
Published as a conference paper at ICLR 2025

ON THE OPTIMIZATION LANDSCAPE OF LOW RANK
ADAPTATION METHODS FOR LARGE LANGUAGE
MODELS

Xu-Hui Liu∗1 Yali Du2 Jun Wang3 Yang Yu1

1 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2 Cooperative AI Lab, Department of Informatics, King’s College London, London, UK
3 AI Centre, Department of Computer Science, University College London, London, UK
liuxh@lamda.nju.edu.cn, yali.du@kcl.ac.uk, jun.wang@cs.ucl.ac.uk,
yuy@nju.edu.cn

ABSTRACT

Training Large Language Models (LLMs) poses significant memory challenges,
making low-rank adaptation methods an attractive solution. Previously, Low-
Rank Adaptation (LoRA) addressed this by adding a trainable low-rank matrix
to the frozen pre-trained weights in each layer, reducing the number of trainable
parameters and optimizer states. GaLore, which compresses the gradient matrix
instead of the weight matrix, has demonstrated superior performance to LoRA
with faster convergence and reduced memory consumption. Despite their empir-
ical success, the performance of these methods has not been fully understood or
explained theoretically. In this paper, we analyze the optimization landscapes of
LoRA, GaLore, and full-rank methods, revealing that GaLore benefits from fewer
spurious local minima and a larger region that satisfies the PL∗ condition, a variant
of Polyak-Łojasiewicz (PL) condition, leading to faster convergence. Our analysis
leads to a novel method, GaRare, which further improves GaLore by using gra-
dient random projection to reduce computational overhead. Practically, GaRare
achieves strong performance in both pre-training and fine-tuning tasks, offering
a more efficient approach to large-scale model adaptation. Code is available at
https://github.com/liuxhym/GaRare.git.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance across various do-
mains, including natural language processing (Brown et al., 2020), computer vision (Saharia et al.,
2022), and reinforcement learning (Reed et al., 2022). However, due to their large scale, pre-training
and fine-tuning LLMs demand significant memory usage. Parameter-efficient fine-tuning (PEFT)
techniques provide a solution by enabling the adaptation of pre-trained models to downstream
applications without updating all model parameters. Among these methods, low-rank adaptation
(LoRA) (Hu et al., 2022) has become a widely adopted approach. For a pre-trained weight matrix
W0 ∈ Rm×n, LoRA reparameterizes the fine-tuned weight matrix W ∈ Rm×n as W = W0 +BA,
where B ∈ Rm×r and A ∈ Rn×r. Since the rank r is chosen such that r ≪ min(m,n), matrices
A and B contain significantly fewer parameters than the original matrix, resulting in reduced mem-
ory requirements during fine-tuning as W0 remains fixed. Recently, Zhao et al. (2024) introduced a
new method called GaLore, which compresses the rank of the gradient matrix instead of the weight
matrix. This approach has been shown to outperform LoRA in terms of both performance and mem-
ory efficiency. Furthermore, GaLore is applicable to pre-training tasks, expanding its utility beyond
fine-tuning alone.

To explain the success of low-rank adaptation methods, existing research has primarily focused on
analyzing their expressivity (Zeng & Lee, 2024; Zhao et al., 2024) or studying the optimization land-
scape by assuming convex loss functions (Jang et al., 2024). However, the expressivity of low-rank

∗Work done during Xu-Hui Liu’s visit at King’s College London.

1

https://github.com/liuxhym/GaRare.git

Published as a conference paper at ICLR 2025

adaptation methods alone may not fully explain the success of techniques like LoRA and GaLore,
and the convexity assumption does not hold for neural networks. Notably, several studies have shown
that the learning curves of different fine-tuning methods exhibit distinct patterns. For instance, Jang
et al. (2024) and Xia et al. (2024) find that LoRA converges more slowly than full-rank fine-tuning,
while Zhao et al. (2024) shows that GaLore converges even faster. These phenomena are tied to the
optimization landscapes of these methods, which are not well-explained by current theories. The
lack of a comprehensive theoretical explanation raises questions about their generalizability to other
tasks and limits the development of new low-rank adaptation methods.

To address this issue, we first analyze the regions in the parameter spaces of different methods that
satisfy the PL∗ condition (Liu et al., 2022). Under this condition, the existence of solutions is guar-
anteed, and the convergence rate of (S)GD is exponential. Our analysis reveals that the region in the
parameter space satisfying the PL∗ condition condition is significantly smaller for LoRA compared
to GaLore and the full-rank method. This suggests that LoRA is more likely to encounter regions of
the optimization landscape where convergence guarantees are weaker, leading to slower convergence
rates and suboptimal solutions. This explains why LoRA does not achieve the same convergence
rate or final performance as the other two methods. To further explain GaLore’s advantages over the
full-rank method, we examine the presence of spurious local minima in both methods. During train-
ing, solutions can become trapped in these spurious local minima, preventing further optimization.
A lower occurrence of spurious local minima implies a better optimization landscape. Our analysis
shows that GaLore is more likely to meet the condition of having no spurious local minima, whereas
the full-rank method is less likely to avoid them. Therefore, we conclude that GaLore offers the
best optimization landscape, while LoRA presents the poorest one, which aligns with the observed
empirical results. Based on our theoretical analysis, the key to preserving GaLore’s favorable op-
timization landscape lies in projecting the gradient matrix into low-rank spaces. In GaLore, the
projection is performed using Singular Value Decomposition (SVD) on the original gradient matrix,
with the resulting projection matrices stored for future use. However, SVD is computationally ex-
pensive, and storing the projection matrices increases the memory usage. To enhance GaLore, we
introduce Gradient Random Projection (GaRare), which replaces the SVD-generated projection
matrix with a randomly generated one. Theoretically, GaRare preserves the favorable optimization
properties of GaLore, providing a more efficient and memory-efficient alternative while retaining
similar optimization benefits.

In experiments, we first validate our theoretical findings on small datasets and MLP networks. The
results demonstrate the trade-off between expressivity and the optimization landscape as predicted
by the theory, as well as the similarity in the optimization processes of GaRare and GaLore. Next,
we conducted experiments on LLM pre-training and fine-tuning tasks. The results show that GaRare
achieves comparable performance to GaLore while using less memory, further supporting the appli-
cability of our theoretical insights to LLMs.

Our main contributions can be summarized as follows: First, we present the first comprehensive
analysis of the optimization landscapes of current mainstream fine-tuning methods: the full-rank
method, LoRA, and GaLore. This theoretical framework explains the differences in convergence
rates and performance among these methods. Second, building on our theoretical insights, we in-
troduce a novel algorithm, GaRare, which retains the advantages of GaLore while further reducing
memory usage. Finally, empirical results demonstrate that GaRare achieves performance compara-
ble to GaLore in both pre-training and fine-tuning tasks, all while utilizing less memory.

2 BACKGROUND

2.1 NEURAL NETWORK

We consider input data from Dx ⊂ Rd and output data from Dy ⊂ Rm. We model the data with
layered, feedforward neural networks, that is, we study sets of functions G := {gΘ : Dx → Rm :
Θ ∈ M} ⊂ G := {gΘ : Dx → Rm : Θ ∈ M} with

gΘ[x] := Θlf l[Θl−1 . . . f1[Θ0x]] for x ∈ Dx (1)

and M ⊂ M := {Θ = (Θl, . . . ,Θ0) : Θj ∈ Rpj+1×pj}. The quantities p0 = d and pl+1 = m are
the input and output dimensions, respectively, l the depth of the networks, and w := min{p1, . . . , pl}
the minimal width of the networks. The functions f j : Rpj → Rpj

are called the activation

2

Published as a conference paper at ICLR 2025

functions. We assume that the activation functions are elementwise functions in the sense that
f j [b] = (f j [b1], . . . , f

j [bpj])⊤ for all b ∈ Rpj

, where f j : R → R is an arbitrary function.

Given the number of samples n in the dataset, empirical-risk minimizers are the networks whose
parameters are global minima of the objective function

Θ 7→ ℓ(gΘ) :=

n∑
i=1

ℓ(gΘ[xi], yi) (2)

over M for fixed data (x1, y1), . . . , (xn, yn). The loss function ℓ : Rm × Rm → R is assumed
convex in its first argument; this includes all standard loss functions, such as the least-squares loss
ℓ : (a, b) 7→ ∥a − b∥22, the logistic loss ℓ : (a, b) 7→ −(1 + b) log(1 + a) − (1 − b) log(1 − a), the
hinge loss ℓ : (a, b) 7→ max{0, 1− ab}, and so forth. We use DgΘ to represent the differential map
of gΘ: Rt → Rm, where t =

∑l
j=0 p

j+1 × pj is the number of parameters of the neural network.

DgΘ is represented as a m × t matrix, with (DgΘ)i,j := ∂(gΘ)i
∂Θj

. The neural tangent kernel (Jacot
et al., 2018), is defined as an m×m matrix K(Θ) = DgΘ(DgΘ)

T .

2.2 GALORE

Gradient low-rank projection (GaLore) (Zhao et al., 2024) demonstrate the following gradient update
rules: ΘT = Θ0 + η

∑T−1
t=0 ∆Gt, and ∆Gt = Ûtρt(Û

T
t Gt), where η is the learning rate, Gt is the

gradient matrices, Ût is the projection matrices, ρt is an entry-wise stateful gradient regularizer.
For example, for Adam, ρt(Gt) = Mt/

√
Vt + ϵ, where Mt = β1Mt−1 + (1 − β1)Gt, and Vt =

β2Vt−1 + (1 − β2)G
2
t . Therefore, ρt can be memory-intensive. Projecting gradient matrix to a

low-rank space can reduce the memory usage significantly. In GaLore, the projection matrices is
selected based on Singular Value Decomposition (SVD): Gt = UΣV T , Ût = U [:, : r] is the first r
columns of U .

