≤ β
L ,

rU,0(f) ≤ RS,γ(f) +O

√B2
xL

2h ln(4Lh)ΠΣ + ln m
δ

γ2m
+K2B2

x(1−
2IL
dmax

)2BL
w

 (49)

where Π =
∏L

l=1 ∥Wi∥22 and Σ =
∑L

l=1
∥Wl∥2

F

∥Wl∥2
2

are product and sum of spectral norm of weights.

The last step is to take a union bound over all choices of β̃ s.t. |β̃ − β| ≤ β
L . We only need to

consider β in the range of
(
0,
(

γ
√
m

2Bx

) 1
L

]
, since for the β our of this range, the bound trivially

25

Published as a conference paper at ICLR 2024

holds. If β > γ
√
m

2Bx
, then we have,

B2
xL

2d ln(4Ld)
∏L

l=1 ∥Wi∥2F
∑L

l=1
∥Wl∥2

F

∥Wl∥2
2
+ ln m

δ

γ2m

≥ L2h ln(Lh)

4

L∑
l=1

∥Wl∥2F
∥Wl∥22

≥ 1

(50)

which indicates that the bounds trivially holds since rU,0 is bounded by 1. A sufficient condition to

satisfy |β̃ − β| ≤ β
L is |β̃ − β| ≤ 1

L

(
γ

2Bx

) 1
L

. And we need at most Lm
1
2L to cover all possible β.

Taking a union bound on all such β, gives the final bound,

rU,0(f) ≤ RS,γ(f) +O

√B2
xL

2h ln(4Lh)ΠΣ + ln Lm
δ

γ2m
+K2B2

x(1−
2IL
dmax

)2BL
w

 (51)

□

C THE STRUCTURE IMBALANCE PHENOMENON IN GRAPH LEARNING.
After grouping the test nodes into five groups based on their distance from the training nodes, it is
observed that the generalization error increases as the distance decreases. Theorem 1 can be used to
theoretically explain this phenomenon.

Test subset construction. We first select 20 nodes from each class for the training set, 500 nodes
for the validation set, and 1000 nodes for the test set. The test nodes are then divide into five
groups according to their minimum distance to any nodes in the training set, i.e., ∀i ∈ U , d(i) =
min
j∈T

(s(i, j)). The minimum distances from the nodes in the five test subsets to the training set

are {1, 2, [3, 4], [5,∞),∞}. interplay with training nodes decreases sequentially within different
subsets. Note that the nodes in the first test subset are directly connected to some training nodes,
and the nodes in the last test subset are isolated to all training nodes. We train a two-layer Vanilla
GCN (Kipf & Welling, 2017) in a transductive setting. We repeat the experiment with different node
splits 100 times and report the average accuracy on each test subset.

Experimental results. Fig. 1 shows that the accuracy on different test subsets decreases as the
interplay diminishes. We use a three-layer GNN, allowing any node can directly obtain information
from nodes within three-hop neighbors via three times message-passing. Thus the nodes in the first
test subset can interact with the training nodes three times, while the second group can interact
twice. In the training phase, the features of these test nodes can be indirectly passed into the training
objective to affect the model. In the inference phase, the features of training nodes can be utilized
when predicting labels for the first two subsets, resulting in better generalization ability. On the last
test subset, a significant drop in accuracy is observed, which we attribute to two aspects: 1) No path
exists between the test nodes and the training nodes, so no information interaction occurs in both
training and inference phases. 2) The difference in features between training nodes and isolated test
nodes is high.

Insights. The theorem and experimental results provide us the following insights for graph learning:

• Enhance the interplay between the training and test sets to improve generalization ability..
Transductive learning additionally uses the features of the test set, but the optimization objective of
the model is limited to the prediction error on the training nodes. Hence we need to pass test node
information to training nodes, enabling the optimization objective to perceive test nodes’ patterns.
Long-distance message passing in GNNs with multilayer stacking is challenging. Techniques such
as residual connections (Li et al., 2019; Chen et al., 2020b), random edge drop (Rong et al., 2020)
alleviate concerns, but connecting distant/isolated test nodes remains difficult.

