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ABSTRACT

Federated learning has emerged as a promising distributed learning paradigm that
facilitates collaborative learning among multiple parties without transferring raw
data. However, most existing federated learning studies focus on either horizontal
or vertical data settings, where the data of different parties are assumed to be
from the same feature or sample space. In practice, a common scenario is the
hybrid data setting, where data from different parties may differ both in the features
and samples. To address this, we propose HybridTree, a novel federated learning
approach that enables federated tree learning on hybrid data. We observe the
existence of consistent split rules in trees. With the help of these split rules, we
theoretically show that the knowledge of parties can be incorporated into the lower
layers of a tree. Based on our theoretical analysis, we propose a layer-level solution
that does not need frequent communication traffic to train a tree. Our experiments
demonstrate that HybridTree can achieve comparable accuracy to the centralized
setting with low computational and communication overhead. HybridTree can
achieve up to 8 times speedup compared with the other baselines.

1 INTRODUCTION

While machine learning models benefit from large training data, data are usually distributed among
multiple parties and cannot be transferred due to privacy concerns. Federated Learning (FL) (McMa-
han et al., 2016; Kairouz et al., 2019; Yang et al., 2019) has been a popular direction to address the
above challenge. Existing FL studies mainly focus on horizontal or vertical FL settings. In horizontal
FL (HFL), the data of each party shares the same feature space but different sample spaces (e.g.,
keyboard input behavior of different users). In vertical FL (VFL), the data of each party shares the
same sample space but different feature spaces (e.g., data of bank and insurance company on the
same user group).

In practical scenarios, hybrid FL is quite common, yet it has not been extensively explored in the
current literature. To illustrate this, let’s consider a payment network system provider like SWIFT
aiming to train a model for detecting anomalous transactions. In this case, the provider can collaborate
with multiple banks, which can contribute user-related features for each transaction. Consequently,
the data involved in this setting exhibits a hybrid FL configuration, where the data between the
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payment network system and the banks originate from different feature spaces, and the data among
different banks stem from distinct sample spaces. The hybrid FL setting is particularly prevalent in
real-world applications, especially when dealing with tabular data. Each participating party only
possesses partial instances or features of the overall global data, leading to the need for effective
strategies to leverage such hybrid data for collaborative learning.

On the other hand, the Gradient Boosting Decision Tree (GBDT) is a powerful model, especially for
tabular data, which has won many awards in machine learning and data mining competitions (Chen
& Guestrin, 2016; Ke et al., 2017). There have been some studies (Cheng et al., 2019; Tian et al.,
2020; Li et al., 2023) that design federated GBDT algorithms in the horizontal or vertical FL setting.
However, none of the studies work on the hybrid FL setting. They aggregate the information of
all parties when training each tree node, and the aggregation strategy relies on the consistency of
sample or feature space between different local data. Moreover, high communication and computation
overhead are introduced in these node-level solutions. In the presence of a hybrid data setting, it is
challenging to design a knowledge aggregation mechanism efficiently and effectively.

To solve the above challenge, we provide key insight for federated tree training with our theoretical
analysis: parties contribute simple and neat knowledge to FL which are formulated as split rules
(meta-rule), and these rules can be incorporated at once in each round. Based on the insight, instead
of using node-level solutions that introduce complicated aggregation mechanisms with cryptographic
techniques, we design a novel layer-level solution named HybridTree. HybridTree integrates party-
specific knowledge by appending layers to the tree structure. Our experiments show that HybridTree
can achieve comparable accuracy compared with centralized training while achieving up to eight
times speedup compared with node-level solutions.

Our work has the following main contributions.

• We observe the existence of meta-rules in trees. Based on the observation, we propose a tree
transformation technique to enable the reordering of split points without compromising the
model performance, which supports using only specific features for splitting in the last layer.

• Motivated by the effectiveness of our tree transformation, we propose a new federated
tree algorithm on hybrid data, which adopts a novel layer-level tree training strategy that
incorporates the parties’ knowledge by appending layers.

• We conduct extensive experiments on simulated and natural hybrid federated datasets. Our
experiments show that HybridTree is much more efficient than the other baselines with a
close accuracy to centralized training.

2 BACKGROUND AND RELATED WORK

2.1 GRADIENT BOOSTING DECISION TREE

GBDT is a popular model which shows superior performance in machine learning competitions (Chen
& Guestrin, 2016; Ke et al., 2017) and real-world applications (Richardson et al., 2007; Kim et al.,
2009). It usually achieves better model performance than neural networks for tabular data (McElfresh
et al., 2023). The GBDT model contains multiple decision trees. Each tree has two types of nodes:
internal nodes that split the input into left or right with a split condition and leaf nodes that output the
prediction values. Given an input instance, the final prediction value is computed by summing the
prediction values of all trees.

The training of GBDT is a deterministic process. In each iteration, a new tree is trained to fit the
residual between the prediction and the target. Formally, given a loss function ℓ and a dataset
D = {(xi, yi)}ni=1, GBDT minimizes the following objective function

L =
∑
i

l(yi, ŷi) +
∑
k

Ω(θk), (1)

where ŷi is the prediction value, Ω(·) is a regularization term and θk denotes the parameter of k-th
decision tree. For the complete training process of GBDT, please refer to Appendix B.2.
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2.2 FEDERATED GBDT