3 RELATED WORK

Low-rank adaptation. Hu et al. (2022) proposed Low-Rank Adaptation (LoRA) to fine-tune pre-
trained models with reduced memory usage. Building on LoRA, numerous methods have been
introduced to enhance its performance (Liu et al., 2024; Yang et al., 2024; Lin et al., 2024a;b;
Hayou et al., 2024; Lialin et al., 2024; Meng et al., 2024). For example, LoRA Dropout(Lin et al.,
2024b) introduces random noise into the learnable low-rank matrices, increasing parameter sparsity
to reduce overfitting. LoRA+(Hayou et al., 2024) assigns different learning rates to the low-rank
matrices to improve training efficiency, while PiZZA (Meng et al., 2024) employs Singular Value
Decomposition (SVD) on weight matrices to extract principal components as low-rank matrices.

However, the optimization landscape of the LoRA-based framework restricts its application to fine-
tuning tasks only. ReLoRA(Lialin et al., 2024) extends LoRA for pre-training but requires a full-
rank warm-up phase to match the performance of standard pre-training. FLoRA, by establishing an
equivalence between LoRA and gradient compression, eliminates the need for a warm-up phase in
pre-training. GaLore(Zhao et al., 2024) projects gradient matrices into low-rank spaces, achieving
strong performance and high memory efficiency in both pre-training and fine-tuning tasks. Building
on GaLore, WeLore(Jaiswal et al., 2024) adaptively selects the rank of projection matrices, and
OwLore(Li et al., 2024) introduces layer-wise updates to further improve flexibility and efficiency.

Theory of neural networks. The expressivity of neural networks refers to their ability to approx-
imate a target function. This concept is foundational, starting with the universal approximation
theorems (Cybenko, 1989; Hornik et al., 1990), which demonstrate that neural networks, under cer-
tain conditions, can approximate any continuous function. Building on this, a series of subsequent
works further explored the limitations and potential of neural networks (Poon & Domingos, 2011;
Bengio & Delalleau, 2011; Lu et al., 2017; Li et al., 2023). From a different angle, studies on the loss
landscape (Du et al., 2019; Zou et al., 2018; Allen-Zhu et al., 2019; Liu et al., 2022) have provided
insights into how first-order optimization methods, such as gradient descent, are able to converge to
global minima under certain conditions.

3

Published as a conference paper at ICLR 2025

Theory of low-rank adaptation. Aghajanyan et al. (2021) found that an intrinsic low-rank structure
is crucial for fine-tuning language models. Zeng & Lee (2024) analyzed the expressive power of
LoRA, and Zhao et al. (2024) examined the low-rank structure of gradient matrices. While these
studies conclude that low-rank adaptation methods can achieve strong performance, the details of
the optimization process remain unclear. Jang et al. (2024) attempted to analyze the optimization
landscape of LoRA, but their analysis relies on the convexity assumption.

4 ANALYSIS

In this section, we analyze the optimization landscape of GaLore, LoRA and full-rank method. The
analysis is divided into two parts. The first part found the optimization landscapes of GaLore and
full-rank method are superior to that of LoRA. This part is based on PL∗ condition (Oymak &
Soltanolkotabi, 2020), a variant of Polyak-Łojasiewicz (PL) condition, which is a framework for
analyzing non-convexity systems, such as neural networks. PL∗ condition is important because
the loss function that satisfies PL∗ condition is guaranteed with exponential convergence rate un-
der gradient descent (GD) and stochastic gradient descent (SGD). Therefore, the larger the region
satisfied PL∗ condition, the better the optimization landscape is. Liu et al. (2022) found that over-
parameterized systems have high probability to satisfies PL∗ condition, which explains why large
models always demonstrate better performance (Brown et al., 2020). Intuitively, LoRA harms the
over-parameterization of the neural network, as it only optimizes much smaller number of parame-
ters than full-rank method. In contrast, GaLore retains the over-parameterization by optimizing all
parameters. We verify this intuition by calculating the region where the PL∗ condition is satisfied
for all three methods.

The second part finds GaLore has a better optimization landscape than full-rank method. This
analysis focuses on spurious local minima—fewer spurious local minima imply a better optimization
landscape, as the optimization process is less likely to get trapped in poor solutions. We find that
it is challenging for the full-rank method to avoid spurious local minima, whereas GaLore easily
achieves this. Due to space constraints, the proofs for this section are provided in Appendix A.

4.1 GRADIENT LOW-RANK PROJECTION KEEPS OVER-PARAMETERIZATION

To show the relationship between over-parameterization and good optimization landscape, we first
introduce the definition of PL∗ condition: A non-negative function L satisfies µ-PL∗ condition on
a set M ∈ Rt for µ > 0, if ∥∇L(Θ)∥2 ≥ µL(Θ), ∀Θ ∈ M. As we mentioned earlier, PL∗

condition ensures the existence of solutions and guarantees exponential convergence for GD and
SGD, implying a good optimization landscape. In this section, we analyze the regions where the
PL∗ condition is satisfied for each method. The following theorem reveals the relationship between
PL∗ condition and over-parameterization. The connection is established by the eigenvalues of the
neural target kernel K(Θ). Let λmin(K(Θ)) be the smallest eigenvalue of K(Θ), we have
Theorem 4.1 (Theorem 1 and Proposition 4 of (Liu et al., 2022)). The square loss function ℓ(gΘ) =
1
2∥gΘ(x)− y∥2 satisfies µ-PL∗ condition on M if and only if λmin(K(Θ)) ≥ µ > 0.

λmin(K(Θ)) > 0 implies K(Θ) is not singular. PL∗ condition holds across most of the parameter
space for over-parameterized systems, the intuition behind it is based on parameter counting (Liu
et al., 2022). Note that K(Θ) = DgΘ(DgΘ)

T , the singular set of Θ, such that K(Θ) is not full
rank will of co-dimension t − n + 1, where t is the number of parameters, n is the number of
samples. If t < n, i.e., the systems are under-parameterized, K(Θ) is always rank deficient and
therefore λmin(K(Θ)) = 0. Hence such systems never satisfy PL∗ condition. On the other side,
the larger the degree of the model over-parameterization t − n is, the smaller the singular set is
expected to be. This intuition explains why LoRA shows worse performance compared to full
rank finetuning and Galore: LoRA reduces the number of parameters of each layer, the degree of
over-parameterization is reduced and even the systems become under-parameterized. Therefore, the
PL∗ condition is difficult to be satisfied if LoRA is used. In contrast, although Galore projects the
gradient matrices to the low-rank spaces, the projected matrices will be projected back during the
parameters updating process, and thus the degree if over-parameterization of the original systems
are kept. The theoretical guarantee for full-rank training is established by Liu et al. (2022).
Theorem 4.2 (Theorem 4 of Liu et al. (2022)). Consider the neural network defined by Eq. (1),
where the initial parameter Θ0 is randomly chosen such that Θl

0 ∼ N (0, Ipj ,pj+1) for j ∈ [l + 1].

4

Published as a conference paper at ICLR 2025

Let λ0 := λmin(K(Θ0)) > 0 denote the minimum eigenvalue of the kernel matrix K(Θ0). For any

µ ∈ (0, λ0), if the width of the network satisfies w = Ω̃
(

mnR6l+2

(λ0−µ)2

)
, then the square loss satisfies

µ-PL∗ condition with high probability over the ball B(Θ0, R) for full-rank method.

According to this theorem, the radius of the region that satisfies the PL∗ condition depends on the
width of the network. The wider the network, the larger this region becomes, confirming the intuition
that over-parameterization leads to the PL∗ condition and thus a favorable optimization landscape.
Based on the derivation of Theorem 4.2, we extend the results to GaLore and LoRA, respectively.
Theorem 4.3. Under the condition of Theorem 4.2, let r be the rank of GaLore, if the number of
training samples n satisfies n ≤ r

∑l
j=1 p

j , then if the width of the network w = Ω̃
(

mnR6l+2

(λ0−µ)2

)
, the

square loss satisfies µ-PL∗ condition with high probability over the ball B(Θ0, R) for GaLore.

This theorem demonstrates that the GaLore method covers the same region as the full-rank method,
with the exception of an additional mild condition: the number of training samples n ≤ r

∑l
j=1 p

j .
This condition is easy to satisfy. For instance, in the case of a 1B model, if the rank is selected
as r = 512, the constraint on the number of training tokens becomes 512 billion. This constraint
exceeds the number of tokens required to train a 1B model. Then we present the result for LoRA.

Theorem 4.4. Under the condition of Theorem 4.2, let r be the rank of LoRA, if r = Ω̃
(

mnR12l+2

(λ0−µ)2

)
,

then the square loss satisfies µ-PL∗ condition with high probability over the ball B(Θ0, R) for LoRA.

The theoretical results support our intuition: the region satisfying PL∗ condition is significantly
smaller in LoRA compared to the Galore and full-rank methods. This is evident from the fact
that r ≪ w and the exponent of R increases from 6l + 2 to 12l + 2, resulting in a much smaller
radius R under a fixed r. This reduced region indicates that the space where a favorable optimization
landscape exists — characterized by the presence of solutions and rapid convergence rates — is more
constrained in LoRA. Consequently, LoRA exhibits poorer performance compared to the others.

4.2 GRADIENT LOW-RANK PROJECTION HAS NO SPURIOUS MINIMA

Spurious local minima are entities that optimization algorithms strive to avoid. Intuitively, a spurious
local minimum is a point in the parameter space where the loss in its neighbourhood is higher than
at the point itself, thereby preventing the optimization algorithm from escaping from this point.
Formally, we use the definition of spurious local minima in Lederer (2020).
Definition 4.5 (Spurious local minima). Let Θ ∈ M be a local minimum of the objective function
(2). If there is no continuous function h : [0, 1] → M that satisfies (i) h[0] = Θ and h[1] = Γ for a
global minimum Γ ∈ M of the objective function (2) and (ii) t 7→ ℓ(gh[t]) is nonincreasing, we call
the parameter Θ a spurious local minimum.

According to this definition, if there is no spurious local minima in M, then there exists at least
one non-increasing path belongs to M from every point in M to the global minima. For full-rank
method, the optimized parameter space M is exactly the original parameter space M. For the whole
parameter space, Lederer (2020) gives the result of full-rank method.
Theorem 4.6 (Theorem 1 of Lederer (2020)). For the network defined by Eq. (1), if w, the minimal
width of the network, no less than 2m(n+ 1)l, then the objective function (2) has no spurious local
minima with full-rank method.