• Structurally even selection of training data. The generalization performance significantly
declines when test nodes exceeds the training nodes’ receptive field in graph convolution. We need
select training nodes with a structurally even distribution across the graph to radiate as many nodes

26

Published as a conference paper at ICLR 2024

as possible. Considering the link between generalization performance and node degree Tang et al.
(2020); Liu et al. (2023), we modify the grouping criterion to node degree, revealing a similar trend
(Fig. 2). We attribute this to nodes with smaller degrees exhibit fewer interactions with training
nodes.

D GATED MECHANISMS IN GLOBAL WORKSPACE

The content of global workspace is updated using a gated approach as in Santoro et al. (2018). Mt

and Mt+1 are memory matrix in current and next time step. I and F are input and forget gates. The
gated mechanism is formulated as follows:

X = relu
(
X×W1

)
K = X+ tanh

(
Mt
)

I = sigmoid
(
KWI

)
F = sigmoid

(
KWF

)
Mt+1 = I× tanh(Mt) + F×Mt

E ALGORITHM OF INTERPGNN

Algorithm 1 Training procedure of InterpGCN-GW in mini-batch manner
Input: A graph G = (V,E), node set V = {1, · · · , N}, edge set E, feature matrix X = [XS,XU],
training labels YS , GNN encoder g1, g2, W feature embedding dimension nd, transformer layer,
node2vec embedding dimension np, memory matrix M = [m1, · · · ,mnm

], batch size B and other
hyper-parameters in Appendix F.2.
Output:Predicted labels for all nodes ŷi

1: Preprocess and initialization:
2: Generate node2vec embedding X

N×np
pe .

3: Partition graphs into c subgraphs with METIS.
4: Initialize the memory in the global workspace.
5: Initialize the parameter of GNN encoder and transformer layer.
6: for sample a subgraph Gc = {Vc, Ec} from C clusters without replacement. do
7: Step 1: Extract initial feature embedding and positional encoding
8: residual = Hc

9: Hc = g(X, G)
10: Hc = [Hc,Xpe] (concatenate positional encoding and feature embedding.)
11: Step 2: Nodes compete to write in the global workspace.
12: Mt = [Mt,H]

13: S = softmax
(

QwK⊤
w√

dk

)
= softmax

(
MtWw,q(HcWw,k)

⊤
√
dk

)
14: Set S as its top-k columns (optional)
15: Mt+1 ← SVw = SHcWw,v

16: Step 3: Global workspace broadcast to all nodes.
17: Ĥc = softmax

(
HcWr,k(M

t+1Wr,k)√
dk

)
Mt+1Wr,k

18: Ho = σ(Ac([Ĥc, residual]⊕ σ ·Hc)Wo)
19: ŷi = Softmax(Ho)[i]
20: Lc = NLL loss(ŷi, y)∀i ∈ Vc

21: Update the parameters of GNN encoder and all W in global workspace with AdamW opti-
mizer by minimizing Lc.

22: end for
23: return The GNN encoder gθ(·)

F NODE CLASSIFICATION TASK

F.1 DATASET DESCRIPTION

Cora, CiteSeer, and Pubmed (Yang et al., 2016),and CoraFull (Bojchevski & Günnemann, 2018)
are citation network datasets, where nodes represent documents, edges represent citation links, and

27

Published as a conference paper at ICLR 2024

Table 8: Statistics of used datasets.

Datasets # Nodes # Edges # Features # Classes

structure imbalance experiment
Cora 2,708 10,556 1,433 7

CiteSeer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3

small-scale node classification
CoraFull 19,793 126,842 8,710 70
Wiki-CS 11,701 216,123 300 10
Computer 13,752 491,722 767 10