There have been some federated GBDT algorithms (Li et al., 2023; Tian et al., 2020; Cheng et al.,
2019; Zhao et al., 2018; Li et al., 2020; Fang et al., 2021; Wu et al., 2020; Wang et al., 2022;
Maddock et al., 2022) for horizontal or vertical FL. Most existing studies (Li et al., 2023; Tian
et al., 2020; Cheng et al., 2019; Fang et al., 2021; Wu et al., 2020; Wang et al., 2022; Maddock
et al., 2022) adopt a node-level solution that merges the knowledge, which is usually represented by
histograms, of different parties when training each node. Different techniques such as homomorphic
encryption, secure multi-party computation, and differential privacy are used to protect the transferred
information. The node-level solutions suffer from frequent communication traffic and additional
computation overhead especially when using cryptographic techniques for privacy protection. Several
studies (Li et al., 2020; Zhao et al., 2018) for horizontal FL adopt tree-level solutions. They transfer
trees in each round, i.e., each party locally trains GBDTs and transfers them to the next party for
boosting. The tree-level solutions may have severe accuracy loss since only local data is used when
training each tree. Also, they are not applicable in vertical FL setting since some parties do not have
labels to train the local trees. Moreover, all existing federated GBDT studies do not investigate the
hybrid FL setting. We have summarized existing federated GBDT studies in Appendix D.

2.3 FEDERATED LEARNING ON HYBRID DATA

FL on hybrid data is rarely exploited in the current literature. Zhang et al. (2020) propose to train
a feature extractor for every feature in clients, and the server aggregates the feature extractors by
feature correspondingly. Such a feature-level aggregation may incur huge computation and memory
overhead when the dimension is high. Liu et al. (2020) apply transfer learning in a two-party setting.
Two parties locally train the neural networks and a mapping function is used to associate the local
outputs and the labels. Both studies are designed for neural networks and are not applicable to trees.

3 MOTIVATION AND THEORETICAL SUPPORT

3.1 PROBLEM STATEMENT

Host party

Label Host features Guest features

Guest party 1

Guest party N

…

Figure 1: Hybrid data partitioning.

In this paper, we consider a hybrid FL setting where multi-
ple parties jointly train a GBDT model without transferring
data. For ease of presentation, we call the parties with the
labels as hosts and the parties without labels as guests.
For simplicity, we start from a scenario involving a single
host with multiple guests. Specifically, we assume that
a host seeks the help of N guests who have additional
features of samples in the host for FL (e.g., a payment
system seeks the help of banks for fraud detection). We
use Dh = {(x, y)|x ∈ Rdh} to denote the data of the host
and Dgi = {x|x ∈ Rdg} to denote the data of guest i. We
use I to denote the instance ID set of the host and Ii to
denote the instance ID set of guest i (I = ∪Ni=1Ii). Like existing VFL studies (Cheng et al., 2019;
Vepakomma et al., 2018), we assume that the data of the host and guests have already been linked (i.e.,
the host knows whether a guest has additional features for an instance in its local data), which can be
achieved by matching anonymous IDs or privacy-preserving record linkage (Gkoulalas-Divanis et al.,
2021).

3.2 META-RULE AND TREE TRANSFORMATION

As we mentioned in Section 2.2, most existing federated GBDT studies try to aggregate the statistics
(e.g., histograms) of each party to update a tree node. When it comes to hybrid FL, one may design a
complicated framework that utilizes cryptographic techniques to aggregate the statistics, which would
incur large computation and communication overhead. However, is it necessary to use statistics of all
parties to update every node? Next, to answer this question, we present a key insight: meta-rules
widely exists in GBDTs. Then, we show that we can transform trees to enable layer-level tree
updating based on the meta-rules.
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Figure 2: Two examples of meta-rules. F is the split condition and L is the leaf value. In (a),
Fg → L1 exists in both trees. In (b), ¬Fh1

→ Fg → L2 exists in both trees.
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(b) Tree transformation

Figure 3: (a) The proportion of trees that have the same meta-rules. (b) Fg is a split rule with the split
feature from guests. Fh is a split rule with the split feature from the host. L represents leaf nodes.

Existence of Meta-Rules We start by investigating the properties of GBDTs in hybrid federated
datasets. We use two datasets provided by PETs prize challenge (DrivenData). The datasets contain
synthetic transaction data provided by a payment network system (host) and account data provided by
multiple banks (guests). We train a GBDT model with 50 trees in the centralized setting by linking
these datasets without privacy constraints. Analyzing the output model, we focus on split rules
(i.e., the joint split condition from the root node to the leaf node) involving features from the guests.
Interestingly, for these split rules, we observe that the same rule consistently appear in over 90% of
the trees. We present two examples in Figure 2. In Figure 2a, the split rule Fg exists in both trees, i.e.,
the prediction value is deterministic if Fg is true. In Figure 2b, the split rule ¬Fh1 ∩ Fg exists in both
trees, i.e., the prediction value is deterministic if ¬Fh1 ∩ Fg is true. As long as it satisfies the split
rule, the prediction value is independent of other features. For the sake of clarity, we define such split
rules as meta-rules.

Definition 1. (Meta-Rule) Given a split rule S := ∩Nj=1Fj where Fj is a split condition, we call S
as a meta-rule if P (y|x ∈ S) = P (y|x ∈ (S ∩ Fk)), ∀Fk ̸= Fj(j ∈ [1, N ]).

In the context of tabular data, it is intuitive that guests often contribute simple and neat knowledge
in the form of meta-rules. For example, if banks know that a user account has already been closed,
then the transactions made by this closed account have a high probability of being anomalous. If a
patient’s iWatch records an unstable heart rate in daily life, then the hospital may guess that the patient
has a heart disease combined with other measurements. To support our assumption, we use four
tabular datasets (details of the datasets are available in Section 5.1) to further verify the popularity
of meta-rules. For each dataset, we train a GBDT model with 40 trees in the centralized setting.
Figure 3a records the proportion of trees where the same meta-rule that determines the prediction
value appears. We can observe that most of the trees have the meta-rules in five datasets. Thus, in
hybrid FL, to aggregate the knowledge of participants, we focus on how to incorporate the knowledge
defined by these meta-rules during training efficiently and effectively.