This theorem demonstrates that neural network has no spurious local minima if it is wide enough.
However, the minimal width 2m(n + 1)l is large and cannot be satisfied in application, especially
for LMs, where n and l are much larger.

The result can be generalized to LoRA easily by considering the network of LoRA as

gΘ[x] := Θl
2I[Θ

l
1f

l[Θl−1
2 I[Θl−1

1 . . . f1[Θ0
2I[Θ

0
1x]]], (3)

where Θj
2 ∈ Rpj×r, Θj

1 ∈ Rr×pj−1

, r is the rank for LoRA, and I is the identity function.
Corollary 4.7 (No spurious local minima condition for LoRA). For the network defined by Eq. (3),
if r, the rank of LoRA, no less than 2m(n + 1)2l, then the objective function (2) has no spurious
local minima with LoRA.

5

Published as a conference paper at ICLR 2025

It can be seen that the condition for LoRA is even more difficult to satisfy. The facts that r ≪ w
and the exponent from l to 2l implies LoRA cannot guarantee no spurious local minima in the
optimization process.

For GaLore, while updates are performed within the low-rank parameter space M, the gradient
computations are carried out in the original full-rank space M. Consequently, whether a point is a
spurious local minima of GaLore is determined by the optimization landscape in M, rather than in
M. However, this does not imply that the optimization landscape of GaLore is identical to that of the
full-rank method. This difference arises because GaLore constrains the parameters to remain within
M after each projection. Thus, the optimization process is restricted to M, while the determination
of spurious local minima depends on the landscape in M. To formalize this concept, we introduce
the definition of projected spurious local minima.
Definition 4.8 (Projected spurious local minima). Let Θ ∈ M be a local minimum of the objective
function (2). If there is no continuous function h : [0, 1] → M that satisfies (i) h[0] = Θ and
h[1] = Γ for a global minimum Γ ∈ M of the objective function (2) and (ii) t 7→ ℓ(gh[t]) is
nonincreasing, we call the parameter Θ a projected spurious local minimum.

Based on the definition, we have the condition of no spurious local minima for GaLore.
Theorem 4.9 (No projected spurious local minima condition for GaLore). For the network defined
by Eq. (1), if w, minimal width of the network, no less than 2r, where r is the rank of GaLore, then
the objective function (2) has no projected spurious local minima with GaLore.

The condition is 2r instead of 2m(n+ 1)l indicates that GaLore is less vulnerable to spurious local
minima compared to the full-rank method. Spurious local minima are suboptimal solutions that can
trap the optimizer and prevent it from reaching a globally or near-globally optimal solution. By
reducing the likelihood of encountering such minima, GaLore benefits from a smoother and more
favorable optimization landscape, which allows the optimizer to explore more promising regions
of the parameter space. This explains why GaLore trains faster and, in some cases, surpasses the
full-rank method in performance. This theorem is further verified in Figure 2 of Section 6.1.

4.3 DISCUSSION

In the above, we establish that GaLore offers the most favorable optimization landscape, whereas
LoRA’s landscape is the least advantageous. However, this does not necessarily mean GaLore will
outperform the full-rank method in terms of final results. The superiority of one method depends
on whether expressiveness or the optimization landscape’s quality has a greater impact. Intuitively,
for smaller networks, where the optimization process is simpler but expressivity is limited, the full-
rank method may perform better. Conversely, for larger networks, where expressivity is sufficient
for good results and the optimization process is more complex, GaLore tends to excel. Accord-
ing to Theorem 4.9, the absence of spurious minima is guaranteed only when the rank r is small.
Initially, increasing r improves GaLore’s expressivity, allowing it to model more complex func-
tions effectively. However, if r becomes too large, the optimization landscape may degrade due to
the emergence of spurious local minima or poorly conditioned regions, even though expressivity
continues to increase. When expressivity is not the primary performance bottleneck, we expect Ga-
Lore’s performance to improve with increasing r, but decline as r approaches the network’s width,
where the landscape quality diminishes. These conclusions are tested and validated in Section 6.1,
with empirical results confirming this theoretical behavior.

5 GARARE: GRADIENT RANDOM PROJECTION

According to the analysis in Section 4, GaLore has good optimization landscape, characterized
by the same range of region that satisfy the PL∗ condition condition and a higher likelihood of
avoiding spurious local minima compared to full-rank methods. The key point is GaLore project the
gradient matrix to low-rank spaces with projection matrices. In GaLore the matrices are obtained
by performing SVD to the gradient matrix, which is both time-consuming and memory-consuming.
However, to achieve the low-rank projection, we only need matrices with the same size as those
of GaLore. Inspired by this intuition, we propose our new algorithm, which uses random matrices
instead of the matrices derived by SVD.

6

Published as a conference paper at ICLR 2025

Table 1: Comparison of GaRare, GaLore and LoRA. Assume Θ ∈ Rp×q , rank r.

GaRare GaLore LoRA

Weights pq pq pq + pr + qr
Optim States 2qr pr + 2qr 2pr + 2qr

Multi-Subspace ✓ ✓ ×
Pre-Training ✓ ✓ ×
Fine-Tuning ✓ ✓ ✓

5.1 ALGORITHM AND THEORETICAL GUARANTEE

Note that it is infeasible to use arbitrary matrices that have the same size as GaLore, the vectors
contained within these matrices must be linearly independent; otherwise, the projected spaces will
have an effective rank lower than r. Fortunately, the following lemma shows the matrix generated
by Gaussian distribution satisfies this almost surely.

Lemma 5.1. Given a matrix R ∈ Rp×r (r < m), the elements of R are generated by Gaussian
distribution N (0, σ2), then we have P (rank(R) = r) = 1.

The proof is deferred to Appendix A.3. Based on this result, we analyze whether the random matrix
can maintain the property identified by Theorem 4.3 and 4.9.

Corollary 5.2. Under the condition of Theorem 4.2, if the random matrix R ∈ Rp×r is generated
from N (0, 1/p), and the number of training samples n ≤ r

∑l
j=1 p

j , then if the network width

w = Ω̃
(

mnR6l+2

(λ0−µ)2

)
, the square loss satisfies µ-PL∗ condition with high probability over the ball

B(Θ0, R).

Corollary 5.3. For the network defined by Eq. (1), if w, minimal width of the network, no less than
2r, where r is the smaller dimension of the projection matrix, then the objective function (2) has no
projected spurious local minima.

The proof of the two corollaries is deferred to Appendix A.3. These corollaries ensure that GaLore’s
properties are preserved as long as the projection matrix is generated using N (0, 1/p). Based on
this, we propose Gradient Random Projection (GaRare), which replaces the projection matrices in
GaLore with certain random matrices. GaRare retains the same hyperparameters as GaLore, includ-
ing the scale factor α and subspace update frequency T . The scale factor α controls the strength of
the low-rank update, similar to the α/r scale factor used in the low-rank adaptor of Hu et al. (2022).
The subspace update frequency T specifies how often the random matrices are refreshed, with the
random seed changing every T steps. The pseudo-code for GaRare is provided in Appendix C.

The process of GaRare seems similar to that of FLoRA (Hao et al., 2024), as both use a random
matrix to project gradients. However, FLoRA is derived from the theory of LoRA and is designed to
mimic its learning dynamics. In FLoRA, the random matrix is generated using N (0, 1/pr), which
leads to a violation of Corollary 5.2. Consequently, FLoRA does not share the same optimization
landscape as GaLore and GaRare. This distinction is further verified in our experimental results.

5.2 MEMORY USAGE OF GARARE

We briefly analyze the memory usage of LoRA, GaLore, and GaRare here, with a more detailed
discussion in Appendix G. LoRA requires storing the low-rank matrices B ∈ Rp×r and A ∈ Rr×q ,
along with the full-rank weight matrix Θ ∈ Rp×q , resulting in pq + pr + qr weights, plus an
additional 2pr+2qr for optimizer states. GaLore reduces storage by eliminating B and A, retaining
pq weights but adding pr + 2qr for optimizer states and the projection matrix. GaRare uses the
same structure as GaLore but further minimizes memory usage by dynamically generating a random
matrix at each iteration, requiring only 2qr for optimizer states and avoiding storing the projection
matrix. A summary of memory usage is provided in Table 1. Although FLoRA matches GaRare in
memory usage, its inferior optimization performance makes GaRare the focus of this analysis.

7

Published as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5
Timestep 1e5

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

A
cc

ur
ac

y

Hidden dim=256

GaLore GaRare LoRA FLoRA Full-rank

0.0 0.5 1.0 1.5
Timestep 1e5

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

A
cc

ur
ac

y

Hidden dim=512

0.0 0.5 1.0 1.5
Timestep 1e5

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

A
cc

ur
ac

y

Hidden dim=1024

Figure 1: The performance of GaLore, GaRare, LoRA and Full-rank method on CIFAR-10 dataset.
The dimension of hidden layers is set to be 256, 512 and 1024, while the rank for the low-rank
adaptation methods are set as 128, 256 and 512, respectively.

6 EXPERIMENTS

In this section, we first verify our proposed theorems in a simple dataset. Then we evaluation GaRare
on both pre-training and fine-tuning of LLMs. All experiments run on NVIDIA A100 GPUs.

6.1 VERIFICATION OF THE THEORY

In this section, we describe the experiments conducted to validate our theoretical claims related to
feedforward neural networks, specifically Multi-Layer Perceptrons (MLPs). We use the CIFAR-
10 dataset (Torralba et al., 2008) for our experiments. All experiments are training in 30 epochs.
The learning rate is selected from a set of {1e−2, 1e−3, . . . , 1e−6}, and the best learning rate is
chosen based on the final accuracy. A detailed description of the network architecture is provided in
Appendix B.1. The experiment results are averaged over three random seeds.