Photo 7,650 238,162 745 8
Flickr 89,250 899,756 500 7

large-scale node classification
Reddit 232,965 114,615,892 602 41

Aminer-CS 593,486 6,217,004 100 18
Amazon2M 2,449,029 61,859,140 100 47

features are bat-of-words embeddings. Wiki-CS (Mernyei & Cangea, 2020) is a Wikipedia-based
dataset, where nodes represent computer science articles, edges represent hyperlinks, classes rep-
resent different branches of the field, and features are bag-of-word embeddings. Computer, Photo
from Shchur et al. (2018) and Amazon2M (Chiang et al., 2019) are segments of the Amazon co-
purchase graph, where nodes represent goods, edges indicate that two goods are frequently bought
together, features are bag-of-words embeddings of product reviews, and class represent product
category. Flick from Zeng et al. (2020) is an collection of images, where nodes represent images
uploaded to Flickr, edges indicate that two images share some common properties, features are bag-
of-words embeddings of the images. Reddit from Hamilton et al. (2017) is a social network dataset,
where nodes represent posts on Reddit, edges indicate if the same user comments on both posts,
features are bag-of-words embeddings, and labels are communities. Aminer-CS (Feng et al., 2020)
is citation network dataset, where nodes represent a paper in computer science, edges represent cita-
tion relations among papers, features are bag-of-word vector of paper abstract, and labels are topics
of papers.

F.2 IMPLEMENTATION DETAILS

Software and Software infrastructures. Our code is built based on Goyal et al. (2022)1 and Ott
et al. (2019)2 with:

• Software dependencies: Python 3.7.11, Pytorch 1.9.1, Pytorch-geometric 2.0.1, Numpy 1.20.1,
scikit-learn 0.24.2, DGL-cuda10.1 0.7.1, scipy 1.6.2.

• CPU: Intel(R) Xeon(R) Gold 5222 CPU @ 3.80GHz

• GPU: 2 NVIDIA GeForce RTX 3090

• OS: Ubuntu 18.04.6 LTS

Implementation details For baseline models, the hyperparameter settings follow their official
implementation. We use the node2vec as the positional encoding and GNN for initial feature
embedding in InterpGCN-GW. Additionally, the historical embedding in Fey et al. (2021) is
added and denoted as InterpGAS-GW. We use the NLL-Loss for multi-class classification. The
AdamW (Loshchilov & Hutter, 2017) optimizer is used for gradient decent optimization. We
also use the BatchNorm and early stop strategies for all models. For the model configuration of
InterpGCN-GW, the selection range of hyperparameters is presented as follows:

• Training details:

– Learning rate: {0.01, 0.001}
1https://github.com/anirudh9119/shared workspace
2https://github.com/facebookresearch/fairseq, MIT license

28

Published as a conference paper at ICLR 2024

Table 9: Efficiency comparision on large-scale graphs.

Aminer-CS Reddit

batch size = 126600 batch size = 63300 batch size = 40000 batch size = 20000

Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB) Time (s)
NAGPhomer 10310 5.1 8316 4.6 9960 7.2 6920 4.1
NodeFormer 10011 1.8 5471 1.5 9043 5.2 4617 4.7
ClusterGCN 4835 2.2 4105 1.4 7793 7.5 4107 5.4

InterpGCN-GW 8503 3.4 5391 2.8 7959 9.7 4925 6.4

– Weight decay: {0.001, 0.0001}
– Number of partitions for Amazon2M: {5000, 15000, 30000}
– Number of partitions for Aminer-CS: {3000, 6000, 12000}
– Number of partitions for Reddit: {600, 1500, 3000}
– Batch size: {64, 128, 256, 512}

• Node2vec position encoding:

– Node2vec embedding dimension: {32, 64, 128, 256}
– Walk length: {32, 64, 128, 256}
– Context size: {32, 64, 128, 256}
– Walks per node: {16, 32, 64}
– Batch size: {128, 256, 512}
– Walk length: {32, 64, 128, 256}

• GNN feature embedding extractor:

– Hidden unit: {32, 64, 128, 256}
– Number of layers: {2, 3, 4}
– Dropout: {0.0, 0.1, 0.2, 0.5}
– Activation: LeakyReLU

• Global workspace:

– Memory length : {32, 64, 128, 256, 512}
– Number of memory slots: {8, 16, 32, 64}
– GW attention embedding dimension: {32, 64, 128, 256, 512}
– GW forward fully connected layer dimension: 256, 512