Tree Transformation based on Meta-Rule Based on the existence of meta-rules, it is not necessary
to consider the statistics of all parties when updating each node. We look at a simple tree with depth
2 as shown in Figure 3b as an example. We have the meta-rule Fg , i.e., the prediction is independent
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Figure 4: A comparison between node-level solution (a) and our layer-level solution (b). All parties
jointly update each node in (a) while each party only updates a segmented tree individually in (b).

of features Fh as long as Fg is true. We can transform Tree A to Tree B by reordering the split node
Fg into last layer of the tree. We have the following theorems. The proofs are available in Appendix
A of the supplementary material.

Theorem 2. Suppose Fg is a meta-rule in Tree A. For any input instance x ∈ D, we have
E[f(x; θA)] = E[f(x; θB)], i.e., the expectation of prediction value of Tree A and Tree B are
the same.

While the above theorem is based on Figure 3b with a tree of depth two, it can easily be extended to
the case with a larger depth of trees by considering Fg as a subtree with split features from guests and
Fh as a subtree with split features from hosts. To demonstrate that the split point with guest features
can be reordered into the last layers while keeping the model performance, we have the following
theorem.

Theorem 3. Suppose Sm := Fh ∩ ... ∩ Fg is a meta-rule in tree θA where Fg is a split condition
using the feature from the guests. For any tree path in tree θA involving the split nodes in Sm, we can
always reorder the split nodes in the tree path such that Fg is in the last layer. Moreover, naming the
tree after the reordering as θB , we have E[f(x; θA)] = E[f(x; θB)] for any input instance x ∈ D.

From Theorem 3, based on the meta-rule contributed by the guests, we can reorder the split nodes
such that the split feature from guests is in the last layers. Thus, it is not necessary to consider all
features as possible split values in each tree node as we can incorporate the knowledge by just using
features from guests in the last layers. Based on this insight, we propose HybridTree, an efficient and
effective hybrid federated GBDT algorithm.

4 OUR METHOD: HYBRIDTREE

In this section, inspired and supported by our tree transformation based on meta-rules, we propose the
HybridTree approach. In the training, HybridTree adopts a layer-wise training design, where the host
party trains a subtree and the guest parties further update the bottom layers. Then, in the inference, as
each tree is divided into multiple parties, the host and guest parties collaboratively build the split path
of an input instance and make the prediction. Next, we introduce the training and inference processes
in detail.

4.1 HYBRIDTREE TRAINING

Overview Existing node-level solutions for horizontal or vertical FL require all parties to com-
municate and jointly update every node as shown in Figure 4(a). Supported by our theoretical
analysis, we design a layer-level solution as shown in Figure 4(b), where the host and guests train
segmented trees individually without communication during local training. There are three steps in
each round. First, the host trains a subtree using its local features and labels. Then, the host sends
the encrypted gradients of the instances in the last layer to guests using additively homomorphic
encryption (AHE) (Paillier, 1999). Last, guests update the following lower layers of the tree using
their local features and receive encrypted gradients, and send back the encrypted prediction values.
During each round, the host and guests only communicate twice to incorporate the meta-knowledge
from guests, which saves a lot of communication traffic compared with node-level solutions.
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Figure 5: The inference process of HybridTree.

The detailed algorithm is shown in Algorithm 1. Specifically, before training the model, the host
initializes the prediction value to zero and generates key pairs for AHE, where the public key is sent to
guests (Lines 1-4). For every pair of guests, a common key is generated and exchanged through Diffie-
Hellman key exchange (Merkle, 1978), which will be used later for secure aggregation (Bonawitz
et al., 2016) (Lines 5-6). In each round, the host updates the gradients of the training data, which is
used to train a subtree (Lines 7-9). The TrainTree() algorithm follows the typical GBDT training
algorithm, which we present in Appendix B of the supplementary material. Then, for each last-layer
node, the host sends the instance ID set and last-layer gradients to guests that have the corresponding
instances (Lines 10-13). Note that gradients are computed based on the prediction value and the true
label, and raw gradients may leak information about the labels. Thus, we apply AHE to protect the
gradients (Line 11), which supports the addition of encrypted values. After receiving the encrypted
gradients, guests can compute the leaf values according to Eq. 8 while using the public key to sum
encrypted gradients (Lines 16-21). After receiving the encrypted leaf values, the host aggregates and
decrypts it using the private key and updates the prediction values (Lines 14-15).

In general, there are three steps in the whole training process: 1) The host party updates a subtree
individually (Lines 1-9); 2) The host party sends the encrypted intermediate results into the guest
parties (Lines 10-13); 3) The guest parties update the bottom layers individually and send back the
encrypted prediction values (Lines 14-21). Since HybridTree does not require accessing all features
and instances when updating each node, it can handle the hybrid data case where each party only has
partial instances and features. Moreover, based on our analysis in Section 3, by updating the bottom
layers using the guests’ features, the meta-rule knowledge of the guest parties can be effectively
incorporated.

4.2 HYBRIDTREE INFERENCE

After HybridTree training, the whole model is distributed among different parties, and collaborative
inference is required to predict an input instance like existing vertical FL studies (Cheng et al., 2019).
We present the inference process in Figure 5. Still, we assume that the test data among different
parties have already been linked by ID before inference. First, the host splits the input instance into
a last-layer node using its subtree and sends the position of the predicted node to guests that have
the instances. Then, the guests further split the instance with the received position and return the
predicted leaf location. Last, the server averaged the prediction values of the received locations to get
the final prediction value. During the whole prediction process, only two communication times are
needed and all test instances can be processed in parallel.