As discussed in Section 4.3, Theorems 4.3 and 4.9 indicate a trade-off between the expressivity of
a network and its optimization landscape in GaLore. To illustrate this, we adjust the hidden layer
dimensions in the MLPs to three settings: 256, 512, and 1024. When the dimension is smaller,
expressivity limits performance; conversely, larger dimensions improve optimization landscapes,
leading to enhanced performance. Additionally, GaRare is expected to perform similarly to GaLore,
as indicated by Corollaries 5.2 and 5.3. In our experiments, we set the rank for low-rank adaptation
methods to half of the hidden layer dimensions, specifically 128, 256, and 512. The primary metric
for evaluation is the prediction accuracy on the test dataset.

0.0 0.5 1.0 1.5
Timestep 1e5

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

A
cc

ur
ac

y

GaLore

rank=8 rank=256 rank=512 rank=800

0.0 0.5 1.0 1.5
Timestep 1e5

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

A
cc

ur
ac

y

GaRare

Figure 2: The performance of GaLore and GaRare on CIFAR-10
dataset with different ranks.

The experimental results, illus-
trated in Figure 1, show that
LoRA exhibits worse perfor-
mance than GaLore and GaRare
across the three network config-
urations, underscoring its sub-
optimal optimization landscape.
FLoRA shows similar perfor-
mance as LoRA, which in line
with the conclusion of Hao et al.
(2024). In contrast, the perfor-
mance of the other three meth-
ods is better especially when
the dimensionality of the hid-
den layers is large. Specifi-
cally, with a hidden dimension
of 256, the full-rank method out-
performs GaLore and GaRare due to the limited expressivity being the performance bottleneck. At
a hidden dimension of 512, all three methods demonstrate similar performance levels. However,
when the hidden dimension increases to 1024, both GaLore and GaRare outperform the full-rank

8

Published as a conference paper at ICLR 2025

Table 3: Comparison with low-rank adaptation methods on pre-training various sizes of LLaMA
models on C4 dataset. Validation perplexity is reported, along with a memory estimate of the total
of parameters and optimizer states based on BF16 format.

60M 130M 350M 1B

Full-Rank 34.06 (0.34G) 25.08 (0.79G) 18.80 (2.16G) 15.56 (7.85G)

LoRA 34.99 (0.28G) 33.92 (0.63G) 25.58 (1.38G) 19.21 (4.75G)
FLoRA 36.97 (0.26G) 30.22 (0.53G) 22.67 (1.19G) 20.22 (3.98G)
GaLore 34.88 (0.26G) 25.36 (0.56G) 18.95 (1.25G) 15.64 (4.23G)
GaRare 34.45 (0.26G) 25.34 (0.53G) 19.35 (1.19G) 15.88 (3.98G)
r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

method, suggesting that sufficient expressivity allows the optimization landscape to dominate the
final performance outcomes.

Furthermore, we explore the impact of rank selection on GaLore and GaRare by setting the hidden
dimension at 1024 and testing four different ranks: 8, 256, 512, and 800. According to Theorem 4.9,
the absence of spurious local minima is guaranteed when the rank does not exceed 512. Therefore,
we hypothesize that performance should increase as the rank increases up to 512, due to improved
expressivity without compromising the optimization landscape. Beyond this threshold, however, a
trade-off between expressivity and optimization landscape might impair performance. The results,
depicted in Figure 2, support this hypothesis: performance improves as rank increases from 8 to
512, but begins to decline when the rank reaches 800.

It is also noteworthy that GaLore and GaRare exhibit similar performance in most experimental con-
ditions, with exceptions when the hidden dimension is 256 with a rank of 128, and when the hidden
dimension is 1024 with a rank of 8. These deviations can be attributed to Cor. 5.2 and 5.3, which ap-
ply when the network is sufficiently large. The discrepancies in these specific conditions suggest that
the network scale is too small to align with these theoretical assurances. These experiments on the
CIFAR-10 dataset validate our theoretical deductions and confirm the intricate dynamics between
network configuration and performance outcomes.

6.2 PERFORMANCE ON PRE-TRAINING TASKS

Table 2: Pre-training LLaMA 7B on
C4 dataset for 30K steps. Validation
perplexity and memory estimate are re-
ported.

Mem 30K
8-bit GaRare 16G 19.94
8-bit GaLore 18G 19.93
8-bit Adam 26G 20.05
Tokens (B) 3.9

To evaluate the performance of GaRare, we apply it to
train LLaMA-based large language models using the C4
dataset. The C4 dataset is a colossal, cleaned version
of the Common Crawl web corpus, designed primarily
for pre-training language models and word representa-
tions (Raffel et al., 2019). We follow the experimen-
tal setup outlined by Zhao et al. (2024), which utilizes
a LLaMA-based architecture incorporating RMSNorm
and SwiGLU activations (Shazeer, 2020; Touvron et al.,
2023). For each model size, we use the same set of hyper-
parameters across methods, except for the learning rate.
Both GaRare and FLoRA have their learning rates tuned
under the same computational budget, and we report the
best performance achieved. For the other methods, we present the results reported in Zhao et al.
(2024). All experiments are conducted in BF16 format to optimize memory usage. Detailed de-
scriptions of our task setups and hyperparameters are provided in Appendix B.2.

We report the final validation perplexity of the methods in Table 3. GaRare, GaLore, and the full-
rank method exhibit comparable performance, outperforming other low-rank adaptation methods.
While GaLore reduces memory usage, GaRare achieves even greater memory efficiency. Although
FLoRA matches GaRare in memory usage, its performance is significantly worse. Furthermore, the
comparable performance of GaLore and GaRare in the LLaMA-based structure suggests that our
theory has the ability to extend to other network architectures.

9

Published as a conference paper at ICLR 2025

To demonstrate the scalability of GaRare, we train the 7B model using this method. Similar to Ga-
Lore, GaRare can be applied to various learning algorithms, particularly memory-efficient optimiz-
ers, to further reduce the memory footprint. In this experiment, we incorporate the 8-bit Adam tech-
nique (Loshchilov & Hutter, 2019) and compare 8-bit GaRare with 8-bit GaLore and 8-bit Adam.
Due to computational resource constraints, the model is trained for 30K steps using 3.9B tokens.
The results are presented in Table 2. GaRare achieves performance comparable to GaLore while
providing greater memory efficiency, reducing memory usage by up to 10%, and eliminating the
need for SVD computation. Notably, GaRare and GaLore outperform the full-rank method within
the 30K steps, highlighting the superiority of their optimization landscapes.

6.3 PERFORMANCE ON FINE-TUNING TASKS

We evaluate GaRare for fine-tuning on the GLUE benchmark (Wang et al., 2019), which comprises
a variety of tasks such as sentiment analysis, question answering, and textual entailment. In this
experiment, we fine-tune pre-trained RoBERTa models on GLUE tasks using GaRare and compare
its performance with other methods. For LoRA, we use the hyperparameters from Hu et al. (2022),
for GaLore, we use the settings from Zhao et al. (2024), and for GaRare and FLoRA, we tune the
learning rate and batch size. Detailed hyperparameters can be found in Appendix B.3. As shown in
Table 4, GaRare delivers performance comparable to GaLore while outperforming other low-rank
adaptation methods in both RoBERTa-Base and RoBERTa-Large models. GaRare has the smallest
memory footprint among all methods. Although FLoRA has the same memory usage as GaRare,
it exhibits poorer performance. This demonstrates that GaRare is an effective full-stack memory-
efficient training strategy for both LLM pre-training and fine-tuning.

Table 4: Performance on GLUE with RoBERTa-Base and RoBERTa-Large model. We report the
average score of all tasks.

RoBERTa-Base RoBERTa-Large
Full-Rank GaRare GaLore FLoRA LoRA Full-Rank GaRare GaLore FLoRA LoRA

Memory 748M 252M 253M 252M 257M 2132M 718M 720M 718M 732M

CoLA 62.2 61.1 60.4 59.0 61.4 68.0 67.9 68.3 65.5 68.2
STS-B 90.9 90.3 90.7 89.9 90.6 91.5 92.3 92.5 92.5 92.6
MRPC 91.3 91.5 92.3 88.5 91.1 90.9 91.7 91.7 89.3 90.9
RTE 79.4 79.3 79.4 76.5 78.7 86.6 87.4 87.0 83.0 87.4
SST2 94.6 94.4 94.0 93.8 92.9 96.4 96.2 96.1 96.0 96.2
MNLI 87.2 87.2 87.0 86.6 86.8 90.2 91.3 90.8 90.4 90.6
QNLI 92.3 92.3 92.2 91.9 92.2 94.7 94.6 95.7 94.0 94.9
QQP 92.3 90.9 91.1 90.9 91.3 92.2 91.8 91.9 91.5 91.5

Avg 86.3 85.9 85.9 84.6 85.6 88.8 89.2 89.3 87.8 89.0

7 CONCLUSION

This work presents a comprehensive analysis of the optimization landscapes of prevalent fine-tuning
methods, including the full-rank approach, LoRA, and GaLore. Our theoretical findings reveal that
GaLore offers a more favorable optimization landscape compared to LoRA and the full-rank method,
as it is less prone to spurious local minima and operates within a broader region that satisfies the
PL∗ condition. This explains GaLore’s faster convergence and superior performance relative to the
other methods. In contrast, LoRA, while being memory-efficient, struggles with a more challenging
optimization landscape, which accounts for its slower convergence. Based on these insights, we in-
troduce GaRare, a memory-efficient alternative to GaLore that retains similar optimization benefits.
Experimental results confirm GaRare’s effectiveness in large language model tasks. Additionally,
our theoretical findings highlight the power of the gradient projection framework, underscoring its
potential to drive future advancements in efficient fine-tuning algorithms.

Limitations: Our theoretical analysis is confined to MLP architectures, which limits the applica-
bility of our findings and may also impact the performance of the derived algorithms. We consider
extending this analysis to other architectures, such as Transformers, as part of our future work. New
theoretical insights could lead to the development of novel algorithms, potentially resulting in further
performance enhancements and reduced memory usage.

10

Published as a conference paper at ICLR 2025

8 REPRODUCIBILITY STATEMENT

The proof of the theoretical results is provided in Appendix A. The assumptions and conditions for
the theorems are stated within the theorems themselves, and limitations are discussed in Sections 4.3
and 7.