– GW number of heads: {2, 4, 8}
– GW dropout: {0.1, 0.2, 0.4}
– Use LayerNorm: True

G ADDITIONAL EXPERIMENTS

G.1 GPU MEMORY COMPARISON ON LARGE-SCALE GRAPHS

In this section, we validate the efficiency of InterpGCN-GW on large graphs. We draw comparisons
with ClusterGCN, NAGPhormer, and NodeFormer in terms of GPU memory usage and training
time. The three baselines all use their official implementations. For a fair comparison, we set
the number of layers for all models to 2, the number of hidden units to 128, and utilize the same
batch size. We report the time required to train for one epoch in Table 9. ClusterGCN can be
seen as our method with the Global Workspace component removed. Compared to ClusterGCN,
our additional memory requirement is relatively modest, demonstrating the efficiency of use of our

29

Published as a conference paper at ICLR 2024

method. The results show that, compared to Graph Transformer, our model consumes less memory.
This is because our method reduces the complexity from O(N2) to O(Nnm), where nm is much
smaller than N . Despite NodeFormer reducing the complexity to linear, at the same batch size, we
still use less memory, offering better scalability.

G.2 FURTHER EXPLANATION ON INTERPLAY WITH INTERPGCN
Interplay enhancement with global workspace for GCN. In this section, we first explain why
global workspace can enhance the interplay for GCN with following corollary. Note that the GCN
with global workspace is an simplification our InterpGCN by removing attention.
Corollary 1 (PAC-Bayes bounds for GCN with global workspace) Let f ∈ H be an L-layer
GCN with parameters {Wi}Li=1, for any Bx, Bw > 0, L, h,K, nm ≥ 1, and any δ, γ > 0, with
probability at least 1− δ over a training set S of size m we have,

rU,0(f) ≤ RS,γ(f) +O

√
B2

xL2h ln(4Lh)ΠΣ + ln Lm
δ

γ2m
+K2B2

x(1−
2IL +

∑L
r=1 r · nm/m

dmax
)2BL

w

 (52)

where Π =
∏L

l=1 ∥Wi∥2F and Σ =
∑L

l=1
∥Wl∥2

F

∥Wl∥2
2

are product and sum of spectral norm of weights,
dmax is the maximum node degree, nm is the number of memory slots each of which stores feature
of an arbitrary node.

We illustrate above corollary using a specific example with a 3-layer GCN. We select a training set
of Ns nodes and Nu test nodes isolated from the training set, where the initial L-hop interplay is
0. Then the global workspace can store full features of nm training nodes, which can be broadcast
to all test nodes. This effectively transforms all test nodes into 1-hop neighbors of stored training
nodes, connected to at least nm training nodes. Consequently, the interplay of GCN increases to at
least 6

Nm
, leading in a smaller generalization error bound. This finding can be supported with Liu

et al. (2022), which use dummy nodes connected to all nodes to boost graph structure learning,
since memory slots without attention can act as virtual nodes. Building on this corollary, we use
attention to selectively write important node information to memory. Extending Theorem 1 to fully
encompass InterpGNN is challenging, as the selection of nodes for memory is real-data-dependent.
Furthermore, Theorem 1 factors in model complexity. The introduction of an attention mechanism
in InterpGNN could potentially lead to a higher PAC-Bayesian generalization error compared to
GCN. Thus, we experimentally validate that InterpGNN enhances interplay

Visualization of attention scores. We visualize the attention scores to elucidate the function of
InterpGNN in enhancing interplay. We select 40 nodes within the Cora dataset for a clear com-
parison, using 32 memory slots in our model. Figure 8 illustrates the second step’s attention over
nodes, indicating preferences for nodes to be stored in memory. Figure 9 visualizes the third step’s
attention over memory, revealing nodes’ preferences in reloading information from memory slots.
Figure 10 presents the cosine similarity of node features with heat map and annotates shortest path
lengths between node pairs. Our key observations include: 1) Node 34, isolated from other nodes
(as seen in Figure 9), cannot engage in message passing in GCN. In our approach, Node 34 accesses
information from other nodes via memory slots. 2) Nodes 27 and 16 share high feature similarity
and the same label, but are separated by a shortest path length of 9, which impedes direct message
passing in a Vanilla GCN. In our approach, Node 27’s features are written into the memory, and
Node 16 can access this information by reading from the memory. This allows for effective commu-
nication between these two nodes despite their distance in the graph structure. 3) Memory tends to
store information from Node 26 and 27, maybe because they share relatively high feature similarity
with other nodes, marking them as important nodes.