4.3 PRIVACY GUARANTEES

We provide the same privacy guarantee as existing vertical federated learning studies on GBDTs (Li
et al., 2023; Cheng et al., 2019). We assume that all the parties are honest-but-curious, where they
strictly follow the algorithm and do not collude with each other. During the training process, the
host only receives the encrypted prediction values from guests and guests only receive the encrypted
gradients from the host. Thus, there is no information leakage in the training. During the inference
process, the host and guests only receive the predicted node locations from each other, without
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Algorithm 1: The HybridTree training algorithm

Input: Host dataset Dh = {(xi, yi)}ni=1 with instance ID set I, guests’ datasets Di
g (i ∈ [N ]),

the depth of tree trained by the host Eh, the depth of tree trained by guests Eg , number of
trees T , loss function ℓ, regularization term λ.

Output: The final model θ

/* Conducted on host */
1 HostTrain(Dh, I, Eh, Eg, T, ℓ):
2 yp ← [0] // Initialize prediction value to zero
3 kpub, kpri ← GenerateKeys() // Generate homomorphic encryption keys
4 Send kpub to guests
5 for every pair of guests (Gi, Gj)(i ̸= j) do
6 kij ← DHKey() // Generate common key through DH key exchange

7 for t = 1, 2, ..., T do
8 G← [∂yi

p
ℓ(y, yip)]

n
i=1 // Update gradients

9 {Ii}ki=1, {Gi}ki=1 ← TrainTree(I,G, Eh) // Train a subtree and get k
last-layer nodes

10 for each last-layer node i in parallel do
11 ∥Gi∥ ← Enc(Gi, kpri) // Encrypt gradients
12 for each guest u in parallel do
13 Send Iui , ∥Gu

i ∥ to Guest u // Send intermediate results to guest
14 ∥yu

p∥ ← GuestTrain(Iui , ∥Gu
i ∥, Eg) // Guest updates the bottom

layers

15 yp ← yp +Dec(
∑

u∈N∥yu
p∥, kpri) // Update prediction values

/* Conducted on guests */
16 GuestTrain(I, ∥G∥, Eg): // Update non-leaf layers
17 {Ii}ki=1, {∥Gi∥}ki=1 ← TrainTree(I, ∥G∥, Eg)
18 for each last-layer node i do

19 ||Vi|| ←
∑

j ||Gj
i ||

|Ii|+λ // Compute leaf values

20 ∥yIi
p ∥ ← ||Vi||+

∑
j k·j −

∑
j kj· // Add noises for secure aggregation

21 return yp

information about the data or model of the other parties. Note that there may be potential inference
attacks and techniques like differential privacy (Dwork, 2011) can be applicable (Li et al., 2023),
which is out of the scope of the paper.

5 EVALUATION

5.1 EXPERIMENTAL SETTINGS

Datasets We use four datasets in our experiments: 1) Two versions of hybrid FL datasets provided
by PETs Prize Challenge for anomalous transaction detection. In the datasets, one party (i.e., host)
holds the synthetic transaction data and the label and multiple parties (i.e., guests) hold the account
data. Both datasets have 25 guests. 2) Two simulated hybrid federated learning datasets. We generate
these two datasets by partitioning the centralized tabular datasets Adult and Cod-rna into multiple
subsets randomly. We first divide the dataset vertically to get a host dataset and then divide the
remaining one horizontally to get multiple guest datasets. The number of guest parties is set to 5 for
both datasets. For more details about the datasets, please refer to Appendix C. In the experiments of
the main paper, all guests share the same feature spaces and different sample spaces. For results on
more experimental settings, please refer to Appendix C.

Approaches We compare the following approaches with HybridTree: 1) ALL-IN: We train a
GBDT model on the global data without any privacy constraints. This approach represents the upper
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Table 1: The comparison of model performance between different approaches. For FedTree, Secure-
Boost, and Pivot, we run them with every possible guest and report the minimum and maximum
model performance achieved.

HybridTree SOLO FedTree SecureBoost Pivot TFL ALL-IN
AD 0.689 0.492 0.537-0.566 0.537-0.566 0.534-0.561 0.530 0.703

DEV-AD 0.553 0.111 0.412-0.462 0.412-0.462 0.414-0.468 0.397 0.574

Adult 0.832 0.653 0.764-0.788 0.764-0.788 0.755-0.778 0.773 0.853

Cod-rna 0.927 0.690 0.805-0.863 0.805-0.863 0.811-0.870 0.884 0.931

bound of model performance. 2) SOLO: The host locally trains a GBDT model with its local data.
This approach represents the lower bound of model performance. 3) 2-party VFL: The host party
collaborates with one of the guests to conduct vertical federated GBDT. We compare three vertical
federated learning studies for GBDTs, including FedTree (Li et al., 2023), SecureBoost (Cheng
et al., 2019), and Pivot (Wu et al., 2020). We run each approach with every possible guest and report
the minimum and maximum model performance achieved. Note that it is non-trivial to apply the VFL
studies to the hybrid data setting with multiple guest parties. 4) TFL: We assume that guests have the
labels and adopt a tree-level solution (Zhao et al., 2018; Li et al., 2020) with all parties, i.e., each
party trains a tree individually and sequentially. We use this approach to assess the effectiveness of
tree-level knowledge aggregation.