The pseudo-code for the algorithm is available in Appendix C. The model structure and hyperpa-
rameters are detailed in Appendix B. The source code is included in the supplementary material.

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing, (ACL/IJCNLP’21), pp. 7319–7328, Virtual, Event, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Proceedings of the 36th International Conference on Machine Learning
(ICML’19), volume 97, pp. 242–252, Long Beach, CA, 2019.

Yoshua Bengio and Olivier Delalleau. On the expressive power of deep architectures. In Proceedings
of the 22nd International Conference on Algorithmic Learning Theory (ALT’11), volume 6925,
pp. 18–36, Espoo, Finland, 2011.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems 33 (NeurIPS’20), Virtual event, 2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4):303–314, 1989.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. In Proceedings of the 36th International Conference on
Machine Learning (ICML’19), volume 97, pp. 1675–1685, Long Beach, CA, 2019.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient com-
pressors. In Proceedings of the 41st International Conference on Machine Learning (ICML’24),
Vienna, Austria, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
In Proceedings of the 41st International Conference on Machine Learning (ICML’24), Vienna,
Austria, 2024.

Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3(5):551–
560, 1990.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proceedings of the
10th International Conference on Learning Representations (ICLR’22), Virtual Event, 2022.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems 31
(NeurIPS’18), pp. 8580–8589, Montréal, Canada, 2018.

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. From galore to welore: How low-rank weights non-uniformly emerge from low-rank
gradients. arxiv preprint arXiv:2407.11239, 2024.

11

Published as a conference paper at ICLR 2025

Uijeong Jang, Jason D. Lee, and Ernest K. Ryu. Lora training in the NTK regime has no spuri-
ous local minima. In Proceedings of the 41st International Conference on Machine Learning
(ICML’24), Vienna, Austria, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Advances in Neural Information Processing Systems 35
(NeurIPS’22), New Orleans, LA, 2022.

Johannes Lederer. No spurious local minima: on the optimization landscapes of wide and deep
neural networks. arxiv preprint arXiv:2010.00885, 2020.

Li’ang Li, Yifei Duan, Guanghua Ji, and Yongqiang Cai. Minimum width of leaky-relu neural net-
works for uniform universal approximation. In Proceedings of the 40th International Conference
on Machine Learning (ICML’23), volume 202, pp. 19460–19470, Honolulu, Hawaii, 2023.

Pengxiang Li, Lu Yin, Xiaowei Gao, and Shiwei Liu. Owlore: Outlier-weighed layerwise sampled
low-rank projection for memory-efficient LLM fine-tuning. arXiv preprint arXiv:2405.18380,
2024.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In Proceedings of the 12th International Conference on
Learning Representations (ICLR’24), Vienna, Austria, 2024.

Cheng Lin, Lujun Li, Dezhi Li, Jie Zou, Wei Xue, and Yike Guo. Nora: Nested low-rank adaptation
for efficient fine-tuning large models. arxiv preprint arXiv:2408.10280, 2024a.

Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang, Yasha Wang, and Hong Mei. Lora dropout
as a sparsity regularizer for overfitting control. arxiv preprint arXiv:2404.09610, 2024b.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. In Advances in Neural Information Processing Systems
33 (NeurIPS’20), Virtual Event, 2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of the
7th International Conference on Learning Representations (ICLR’19), New Orleans, CA, 2019.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In Advances in Neural Information Processing Systems
30 (NeurIPS’17), pp. 6231–6239, Long Beach, CA, 2017.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. In Advances in Neural Information Processing
Systems 38 (NeurIPS’24), Vancouver, Canada, 2024.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global conver-
gence guarantees for training shallow neural networks. IEEE J. Sel. Areas Inf. Theory, 1(1):
84–105, 2020.

Hoifung Poon and Pedro M. Domingos. Sum-product networks: A new deep architecture. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI’11), pp. 337–
346, Barcelona, Spain, 2011.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arxiv preprint arXiv:1910.10683, 2019.

12

Published as a conference paper at ICLR 2025

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In Advances in Neural Information Processing Sys-
tems 35 (NeurIPS’22), 2022.

Noam Shazeer. GLU variants improve transformer. arxiv preprint arXiv:2002.05202, 2020.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 30(11):1958–1970, 2008.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arxiv preprint arXiv:2307.09288, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 7th International Conference on Learning Representations (ICLR’19), New
Orleans, LA, 2019.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning. arxiv preprint arXiv:2401.04151, 2024.

Adam X. Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. In Proceedings of the 12th International Conference on Learning
Representations (ICLR’24), Vienna, Austria, 2024.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations (ICLR’24), Vienna, Austria, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arxiv preprint arXiv:1811.08888, 2018.

A DETAILS OF THE PROOFS

A.1 PROOFS OF SECTION 4.1

A.1.1 DERIVATION OF THEOREM 4.1

Theorem 4.1 comes from two results from Liu et al. (2022).
Theorem A.1 (Theorem 1 of Liu et al. (2022)). If λmin(K(Θ)) ≥ µ > 0, ∀Θ ∈ M, then the square
loss function ℓ(gΘ) =

1
2∥gΘ(x)− y∥2 satisfies µ-PL∗ condition on M.

13

Published as a conference paper at ICLR 2025

Proof.

1

2
∥∇ℓ(gΘ)∥2 =

1

2
(gΘ(x)− y)TK(Θ)(gΘ(x)− y)

≥ 1

2
λmin(K(Θ))∥gΘ(x)− y∥2 = λmin(K(Θ))ℓ(gΘ) ≥ µℓ(gΘ)

This theorem shows λmin(K(Θ)) ≥ µ > 0 is a sufficient condition of PL∗ condition. It is also a
necessary condition in a certain sense:
Theorem A.2 (Proposition 4 of (Liu et al., 2022)). If λmin(K(Θ0)) = 0, then the system gΘ(x) = y
cannot be PL∗ condition for all y on any set M that contains Θ0.

Proof. Since λmin(K(Θ0)) = 0, we can choose rvy so that K(Θ0)(gΘ0
(x)−y) = 0 and gΘ0

(x)−
y ̸= 0. Therefore,

1

2
∥∇ℓ(gΘ0)∥2 =

1

2
(gΘ(x)− y)TK(Θ)(gΘ(x)− y) = 0.

This theorem implies it is also a necessary condition.

A.1.2 PROOF OF THEOREM 4.3

We first introduce one definition and two useful lemmas.
Definition A.3 (Uniform conditioning). We say that gΘ is µ-uniformly conditioned (µ > 0) on
M ⊂ Rt if the smallest eigenvalue of its targent kernel K(Θ) satisfies

λmin(K(Θ)) ≥ µ,∀Θ ∈ M.

According to Theorem A.1, if K(Θ) is µ-uniformly conditioned, it is µ-PL∗ condition. Let Hg be
the Hessian matrix of function g, i.e., (Hg)ij =

∂2gi
∂Θi∂Θj

.

Lemma A.4 (Theorem 2 of Liu et al. (2022)). Given Θ0, suppose the targent kernel matrix
K(Θ0) is strictly positive definite, i.e., λ0 := λmin(K(Θ0)) > 0. If the Hessian spectral norm
∥Hg∥ ≤ λ0−µ

2Lg
√
nR

holds within the ball B(Θ0, R) for some R > 0 and µ > 0, where Lg is the Lips-
chitz constant of g, then the tangent kernel K(Θ) is µ-uniformly conditioned on the ball B(Θ0, R).
Hence, the square loss satisfies the µ-PL∗ condition in B(Θ0, R).
Lemma A.5 (Theorem 3.2 of Liu et al. (2020)). Consider a neural network gΘ of the form Eq. (1).
Let w be the minimum of the hidden layer widths, i.e., w = minj∈l p

j . Given any fixed R > 0, and
any Θ ∈ B(Θ0, R), with high probability over the initialization, the Hessian spectral norm satisfies
the following:

∥Hg(Θ)∥ = Õ(R3l/
√
w).

Lemma A.6 (Singular value of product of matrices). Suppose two matrices P and Q satisfies P ∈
Rm×n, Q ∈ Rn×s, let λi(·) and λmin(·) be the i-th and minimal singular value of one matrix,
respectively, then

λi(PQ) ≥ λmin(P)λi(Q).

Proof.

λi(PQ) = max
S:dim(S)=i

min
x∈S,
∥x∥=1

∥PQx∥

≥ λmin(P) · max
S:dim(S)=i

min
x∈S,
∥x∥=1

∥Qx∥

= λmin(P)λi(Q).

14

Published as a conference paper at ICLR 2025

Then we start our proof. Before projection, GaLore has the same tangent kernel K(Θ) and Hessian
matrix Hg as full-rank method. According to Lemma A.5, under the given condition, ∥Hg(Θ)∥ =

Õ(R3l/
√
w). Directly plugging this into the condition of Lemma A.4, let ϵ = λ0−µ, we get K(Θ)

is µ-uniformly conditioned on the ball B(Θ0, R).

During the projection process, GaLore first project the gradient matrix to a low-rank space, and
then projects it back to full-rank space. Therefore, if K̂(Θ) is still µ-uniformly conditioned on the
ball B(Θ0, R), where K̂(Θ) is the tangent kernel after the projection process, the conclusion of
Theorem 4.2 holds for GaLore based on the fact K(Θ) is µ-uniformly conditioned. In the follows,
we analyze the singular values of K̂(Θ). The analysis is divided into two steps, the first step is to
only consider one-layer neural network, and the second step is to generalize the result to multi-layer
neural networks.

Step 1: For one-layer neural network, suppose the gradient matrix for the i-th sample Gi ∈ Rp×q ,
where p < q. GaLore performs SVD to G0.

G0 = UΣV T ,

where U ∈ Rp×p and V ∈ Rq×q are orthogonal matrices, Σ ∈ Rp×q is a diagonal matrix. For
rank r, the projection matrix is selected as Û = U [: r] ∈ Rr×p, i.e., the first three rows of original
U . Then G is projected by Û and projected back by ÛT . After the projection process, the gradient
matrix Gi becomes

Ĝi = ÛT ÛGi.