G.3 FURTHER DISCUSSION ON HETEROPHILIC GRAPHS

Homophily and heterophily are pivotal properties in graph structure, with extensive research dedi-
cated to exploring these concepts Luan et al. (2022); Mao et al. (2023); Luan et al. (2023); Ma et al.
(2022). In this section, we delve into the applicability of our derived generalization error and the
proposed method to heterophilic graphs.

Theory perspective. Theorem 1 can be extended to include heterophilic graphs with an additional
assumption. The primary distinction between homophily and heterophilic graphs lies in whether
connected nodes belong to the same category. In our theoretical derivation, we assume that the true

30

Published as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Nodes index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

M
em

or
y

slo
ts

 in
de

x

Figure 8: Attention over nodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Memory slots index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

No
de

s i
nd

ex

Figure 9: Attention over memory.

Figure 10: Cos similarity and distance between nodes.

1 2 3 4 52 0

2 1

2 2

2 3

2 4

Ac
cur

acy
 (%

)

G r o u p i n d e x

 A c t o r

1 2 3 4 53 5

4 0

4 5

5 0

5 5

G r o u p i n d e x

 C h a m e l e o n

1 2 3 4 52 6
2 8
3 0
3 2
3 4
3 6

G r o u p i n d e x

 S q u i r r e l

Figure 11: Grouping effect on heterophilic graphs.

labels are solely dependent on features, meaning nodes with similar features are likely to be in the
same class. Formally, for two nodes i and j with labels k, the difference in their label probabilities
is related to their feature difference:

|P (yi = k|xi)− P (yj = k|xj)| ≤ C|xi − xj |,

31

Published as a conference paper at ICLR 2024

Table 10: Ablation study on memory
and the gate control of memory.

small graphs CoraFull Wiki-CS
InterpGCN 71.72± 0.37 82.92± 0.18

w/o memory 71.05± 0.24 81.01± 0.21
w/o gate 71.31± 0.22 82.23± 0.17

Reddit Aminer-CS Amazon2M
93.35± 0.20 68.52± 0.31 89.11± 0.14
90.47± 0.41 66.29± 0.28 87.81± 0.24
89.49± 0.35 67.21± 0.34 88.42± 0.18

Table 11: Node classification on heterophily graphs (% +
std).

Actor Squirrel Chameleon
GCN 28.92± 1.67 57.21± 1.66 62.12± 1.74

NodeFormer 29.93± 1.78 49.12± 1.22 58.73± 1.84
InterpGCN-GW 31.57± 1.29 60.12± 1.31 64.27± 1.96

H2GCN (Zhu et al., 2020) 35.21± 2.45 40.79± 1.42 60.13± 1.78
GGCN (Yan et al., 2022) 36.79± 1.97 52.19± 1.41 66.19± 2.73

Diag-NSD(Bodnar et al., 2022) 36.11± 1.51 52.29± 1.58 62.13± 2.01
ACM-GCN(Luan et al., 2022) 33.89± 1.37 56.79± 1.67 67.73± 2.15

InterpGGCN-GW 37.81± 2.17 55.49± 1.92 67.17± 1.54
InterpH2GCN-GW 35.42± 1.79 41.46± 1.83 59.79± 1.97
InterpDigNSD-GW 34.81± 1.43 53.90± 2.17 64.38± 1.43

InterpACM-GCN-GW 35.79± 0.84 55.43± 1.60 65.89± 1.67

where C is a constant determined by the true distribution. In heterophilic graphs, we can add a
heterophilic coefficient related to node distance to this assumption:

|P (yi = k|xi)− P (yj = k|xj)| ≤ C · h(ij)
r · |xi − xj |,

where r is the distance between nodes i and j. In homophily graphs, h1 is small, indicating a
tendency for neighboring nodes to be in the same class. Conversely, in heterophilic graphs, h1 is
larger, implying neighboring nodes are likely to belong to different classes. Similar to our defined
L-hop interplay between training set S and test set U , we can define L-hop heterophily as:

HL =

∑L
r=1(L− r + 1) · |hi,j

r |
|S| · |U |

,

where i ∈ S, j ∈ U . In the final generalization error, an additional term on HL is included.
Taking the dating network dataset from (Zhu et al., 2021) as an example, adjacent nodes are more
likely to belong to different classes. Here, due to typically small interplay values, L-hop heterophily
HL has a more significant impact on generalization error than L-hop interplay (1 − IL). For non-
adjacent nodes, as heterophily is usually not strong (will be discussed later in method perspective),
L-hop interplay remains the dominant factor. Regarding the PAC-Bayesian generalization bound in
(Mao et al., 2023), a similar approach to heterophily is introduced. However, (Mao et al., 2023)
makes strong assumptions about graph datasets, limiting the extendibility of the derived generaliza-
tion error bounds. Their generalization error is based on that graph is generated with a contextual
stochastic block model (CBSM), assuming features of different classes originate from distinct nor-
mal distributions, with different connection probabilities p and q for inter-class and intra-class nodes,
respectively. The final generalization error bound based on (Ma et al., 2021) includes the homophily
ratio difference between training and test sets.

Method perspective. The statement regarding the impact of information interaction on general-
ization error can be amended for heterophilic graphs as follows, more information interaction be-
tween non-neighboring test and training nodes can lead to a smaller generalization error for het-
erophily graphs. This concept aligns with findings from a survey on heterophily in Graph Neural
Networks (Zheng et al., 2022). The survey indicates that in heterophilic graphs, nodes sharing
high-level structural and semantic similarities may be distant. It also suggests that the representa-
tion ability of heterophilic GNNs can be greatly enhanced by focusing on informative features from
distant nodes. These elucidate why our method by writing important nodes into the memory and
broadcasting them to all nodes, exhibits superior performance on heterophilic graphs. Similarly,
many GNNs aggregate information from non-neighboring neighbors. For instance, MixHop (Abu-
El-Haija et al., 2019), H2GCN Zhu et al. (2020) propose aggregating information from higher-order
neighbors at each message passing step. Similarly, UGCN (Jin et al., 2021) utilizes two-hop net-
works for message passing, while GGCN (Yan et al., 2022) employs cosine similarity to send signed
neighbor features under constraints of relative node degrees. Luan et al. (2022) propose the adap-
tive channel mixing by adaptively combining different channels of information processing for each
node to effectively handle diverse graph structures. The discussion in Luan et al. (2023) does not
conflict with these statements. Luan et al. (2023) focuses on the influence of neighboring nodes’
label distribution, which necessitates considering the inter-class distinguishability of neighbors. In
the example provided in Luan et al. (2023), if two nodes have 2 and 4 neighboring nodes with labels
(2, 3) and (2, 2, 3, 3), they would still be classified similarly after aggregation. This supports the
necessity of aggregating non-neighboring node features, consistent with our method’s approach.

32

	Introduction
	Generalization Error Bound via PAC-Bayesian Analysis
	Problem Setup and Preliminaries on PAC-Bayesian
	The Derived Structure-aware PAC-Bayesian Bound of GCN

	Enhancing Generalization via the Graph Global Workspace
	Experiments
	Protocol and Setups
	Main results
	Further Study and Discussion

	Conclusion and Further Discussion
	Acknowledgements
	Related Works
	Proofs in Section 2
	Proof of Lemma 1
	Proof of Theorem 1

	The Structure Imbalance Phenomenon in Graph Learning.
	Gated Mechanisms in global workspace
	Algorithm of InterpGNN
	Node Classification task
	Dataset Description
	Implementation Details

	Additional Experiments
	GPU memory comparison on large-scale graphs
	Further explanation on interplay with InterpGCN
	Further discussion on heterophilic graphs