Model and Metrics We train a GBDT model with 50 trees. The learning rate is set to 0.1. The
maximum depth is set to 7 for the baselines. The maximum depth for the host is set to 5 and the
maximum depth for guests is set to 2 for HybridTree so that the total depth of the tree is 7 to ensure a
fair comparison. The regularization term λ is set to 1. For AD and DEV-AD, we use AUPRC (Area
Under Precision-Recall Curve) as the metric since these two datasets are highly class-imbalanced.
For two simulated datasets, we use classification accuracy as the metric.

We run experiments on a machine with four Intel Xeon Gold 6226R 16-Core CPUs. We fix the number
of threads to 10 for each experiment. Due to the page limit, we only present some of the results in the
main paper. For more experimental results, please refer to Appendix C of the supplementary material.

5.2 MODEL PERFORMANCE

We compare the model performance of HybridTree with the other baselines with the results exhibited
in Table 1. Given the deterministic nature of the GBDT training process, the output remains consistent
across multiple runs, rendering the reporting of mean and standard deviation unnecessary. The results
reveal that HybridTree’s performance closely mirrors that of ALL-IN, which represents the upper-
bound performance without privacy restrictions. Furthermore, HybridTree consistently surpasses
the model performance of SOLO, FedTree, Pivot, and TFL by a substantial margin. FedTree and
Pivot, which relies solely on data from a single guest for training, suffers a significant accuracy
deficit. TFL, on the other hand, adopts a tree-level knowledge aggregation strategy, which falls short
in effectiveness since each tree is inherently weak. In contrast, our method skillfully amalgamates the
knowledge of guests utilizing a layer-level design.

5.3 TRAINING PERFORMANCE

We contrast the communication and computational efficiency during training of HybridTree and VFL
approaches in Table 2. The comparison of inference performance is presented in Appendix C of
the supplementary material. We limit our comparison to VFL approaches, as other methodologies
break the privacy constraints by sharing data/labels and do not impose additional communication
or computational burdens. As the table illustrates, HybridTree significantly outperforms FedTree
and Pivot in both communication costs and training duration. The communication speed can be
accelerated up to six times, while the computational speed may see an enhancement of up to eight
times. HybridTree primarily incorporates lightweight AHE for encryption. These encrypted gradients
are transmitted only once per tree. Furthermore, cryptographic operations are restricted to the lower
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Table 2: The training efficiency comparison between HybridTree and VFL approaches. The speedup
of HybridTree is computed by comparing FedTree.

Communication size (GB) Training time (s)
HybridTree FedTree SecureBoost Pivot speedup HybridTree FedTree SecureBoost Pivot speedup

AD 223.6 1363.9 1389.2 1420.3 6.1x 84.1 595.6 3212.7 316823 7.1x
DEV-AD 142.6 770.1 681.9 792.2 5.4x 58.2 464.9 2856.6 284235 8.0x
Adult 1.55 9.74 14.6 11.9 6.3x 2.0 8.6 71.1 9234 4.3x
Cod-rna 2.84 15.92 20.4 18.5 5.6x 1.0 5.3 24.3 3845 5.3x
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Figure 6: Model performance of different approaches by varying the number of guests. We omit
SecureBoost as its curve overlaps with FedTree.

Table 3: Model performance of different approaches in the multi-host setting.
HybridTree SOLO FedTree SecureBoost Pivot TFL ALL-IN

AD 0.682 0.423-0.443 0.498-0.502 0.498-0.504 0.483-0.492 0.512 0.703

DEV-AD 0.548 0.094-0.099 0.389-0.425 0.387-0.423 0.392-0.438 0.366 0.574

Adult 0.828 0.582-0.591 0.712-0.722 0.712-0.722 0.698-0.710 0.730 0.853

Cod-rna 0.911 0.621-0.635 0.784-0.804 0.784-0.804 0.771-0.792 0.821 0.931

layers in HybridTree, in contrast to node-level solutions where they occur at every node. As a result,
HybridTree demonstrates superior efficiency compared to the baselines.

5.4 SCALABILITY

We manipulate the number of guests from 25 to 100 for AD and DEV-AD, and from 5 to 20 for Adult
and Cod-rna by randomly dividing each guest dataset into multiple subsets. The corresponding results
are presented in Figure 6. Due to the page limit, we leave the results of Cod-rna in Appendix C of the
supplementary material. From the results, it is evident that HybridTree exhibits significantly more
stability than FedTree, Pivot, and TFL. Even when the number of guests is increased, HybridTree
can well consolidate the knowledge from all parties. In contrast, FedTree, Pivot, and TFL exhibit a
considerable degradation in performance when local knowledge is limited.

6 CONCLUSIONS

This paper introduces HybridTree, a new federated GBDT algorithm designed for a hybrid data
environment. Leveraging our insights into meta-rules, we propose a tree transformation capable of
reordering split features. Building upon this transformation, we introduce an innovative hybrid tree
learning algorithm that integrates the knowledge of guests by directly appending layers. Experimental
results demonstrate that HybridTree significantly outperforms other baseline methodologies in terms
of efficiency and effectiveness. While HybridTree is designed for GBDT due to its popularity, the
idea of layer-level training is applicable to other trees. We consider hybrid federated learning on
multi-modal data as future work.
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APPENDICES

In Appendix A, we prove the theorems introduced in Section 3. In Appendix B, we introduce the
algorithmic details of training a tree. In Appendix C, we present additional experimental details and
results. In Appendix D, we discuss the potential broader impacts and limitations of our approach.

A PROOF

Definition 1. (Meta-Rule) Given a split rule S := ∩Nj=1Fj where Fj is a split condition by feature
fj , we call it as meta-rule if P (y|x ∈ S) = P (y|x ∈ (S ∩ Fk)) for any Fk not in split rule S.