According to the definition of K(Θ), K(Θ) = DgΘ(DgΘ)
T , and

DgΘ =


vec(G0)
vec(G1)

...
vec(Gm−1)

 ,

where vec(Gi) is the row vector transformed from matrix Gi. Thus, vec(Gi) = Rpq and DgΘ =

Rm×pq . After the projection process, D̂gΘ becomes

D̂gΘ = DgΘ =


vec(Ĝ0)

vec(Ĝ1)
...

vec(Ĝm−1)

 .

Let Iq be the q × q identity matrix and ⊗ be the Kronecker product. Then we have

D̂gΘ = DgΘ

(
Iq ⊗ Û

)T
.

According to the definition of Kronecker product, Iq ⊗ Û results in a matrix consisting of q copies
of the matrix Û arranged along the diagonal, with all other positions filled with zeros. Therefore,
Iq ⊗ Û ∈ Rrq×pq .

Note that Û is the first r rows of orthogonal matrix U , λi(Û) = 1 for i ≤ r. Therefore, λi(Iq⊗Û) =
1 for i ≤ rq. According to Lemma A.6,

λmin(D̂gΘ) = λn(D̂gΘ)

= λn(DgΘ

(
Iq ⊗ Û

)T
)

≥ λmin(DgΘ)λn

((
Iq ⊗ Û

)T
)

)
≥ µ.

(4)

15

Published as a conference paper at ICLR 2025

The last inequality comes from λmin(DgΘ) = λmin(K(Θ)) ≥ µ and the assumption n ≤ rq. Thus,
K̂(Θ) is also µ-uniformly conditioned and then conclude the proof.

Step 2: For multi-layer neural network, the gradient matrix is not only one Gi but a series of
matrices G0

i , G
1
i , . . . , G

l
i, where l is the number of layers. Let Ûj be the projection matrix for Gj

i ,
in this situation,

D̂gΘ = DgΘ


(Iq ⊗ Û0)

T 0 · · · 0

0 (Iq ⊗ Û1)
T · · · 0

...
...

. . .
...

0 0 · · · (Iq ⊗ Ûl)
T

 .

For such a block diagonal matrix, the blocks are independent of each other, allowing for analysis of
each block individually. According to the conclusion of Step 1, λn(D̂gΘ) ≥ µ if n ≤ r(pl + pl−1 +
· · ·+ p1).

A.1.3 PROOF OF THEOREM 4.4

When applied LoRA, the network defined by Eq. (1) becomes

gΘ[x] := Θl
2I[Θ

l
1f

l[Θl−1
2 I[Θl−1

1 . . . f1[Θ0
2I[Θ

0
1x]]], (5)

where Θj
2 ∈ Rpj×r, Θj

1 ∈ Rr×pj−1

and I is identity function. Apply Lemma A.5 to Eq. (5), we
have

∥Hg(Θ)∥ = Õ(R6l/
√
r).

Combine this result with Lemma A.4, we get the final result.

A.2 PROOF OF THEOREM 4.9

We follow the analysis framework of Lederer (2020). In this section, we introduce essential concepts
related to path relations and block parameters.
Definition A.7 (Path relations). Consider two parameters Θ, Γ ∈ M. If there is a continuous
function hΘ,Γ : [0, 1] → M that satisfies hΘ,Γ[0] = Θ, hΘ,Γ[1] = Γ, and t 7→ ℓ(ghΘ,Γ[t]) is
constant, we say that Θ and Γ are path constant and write Θ ↔ Γ.

If there is a continuous function hΘ,Γ : [0, 1] → M that satisfies hΘ,Γ[0] = Θ, hΘ,Γ[1] = Γ, and
t 7→ ℓ[ghΘ,Γ[t]] is convex, we say that Θ and Γ are path convex and write Θ ↬ Γ.

If there are parameters Θ′,Γ′ ∈ M such that (i) Θ ↔ Θ′ and Γ ↔ Γ′ and (ii) Θ′ ↬ Γ′, we say that
Θ and Γ are path equivalent and write Θ ↭ Γ.
Definition A.8 (Block parameters). Consider a number s ∈ {0, 1, . . .} and a parameter Θ ∈ M. If

1. (Θj)i = 0 for all j > s;

2. (Θv)ji = 0 for all v ∈ {1, . . . , l − 1} and i > s and for all v ∈ {1, . . . , l − 1} and j > s;

3. (Θl)ij = 0 for all j > s,

we call Θ an s-upper-block parameter of depth l.

Similarly, if

1. (Θj)i = 0 for all j ≤ p1 − s;

2. (Θv)ji = 0 for all v ∈ {1, . . . , l − 1} and i ≤ pv+1 − s and for all v ∈ {1, . . . , l − 1} and
j ≤ pv − s;

3. (Θl)ij = 0 for all j ≤ pl − s,

we call Θ an s-lower-block parameter of depth l. We denote the sets of the s-upper-block and s-
lower-block parameters of depth l by Us,l and Ls,l, respectively. According to the definition of block
parameters, Uµ,l ∈ Mµ. Then we propose the following proposition.

16

Published as a conference paper at ICLR 2025

Proposition A.9. For every Θ ∈ Mµ, there are Θ,Θ ∈ M with Θ̄ ∈ Uµ,l and Θ ∈ Lµ,l such that
Θ ↔ Θ and Θ ↔ Θ.

The proposition implies every parameter Θ ∈ Mµ, it is path constant to a µ-upper-block parameter
and a µ-lower-block parameter. To prove this proposition, we introduce two lemmas. The first
lemma is proposed by Lederer (2020), while the second lemma will be proven here.

Lemma A.10 (Lemma 3 of Lederer (2020)). Consider permutations pj : {1, . . . , pj} →
{1, . . . , pj} for j ∈ {0, . . . , l + 1}. Assume that p0 and pl+1 are the identity functions: p0[j] =
pl+1[j] = j for all j. The parameter Θ ∈ M is a spurious local minimum of the objective function
(2) if and only if Γ ∈ M defined through (Γj)uv := (Θj)pj [v] for all j ∈ {0, . . . , l}, u ∈ {1, . . . , pj}
and v ∈ {1, . . . , pj} is a spurious local minimum of the objective function (2).

Lemma A.11. Consider three matrices A ∈ Ru×v , B ∈ Rv×r, and C ∈ Rr×o, and a function
h : R → R. With some abuse of notation, define h : Rv×r → Rv×r through (h[M])ij := h[Mij]
for all M ∈ Rv×r. Assume the rank of BC is no larger than µ, then, there are matrices A ∈ Ru×v

and B ∈ Rv×o and a permutation p : {1, . . . , v} → {1, . . . , v} such that

• A[hB[C]] = Ap[h[B
p[C]]];

• Aij = 0 for j > µ; Bji = 0 for j > µ and Bji = (Bp)ji otherwise.

Similarly, there are matrices A ∈ Ru×v and B ∈ Rv×o and a permutation p : {1, . . . , v} →
{1, . . . , v} such that

• A[hB[C]] = Ap[h[B
p[C]]];

• Aij = 0 for j ≤ v − µ; Bji = 0 for j ≤ v − µ and Bji = (Bp)ji otherwise.

Proof. Step 1: Fix a k ∈ {1, . . . , u}. We first show that there is a matrix Ȧ ∈ Ru×v such that

1. Ȧh[BC] = Ah[BC];

2. #{j ∈ {1, . . . , v} : Ȧkj ̸= 0} ≤ µ;

3. Ȧaj = Aaj for all a ̸= k.

For every k ∈ {1, . . . , u} and i ∈ {1, . . . , r}, elementary matrix algebra yields that

(Ah[BC])ki =

v∑
j=1

Akj(h[BC])ji.

Denoting the row vectors of a matrix M ∈ Ra×b by M1•, . . . ,Ma• ∈ Rb, we then get

(Ah[BC])k• =

v∑
j=1

Akj(h[BC])j•.

That is, (Ah[BC])k• lies in the space spanned by {(h[BC])j•}vj=1. Because the rank of BC is no
more than m, there is at most µ (h[BC])j• are linearly independent. Suppose the linearly indepen-
dent vectors are {(h[BC])js•}

µ
s=1, (Ah[BC])k• can be rewritten as:

(Ah[BC])k• =

µ∑
s=1

tjs(h[BC])js•.

Define

Ȧaj :=


tjs for a = k, j = js;

0 for a = k, j ̸= js;

Aaj otherwise.

17

Published as a conference paper at ICLR 2025

Then Ȧaj follows the above three properties.

Step 2: We then show that there is a matrix Ã ∈ Ru×v such that

1. Ãh[BC] = Ah[BC];

2. #{j ∈ {1, . . . , v} : Ãkj ̸= 0,∀k ∈ {1, . . . , u}} ≤ µ.

Since Step 1 changes only the kth row of A, we can apply it to one row after another.

Step 3: By Property 3 of the previous step, the matrix Ã has at most µ nonzero columns. Verify
that replacing A by Ap and B by Bp for a suitable permutation p leads to Ã whose entries outside
the first µ columns are equal to zero. We denote this version of Ã by A. Note that

(h[BpC])ji = h ([BpC]ji) = h

([
o∑

b=1

(Bp)jbCbi

])

= h

([
o∑

b=1

(CT)ib(B
p)jb

])
= h

(
[(CT (Bp))j•]i

)
= (h[CT (Bp)])ji,

Combining this result with the results of Step 2 (with A and B replaced by Ap and Bp) yields for
all a ∈ {1, . . . , u} and i ∈ {1, . . . , r} that

(Aph[B
pC])ai =

v∑
j=1

(Ap)aj(h[B
pC])ji =

v∑
j=1

(Ap)aj(h[C
T (Bp)j•])i

=

v∑
j=1

Aaj(h[C
T (Bp)j•])i =

min{µ,v}∑
j=1

Aaj(h[C
T (Bp)j•])i.

We then define B ∈ Rv×o through

Bji :=

{
(Bp)ji = Bp[j]i for j ≤ µ;

0 otherwise.