Theorem 2. Suppose Fg is a meta-rule in Tree A. For any input instance x ∈ D, we have
E[f(x; θA)] = E[f(x; θB)], i.e., the expectation of prediction value of Tree A and Tree B are
the same.

Proof. For ease of presentation, we use {F} to denote the instance ID set that satisfies split rule F
(i.e., {F} := {i|xi ∈ F}). We consider the instances sets of three leaf nodes in Tree A.

1) For the instance set {Fg} in L1 of Tree A, it will be divided into two sets in Tree B: {Fh ∩ Fg} in
L′
1 and {¬Fh ∩ Fg} in L′

3. The expectation of leaf value L′
1 is

E(L′
1) = −

E(
∑

i∈{Fh∩Fg} gi)

|{Fh ∩ Fg}|
(2)

From Definition 1, we have P (y|x ∈ Fg) = P (y|x ∈ (Fh ∩ Fg)). Note that gradient g is a mapping
from y. We have P (g|x ∈ Fg) = P (g|x ∈ (Fh ∩ Fg)). Thus, we have

E(L′
1) = −

|{Fh ∩ Fg}|
|Fg|

·
E(

∑
i∈{Fg} gi)

|{Fh ∩ Fg}|

= −
E(

∑
i∈{Fg} gi)

|Fg|
= E(L1).

(3)

Similarly, we have

E(L′
3) = −

|{¬Fh ∩ Fg}|
|Fg|

·
E(

∑
i∈{Fg} gi)

|{¬Fh ∩ Fg}|

= −
E(

∑
i∈{Fg} gi)

|Fg|
= E(L1).

(4)

2) For the instance set {¬Fg ∩ Fh} in L2 of Tree A, it will be relocated to L′
2 of Tree B.

3) For the instance set {¬Fg ∩ ¬Fh} in L3 of Tree A, it will be relocated to L′
4 of Tree B.

Thus, for any instance x, E[f(x; θA)] = E[f(x; θB)].

Theorem 3. Suppose Sm := Fh ∩ ... ∩ Fg is a meta-rule in tree θA where Fg is a split condition
using the feature from the guests. For any tree path in tree θA involving the split nodes in Sm, we can
always reorder the split nodes in the tree path such that Fg is in the last layer. Moreover, naming the
tree after the reordering as θB , we have E[f(x; θA)] = E[f(x; θB)] for any input instance x ∈ D.

Proof. We use θg to denote the subtree with root node Fg . For ease of presentation, we use Fh ∩ Fg

to denote the given meta-rule, where Fh is the split rule with split features from the host. Without
loss of generality, we assume that the left child node of Fg is a leaf node when Fg is true, denoted as
Ll. For every possible partial split rule in the subtree of the right child node Fk := ∩jFj , we have
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Figure 7: Suppose Fh1 ∩ Fg1 is a meta-rule. Tree A can be transformed into Tree B.

P (g|x ∈ Fh∩Fg) = P (g|x ∈ Fh∩Fg∩Fk). By moving Fg to the last layer of right child node, for
each split rule Fh ∩Fk, it generates two new leaf nodes L′

l (Fh ∩Fk ∩Fg) and L′
r (Fh ∩Fk ∩¬Fg).

We have

E(L′
l) = −

E(
∑

i∈{Fh∩Fk∩Fg} gi)

|{Fh ∩ Fk ∩ Fg}|

= −|{Fh ∩ Fk ∩ Fg}|
|{Fh ∩ Fk}|

·
E(

∑
i∈{Fh∩Fk} gi)

|{Fh ∩ Fk ∩ Fg}|

= −
E(

∑
i∈{Fh∩Fk} gi)

|{Fh ∩ Fk}|
= E(Ll)

(5)

For L′
r, it is equivalent to the original tree node ¬Fg ∩ Fh ∩ Fk.

Thus, the expectation of the prediction value remains unchanged for any input instance through our
transformation.

Based on Theorem 3, we can transform a tree by reordering the split points such that the split points
using the guest features are in the bottom layers. Figure 7 shows an example.

B NOTATIONS AND ALGORITHM

B.1 NOTATIONS

The notations used in the paper are summarized in Table B.1.

B.2 THE GBDT TRAINING ALGORITHM

At the t-th iteration using second-order approximation (Si et al., 2017), GBDT minimizes the
following objective function

L̃(t) =
∑
i

l(yi, ŷ
t−1
i + ft(xi; θt)) + Ω(θt)

≈
∑
i

[l(yi, ŷ
t−1
i ) + gift(xi; θt) +

1

2
f2
t (xi; θt)] + Ω(θt)

(6)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) is first order gradient on the loss function and ft(·) is the tree function.

GBDT updates a tree from the root node to minimize Eq (6) until reaching the specified maximum
depth. We use I to denote the instance ID set in the current node. If the current node is a split node,
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Table 4: Notations used in the paper.
Notation Decsription

Dh Dataset of the host party

Di
g Dataset of guest party i

I Instance ID set

Eh The depth of tree trained by the host party

Eg The depth of tree trained by the guest party

T Number of trees

ℓ Loss function

λ Hyperparameter

yp Prediction value vector

kpub Publick key of homomorphic encryption

kpri Private key of homomorphic encryption

Gi Guest party i

kij Key for guest pair (Gi, Gj) generated by DH key exchange

G First-order gradients in GBDTs

V Leaf values

U Gain of a split

suppose the split value splits I into IL and IR. Then, the gain of the split value is defined by the loss
reduction after split, which is

U =
(
∑

i∈IL
gi)

2

|IL|+ λ
+

(
∑

i∈IR
gi)

2

|IR|+ λ
. (7)

Since it would be computationally expensive to traverse all possible split values to find the one with
the maximum gain, GBDT usually considers a small number of cut points as possible split candidates.
The best split point is selected from these split candidates. If the tree reaches the maximum depth or
if the gain remains negative, the current node becomes a leaf node. To minimize Eq (6), the optimal
leaf value is

V = −
∑

i∈I gi

|I|+ λ
(8)

After training a tree according to Eq. (7) and Eq. (8), we can update the gradients using the current
prediction value and train the next tree until reaching the specified number of trees.

The algorithm for training a tree in GBDT, denoted as TrainTree(), is presented in Algorithm 2.
When the maximum depth is reached, the leaf value is computed based on the gradients (Lines 2-4).
On the other hand, if the maximum depth is not reached, the algorithm proceeds to calculate the gain
for each potential split value (Lines 6-17) and stores the split value with the highest gain. If the gain
is greater than zero, the instances are split using the recorded split value, and two subtrees are trained
as separate branches (Lines 18-20). However, if the gain is not greater than zero, the current node
does not require further splitting and is treated as a leaf node (Lines 21-23).
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Algorithm 2: Train a single tree in GBDT.
Input: Instance ID set I, gradients G, maximum depth E.
Output: The final model θ

1 TrainTree(I,G, E):
2 if E == 1 then
3 V ← −

∑
i∈I gi
|I| // Compute leaf value

4 set the current node to a leaf node with value V

5 else
6 Smax ← 0
7 for every possible split rule Fj do
8 Il ← {i|xi ∈ Fj}
9 Ir ← {i|xi /∈ Fj}

10 Sl ←
(
∑

i∈Il
gi)

2

|Il|

11 Sr ←
(
∑

i∈Ir
gi)

2

|Ir|
12 S ← Sl + Sr // Compute gain
13 if S > Smax then
14 set the current node to a split node with rule Fj

15 Smax ← S
16 IL ← Il
17 IR ← Ir

18 if Gmax > 0 then
19 TrainTree(IL,GIL , E − 1) // Train a subtree recursively
20 TrainTree(IR,GIR , E − 1)

21 else
22 V ← −

∑
i∈I gi
|I|

23 set the current node to a leaf node with value V
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Table 5: Statistics of the datasets.
#training instances #test instances #features of host #features of guests #guests

AD 4,691,615 705,108 9 4 25

DEV-AD 2,993,804 1,003,675 9 4 25

Adult 32,561 16,281 102 21 5

Cod-rna 44,651 14,884 6 2 5

C EXPERIMENTS

C.1 DATASETS

The dataset statistics are presented in Table 5. To create the host dataset for Adult and Cod-rna1,
we employ a random sampling approach. Specifically, we generate a random number between zero
and the total number of features, and assign this sampled number of features to the host dataset.
The remaining features are then partitioned randomly and equally into five subsets, resulting in the
generation of five guest datasets in the default setting.

C.2 MULTI-HOST SETTING

While we assume there is only one host in our design for simplicity, HybridTree can be easily
extended to the multi-host setting, where multiple hosts (e.g., hospitals) collaborate with guests
(patients’ wearable health devices) for FL. Each host can follow the HybridTree training process to
train a GBDT with the guests that have the corresponding instances of the host. Then, for inference,
we can conduct prediction on each GBDT and apply bagging (Breiman, 1996) to aggregate the
prediction results of multiple GBDTs. For regression tasks, we average the prediction values of
multiple GBDTs as the final prediction value. For classification tasks, we apply max-voting to select
the class with the highest voting as the prediction class.

We simulate the multi-host setting by randomly partitioning the host dataset into five subsets. The
results of the multi-host settings are shown in Table 3. HybridTree continues to substantially
surpass other baseline methods, underscoring the effectiveness of our bagging strategy in a multi-
host configuration. Compared to the single-host scenario, the performance of other methodologies
markedly deteriorates due to the constrained data availability from the host.

C.3 HETEROGENEITY

While the hybrid federated datasets naturally have data heterogeneity among different parties, their
heterogeneity cannot be easily quantified and controlled. To assess model performance amidst diverse
data heterogeneity, we consolidate the guest datasets into a unified global set and divide it into
multiple subsets in accordance with the corresponding labels in the host. Specifically, we sample
pk ∼ Dir10(β) and allocate a pk,j proportion of instances from class k to guest j, where Dir(β)
denotes the Dirichlet distribution with a concentration parameter β. The heterogeneity intensifies
as β diminishes. The results for varying β values are depicted in Figure 8. HybridTree consistently
surpasses other baseline methods across all settings. In the case of VFL, performance is contingent
upon the data quality of a single guest, resulting in instability and a substantial error bar.

C.4 OVERLAPPED SAMPLE AND HETEROGENEOUS FEATURE SETTING

In the experiments conducted in the main paper, all guest datasets share the same feature space, and
there are no overlapping samples between the guests. However, it is worth noting that our algorithm
does not impose any specific requirements regarding the feature and sample spaces across guests.
To simulate this flexible setting, we introduce a simulation where, for each guest dataset, a random
number α is generated from the range of [0, d], representing the number of features to be dropped.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

16

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Published as a conference paper at ICLR 2024

100 10 1 0.1

0.50

0.55

0.60

0.65

0.70

AU
PR

C
HybridTree
SOLO
TFL
ALL-IN
FedTree
Pivot

(a) AD

100 10 1 0.1
0.1

0.2

0.3

0.4

0.5

AU
PR

C

HybridTree
SOLO
TFL
ALL-IN
FedTree
Pivot

(b) DEV-AD

100 10 1 0.1
0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Ac
cu

ra
cy

HybridTree
SOLO
TFL
ALL-IN
FedTree
Pivot

(c) Adult

Figure 8: Model performance of different approaches by varying heterogeneity. We omit SecureBoost
as its curve overlaps with FedTree.