Then we have

(Aph[B
pC])ai =

min{µ,v}∑
j=1

Aaj(h[C
T (Bp)j•])i

=

min{µ,v}∑
j=1

Aaj(h[C
TBj•])i =

min{µ,v}∑
j=1

Aaj(h[BC])ji

=

v∑
j=1

Aaj(h[BC])ji = (Ah[BC])ai.

The second part of the lemma can be derived in the same way.

Then we start to prove Proposition A.9.

18

Published as a conference paper at ICLR 2025

Proof of Proposition A.9. To facilitate the proof, we define the data matrix X ∈ Rd×n through
Xji := (xi)j for all j ∈ {1, . . . , d} and i ∈ {1, . . . , n}, that is, each column of X consists of one
sample. We finally write

gΘ[X] := (gΘ[x1], . . . , gΘ[xn]) = Θlf l[Θl−1 . . . f1[Θ0X]] ∈ Rm×n

for all Θ ∈ M. Hence, gΘ[X] summarizes the network’s outputs for the given data.

Given a parameter Θ ∈ Mµ, we establish a corresponding upper-block parameter Θ ∈ Us,l layer
by layer, starting from the outermost layer. We write

gΘ[X] = Θl︸︷︷︸
=:A∈Rpl+1×pl

f l︸︷︷︸
=:h

[Θl−1︸ ︷︷ ︸
=:B∈Rpl×pl−1

f l−1[Θl−2 . . . f1[Θ0X]]︸ ︷︷ ︸
=:C∈Rpl−1×n

].

Lemma A.11 for two-layer networks then gives

gΘ[X] = Θ
l
f l

[(
Θ

l−1

0

)]
f l−1[Θl−2 . . . f1[Θ0X]].

for a matrix Θ
l ∈ Rpl+1×pl

that meets Condition 3 in the first part of Def. A.8 on block parameters
as long as s ≥ µ and for a matrix Θ

l−1 ∈ Rµ×pl−1

that consists of the first µ rows of the matrix
Θl−1. Here we ignore the permutation in Lemma A.11 because of the symmetric property identified
by Lemma A.10. (We implicitly assume here and in the following pj ≥ µ for all j ∈ {1, . . . , l}.)

Now, define a parameter Γl ∈ Mµ through

Γl := (Θ
l
,Θl−1, . . . ,Θ0)

and a function hΘ,Γl : [0, 1] → Mµ through

hΘ,Γl [t] := (1− t)Θ + tΓl for all t ∈ [0, 1].

The function hΘ,Γl is continuous and satisfies hΘ,Γl [0] = Θ and hΘ,Γl [1] = Γl. Moreover, we can 1.
use the definitions of the function hΘ,Γl and the networks, 2. split the network along the outermost

layer, 3. invoke the block shape of Θ
l

and the definition of Θ
l−1

as the µ first rows of the matrix
Θl−1, 4. use the above-stated inequalities for the network gΘ[X], and 5. consolidate the terms to
show for all t ∈ [0, 1] that

gΘ,Γl [t][X] = ((1− t)Θl + tΘ
l
)f l[Θl−1 . . . f1[Θ0X]]

= (1− t)Θlf l[Θl−1 . . . f1[Θ0X]] + tΘ
l
f l[Θl−1 . . . f1[Θ0X]]

= (1− t)Θlf l[Θl−1 . . . f1[Θ0X]] + tΘ
l
f l

[(
Θ

l−1

0

)
. . . f1[Θ0X]

]
= (1− t)gΘ[X] + tgΘ[X]

= gΘ[X].

Hence, the function t 7→ ℓ(gh
Θ,Γl [t]) is constant. Suppose Θl = UΣ. That is, Θ and Γl are path

constant: Θ ↔ Γl.

We then move one layer inward. Similar to the above derivation, we have

Θ
l−1

f l−1[Θl−2 . . . f1[Θ0X]] = Θ
l−1

f l−1

[(
Θ

l−2

0

)
. . . f1[Θ0X]

]
,

for a matrix Θ
l−1 ∈ Rµ×pl−1

that meets Condition 3 in the first part of Def. A.8 on block parameters
as long as s ≥ µ, and for a matrix Θ

l−2 ∈ Rµ×pl−2

that consists of the first µ rows of the matrix
Θl−2.

19

Published as a conference paper at ICLR 2025

Next, we define Θ
l−1 ∈ Rpl×pl−1

through

(Θ
l−1

)uv :=

{
(Θ

l−1
)uv for u ≤ µ

0 otherwise.

Combining this definition with the above-derived results yields

gΘ[X] = Θlf l[Θ
l−1

f l−1

[(
Θ

l−2

0

)
. . . f1[Θ0X]

]
],

and the matrix Θ
l−1

meets Condition 2 in the first part of Def. A.8 on block parameters as long as
s ≥ µ.

Similarly as above, define a parameter Γl−1 ∈ M through

Γl−1 := (Θ
l
,Θ

l−1
,Θl−2, . . . ,Θ0)

and a function hΓl,Γl−1 : [0, 1] → M through

hΓl,Γl−1 [t] := (1− t)Γl + tΓl−1 for all t ∈ [0, 1]

to show that Γl ↔ Γl−1. In view of Property 3 in Lemma 1, we can conclude that Θ ↔ Γl−1.

The proof can be finished by induction over the layers.

We state two additional propositions by Lederer (2020), they are necessary to complete our proof.
Proposition A.12 (Proposition 3 of Lederer (2020)). Consider two block parameters Θ ∈ Us,l and
Γ ∈ Ls,l. If w ≥ 2s, it holds that Θ ↭ Γ.

Proposition A.13 (Prop 1 of Lederer (2020)). Assume that for all Θ ∈ M, there is a global mini-
mum of the objective function (4), denoted by Γ, such that Θ ↭ Γ. Then, the objective function (4)
has no spurious local minima.

Let the global minima is Γ. For any parameters Θ ∈ Mµ, according to Proposition A.9, there exists
Θ ∈ Uµ,l such that Θ ↔ Θ. Similarly, there exists Γ ∈ Lµ,l, such that Γ ↔ Γ.

According to Proposition A.12, Θ ↭ Γ. Therefore, Θ ↭ Γ. Note that this relationship holds for
all Θ ∈ Mµ, we conclude that the objective function (2) has no projected spurious local minima.
Then we complete the proof of Theorem 4.9.

A.3 PROOF OF SECTION 5

A.3.1 PROOF OF LEMMA 5.1

To prove that a random matrix R ∈ Rm×r (with r < m) whose entries are independently drawn
from a Gaussian distribution N (0, σ2) has full rank r with probability 1, we need to show that the
probability of rank(R) < r is zero. Here’s how we can establish this:

A matrix R has rank less than r if and only if there exists a non-zero vector x ∈ Rr such that:

Rx = 0

This equation represents a homogeneous linear system. For R to have a non-trivial null space, the
columns of R must be linearly dependent.

The set of rank-deficient matrices can be characterized by the vanishing of all r × r minors (deter-
minants of r × r submatrices). These minors are polynomial functions of the entries of R:

det(Rk) = 0 for all k

20

Published as a conference paper at ICLR 2025

where Rk denotes the r × r submatrix formed by selecting any r rows from R.

The set where these determinants vanish is an algebraic variety defined by polynomial equations. In
Rm×r, such a set has Lebesgue measure zero.

Since the set of rank-deficient matrices has Lebesgue measure zero and the distribution of R is
absolutely continuous (Gaussian distribution), the probability that R is rank-deficient is zero:

P (rank(R) < r) = 0

Therefore, the probability that R has full rank is:

P (rank(R) = r) = 1− P (rank(R) < r) = 1

A.3.2 PROOF OF COROLLARY 5.2

First, we need to introduce the following lemma.
Lemma A.14 (Marchenko-Pastur Law). Suppose a matrix X ∈ Rn×p, where the entries Xij are in-
dependent and identically distributed with mean 0 and variance σ2. As n and p tend to infinity, with
the ratio n/p converging to a constant λ, the empirical spectral distribution (i.e., the distribution of
eigenvalues) of the matrix 1

pXXT converges to a limit given by the Marchenko-Pastur distribution.
This distribution has a density function given by:

f(x) =
1

2πσ2x

√
(b− x)(x− a) for a ≤ x ≤ b

where
a = σ2(1−

√
λ)2, b = σ2(1 +

√
λ)2.

The difference between GaRare and GaLore is the selection of projection matrix. GaRare uses a
random matrix R instead of Û . Thus, Eq. (4) becomes

λm(D̂gΘ) = λm(DgΘ (In ⊗R)
T
) ≥ λmin(DgΘ)λm

(
(In ⊗R)

T
)
.

Similar to the proof of Theorem 4.3, λmin(DgΘ) ≥ µ. Then we need to determine the singular value
of In ⊗R.

For R ∈ Rm×r, we can apply Lemma A.14 by replacing n and p with m and r, σ2 with 1/m,
the eigenvalues of 1

rRRT converges to f(x) = m
2πx

√
(b− x)(x− a) for a ≤ x ≤ b, with a =

1
m (1−

√
λ)2, b = 1

m (1 +
√
λ)2.

Because we are considering large language models, the actual distribution is similar to the given
one. Therefore, λm(R) ≥ ra = 1

λ (1−
√
λ)2 with high probability. Note that r ≪ m, then ra ≈ 1.

Then we have λm(R) ≥ 1 with high probability.

Remember that In⊗R is a matrix consisting of n copies of the matrix R arranged along the diagonal,
with all other positions filled with zeros, we have λm(In⊗R) ≥ 1 with high probability. Then with
high probability,

λm(D̂gΘ) ≥ µ.

The remaining proofs are the same as the proof of Theorem 4.3.

A.3.3 PROOF OF COROLLARY 5.3

The proof of Theoem 4.9 only uses the fact that the solution of GaLore is located in low-rank spaces.
Thus, use R instead of Û does not change the conclusion.

21

Published as a conference paper at ICLR 2025

Table 5: Architectures of the MLPs in Section 6.1.

Parameter Value
input dim 32× 32× 3

hidden dim1 hidden dim
hidden dim2 hidden dim
output dim 10

Parameter Value
input dim 32× 32× 3

hidden dim1 hidden dim
hidden dim2 rank
hidden dim3 hidden dim
output dim 10

B DETAILS OF EXPERIMENTS

B.1 MODEL ARCHITECTURE OF VERIFICATION EXPERIMENT

The architecture of the MLPs in Section 6.1 is in Table B.1. On the left is the architecture of full-
rank method, FLoRA, GaLore and GaRare, while on the right is the architecture of LoRA. Because
the weight matrices of LoRA is frozen, we omit them and only include trainable parameters in
the architecture. hidden dim and rank changed across different tasks according to the experiment
setting.

B.2 ARCHITECTURE AND HYPER-PARAMETERS OF PRE-TRAINING EXPERIMENT

We introduce details of the LLaMA architecture and hyperparameters used for pre-training. Table 6
shows the most hyperparameters of LLaMA models across model sizes. We follow the setting of
(Zhao et al., 2024), which uses a max sequence length of 256 for all models, with a batch size of
131K tokens. For all experiments, we adopt learning rate warmup for the first 10% of the training
steps, and use cosine annealing for the learning rate schedule, decaying to 10% of the initial learning
rate.

Table 6: Model architecture comparison across different parameter sizes.

Params Hidden Intermediate Heads Layers Steps Data amount
60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 30K 3.9 B

For GaRare and FLoRA on each size of models (from 60M to 1B), we tune their favorite learning
rate from a set of {0.04, 0.05, 0.03, 0.02, 0.01}, and the best learning rate is chosen based on the
validation perplexity. For the other methods, full-rank method, LoRA and GaLore, we use results
reported by Zhao et al. (2024) directly. The hyperparameters of GaRare is shown in Table 7.

Table 7: Hyperparameters of GaRare across different parameter sizes.

Params Learning rate LoRA scale Subspace update frequency
60M 0.04 0.1 500
130M 0.03 0.1 500
350M 0.03 0.1 500
1 B 0.02 0.1 500
7 B 0.005 0.01 500

22

Published as a conference paper at ICLR 2025

B.3 DETAILS OF FINE-TUNING ON GLUE

We fine-tune the pre-trained RoBERTa-Base and RoBERTa-Large model on the GLUE benchmark
using the model provided by the Hugging Face1. We tune the learning rate and batch size for GaRare.
Table 8 and 9 show the hyperparameters used for fine-tuning RoBERTa-Base and RoBERTa-Large
for GaRare, respectively.

Table 8: Hyperparameter settings for each dataset for RoBERTa-Base model.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 8 8 16 16
Epochs 30 30 30 30 30 30 30 30
Learning Rate 1E-05 2E-05 3E-05 3E-04 1E-05 3E-05 4E-05 3E-04
Rank Config. r = 4
scale α 4
Max Seq. Len. 512

Table 9: Hyperparameter settings for each dataset for RoBERTa-Large model.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 8 16 8 32 16 8 16 16
Epochs 30 30 30 30 30 30 30 30
Learning Rate 1E-05 3E-05 1E-04 3E-05 1E-05 1E-05 1E-04 3E-05
Rank Config. r = 8
scale α 4
Max Seq. Len. 512

C PSEUDO-CODE OF GARARE

Algorithm 1: GaRare
Input: Θ ∈ M, rank r ∈ N+, scale factor α, subspace update frequency T , random seed x,

MaxIter > 0.
Initialize: First-order moment M0 = 0; Second-order moment V0 = 0

1 for k = 1 to MaxIter do
2 if k% T = 0 then
3 x+=1
4 Compute loss function according to Eq. (2) with parameters Θ and get gradients

Gt ∈ Rm×n;
5 Generate a random matrix R ∈ Rm×r sampled from N (0, 1/m);
6 Ĝt = RT gt;
7 Get parameters update ∆̂gt by optimization method (e.g., Adam, Adafactor);
8 ∆Gt = R∆̂Gt;
9 Θ = Θ+∆Gt;

Output: W

23

Published as a conference paper at ICLR 2025

0 250 500 750 1000 1250 1500 1750
Timestep

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Lo
ss

/lo
ss

 M
ea

n

Loss curve
Full-rank
GaRare

Figure 3: The training curve of EDM on full-rank training and GaRare.

D COMPUTATIONAL COST

Table 10: Compuational time of full-rank training, GaRare, GaLore, FLoRA and LoRA on various
sizes of LLaMA models on C4 dataset.

60M (1gpu) 130M (2gpu) 350M (2gpu) 1B (4gpu)

Full-Rank 1.98h 6.30h 26.47h 133.54h

LoRA 1.93h 5.73h 24.87h 127.14h
FLoRA 1.97h 6.00h 26.44h 129.88h
GaLore 1.92h 6.07h 26.98h 131.55h
GaRare 1.97h 5.96h 26.50h 130.00h
r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

E GARARE IN EDM

To evaluate the generalizability of GaRare, we applied it to optimize EDM (Karras et al., 2022),
a widely used diffusion model. The model was trained on the CIFAR10-32x32 dataset, with the
loss curve presented in Figure 3. While GaRare shows a relatively slower convergence rate, its final
performance is comparable to that of full-rank training. Notably, GaRare reduces memory usage to
564M compared to 1024M for full-rank training.

F SENSITIVITY ANALYSIS

We analyzed the sensitivity of GaRare to random seeds and subspace update frequency. First, we
used three random seeds to run the experiments and reported the mean and standard deviation, as
shown in Table G and G, to demonstrate the robustness of GaRare with respect to random seeds.
Second, we evaluated the sensitivity of GaRare to the subspace update frequency. Following the
approach of GaLore Zhao et al. (2024), we conducted experiments on LLaMA 130M using the C4
dataset, with the results presented in Figure 4. The performance remains stable when the update
frequency exceeds 100, indicating that this hyperparameter can be selected with a relatively large
value without significantly impacting performance.

24

Published as a conference paper at ICLR 2025

G MEMORY USAGE ANALYSIS

In this section, we analyze the memory usage of LoRA, GaLore, and GaRare by discussing weights
and optimizer states separately.

Weights

• LoRA: Requires storing the low-rank matrices B ∈ Rp×r and A ∈ Rr×q , along with the
full-rank weight matrix Θ ∈ Rp×q . This results in a total of pq + pr + qr weights.

• GaLore and GaRare: Both eliminate the need to store the low-rank matrices B and A,
requiring only pq weights for the forward computation.

Optimizer States

• LoRA: Requires storing gradient momentum and variance for B and A, adding 2pr + 2qr
to the total memory usage.

• GaLore: Stores optimizer states in the low-rank spaces and for the projection matrix, re-
sulting in a total of pr + 2qr.

• GaRare: Reduces memory usage for optimizer states to 2qr by regenerating the projection
matrix at each iteration, avoiding the need for additional storage.

This breakdown highlights how GaRare matches GaLore in weights but achieves superior memory
efficiency in optimizer states.

Table 11: The mean and standard deviation of GaRare on various sizes of LLaMA models on C4
dataset.

60M 130M 350M 1B

Full-Rank 34.06 25.08 18.80 15.56

LoRA 34.99 33.92 25.58 19.21
FLoRA 36.97 30.22 22.67 20.22
GaLore 34.88 25.36 18.95 15.64
GaRare 34.33±0.09 25.49±0.20 19.24±0.07 15.69±0.14
r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

Table 12: The mean and standard deviation of GaRare with RoBERTa-Base and RoBERTa-Large
model on GLUE.

RoBERTa-Base RoBERTa-Large
Full-Rank GaRare GaLore FLoRA LoRA Full-Rank GaRare GaLore FLoRA LoRA

Memory 748M 252M 253M 252M 257M 2132M 718M 720M 718M 732M

CoLA 62.2 61.0±0.1 60.4 59.0 61.4 68.0 67.6±0.4 68.3 65.5 68.2
STS-B 90.9 90.3±0.0 90.7 89.9 90.6 91.5 92.3±0.0 92.5 92.5 92.6
MRPC 91.3 91.4±0.2 92.3 88.5 91.1 90.9 91.7±0.1 91.7 89.3 90.9
RTE 79.4 79.2±0.3 79.4 76.5 78.7 86.6 87.2±0.3 87.0 83.0 87.4
SST2 94.6 94.2±0.2 94.0 93.8 92.9 96.4 96.0±0.3 96.1 96.0 96.2
MNLI 87.2 87.0±0.2 87.0 86.6 86.8 90.2 91.2±0.4 90.8 90.4 90.6
QNLI 92.3 92.1±0.2 92.2 91.9 92.2 94.7 94.5±0.1 95.7 94.0 94.9
QQP 92.3 90.9±0.3 91.1 90.9 91.3 92.2 91.9±0.2 91.9 91.5 91.5

Avg 86.3 85.8 85.9 84.6 85.6 88.8 89.1 89.3 87.8 89.0

25

Published as a conference paper at ICLR 2025

0 200 400 600 800 1000
Subspace Update Frequency

26

28

30

32

34

Pe
rp

le
xi

ty

Performance vs Subspace Update Frequency

Figure 4: Ablation study of GaLore on 130M models on subspace update frequency.

26

	Introduction
	Background
	Neural Network
	GaLore

	Related Work
	Analysis
	Gradient Low-Rank Projection Keeps Over-Parameterization
	Gradient Low-Rank Projection Has No Spurious Minima
	discussion

	GaRare: Gradient Random Projection
	Algorithm and Theoretical Guarantee
	Memory Usage of GaRare

	Experiments
	Verification of the Theory
	Performance on Pre-training Tasks
	Performance on Fine-tuning Tasks

	Conclusion
	Reproducibility Statement
	Details of the Proofs
	Proofs of Section 4.1
	Derivation of Theorem 4.1
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Proof of Theorem 4.9
	Proof of Section 5
	Proof of Lemma 5.1
	Proof of Corollary 5.2
	Proof of Corollary 5.3

	Details of Experiments
	Model Architecture of Verification Experiment
	Architecture and Hyper-parameters of Pre-Training Experiment
	Details of Fine-Tuning on GLUE

	Pseudo-code of GaRare
	Computational Cost
	GaRare in EDM
	Sensitivity Analysis
	Memory Usage Analysis