Table 6: The model performance in the setting with overlapped samples and heterogeneous features
between different guests.

HybridTree SOLO FedTree SecureBoost Pivot TFL ALL-IN
AD 0.673 0.492 0.511-0.559 0.510-0.557 0.515-0.547 0.514 0.682

DEV-AD 0.546 0.111 0.389-0.444 0.393-0.443 0.372-0.421 0.384 0.561

Adult 0.801 0.655 0.753-0.782 0.753-0.782 0.759-0.789 0.756 0.820

Cod-rna 0.908 0.690 0.776-0.858 0.776-0.858 0.771-0.845 0.861 0.919

Additionally, an additional β number of samples is assigned from other guest datasets, with β drawn
randomly from the range of [0, n

20 ], where d denotes the feature dimension and n represents the
total number of samples. The results obtained with this simulated setting are presented in Table 6.
HybridTree continues to outperform the other baselines and achieves performance comparable to
centralized training, thus showcasing the robustness of HybridTree in various hybrid data settings.

C.5 OVERHEAD OF HYBRIDTREE

In Table 7, we provide a detailed breakdown of the training time for HybridTree. A comparison
with the ALL-IN approach reveals that the primary computational overhead of HybridTree lies
in the update process of the last layers in the guest models. This step involves computations on
encrypted gradients, which can be computationally expensive. However, thanks to its layer-level
design, HybridTree significantly reduces the computation overhead compared to node-level solutions.

C.6 INFERENCE PERFORMANCE

The inference costs of HybridTree and VFL are presented in Table 8. Since HybridTree and VFL
approaches have a similar inference procedure, both approaches have a low inference time. In VFL
approaches, since each tree node may be distributed in host or guests, multiple communication rounds

Table 7: Training overhead of HybridTree compared with ALL-IN.
HybridTree ALL-IN

Host training time (s) Guest training time (s) training time (s)

AD 37.4 45.7 39.8

DEV-AD 28.9 29.3 31.7

Adult 1.1 0.9 1.1

Cod-rna 0.6 0.4 0.6
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Table 8: Communication size (MB) and inference time (s) of HybridTree and VFL during prediction.
The speedup of HybridTree is computed by comparing to FedTree.

Communication size (MB) Inference time (s)
HybridTree FedTree SecureBoost Pivot speedup HybridTree FedTree SecureBoost Pivot speedup

AD 5.6 16.4 20.5 19.2 2.8x 17.9 22.1 28.4 12528 1.2x
DEV-AD 8.1 20.6 25.2 31.5 2.5x 25.1 28.9 34.5 9825 1.2x
Adult 0.28 1.36 1.93 2.51 4.8x 0.92 1.35 2.09 426 1.5x
Cod-rna 0.48 1.64 1.92 2.84 3.4x 0.89 1.37 2.28 498 1.5x

Table 9: The comparison of model performance between different approaches. For FedTree, Secure-
Boost, and Pivot, we run them with every possible guest and report the minimum and maximum
model performance achieved.

HybridTree SOLO FedTree SecureBoost Pivot TFL ALL-IN
4 0.671 0.402 0.470-0.476 0.470-0.476 0.458-0.462 0.530 0.703

6 0.682 0.423 0.498-0.502 0.498-0.502 0.496-0.499 0.397 0.574

8 0.689 0.431 0.506-0.511 0.506-0.511 0.498-0.502 0.773 0.853

may be required during an inference path if it involves changes in node locations between host and
guests. In HybridTree, since a tree is divided into two parts, only two communication rounds are
required. Thus, HybridTree has a lower communication overhead than FedTree and Pivot.

C.7 SENSITIVITY STUDY

We change the tree depth from 4 to 8 on AD and present the results in Table 9. While increasing tree
depth can increase the model performance, our approach consistently performs better than the other
baselines.

C.8 VERTICAL FEDERATED LEARNING

Our approach is also applicable in the FFL setting, where the number of hosts and guests is exactly
one. By merging all guests as a single guest, we compare HybridTree with other VFL studies and the
results are shown in Table 10 and Table 11. HybridTree can achieve comparable model performance
with VFL studies while significantly reducing the training time.

C.9 IMPACT OF THE HOST DATASET

To investigate the impact of changes in the host dataset, we use the synthetic hybrid FL dataset
Adult. Specifically, in the host dataset, we randomly sample 20-100% instances/features to use in
training. The results are shown in Table. While reducing the instances/features will reduce the overall
performance of all approaches, HybridTree consistently outperforms the other baselines.

Table 10: The model performance of different approaches in the VFL setting.
HybridTree FedTree SecureBoost Pivot

AD 0.702 0.708 0.708 0.704

DEV-AD 0.594 0.603 0.603 0.597

Adult 0.851 0.862 0.862 0.858

Cod-rna 0.944 0.957 0.957 0.951

18



Published as a conference paper at ICLR 2024

Table 11: The training time (s) of different approaches in the VFL setting.
HybridTree FedTree SecureBoost Pivot speedup

AD 103.7 782.5 4628.4 425698 7.5

DEV-AD 67.4 623.6 3745.9 395720 9.3

Adult 3.2 12.8 101.8 13829 4.0

Cod-rna 1.7 8.1 82.5 6023 4.8

Table 12: The model performance of different approaches by varying the size of the host dataset.
Proportion HybridTree SOLO FedTree SecureBoost Pivot TFL ALL-IN

#instances

20% 0.778 0.598 0.712-0.73 0.712-0.732 0.709-0.728 0.723 0.794

50% 0.786 0.61 0.726-0.742 0.726-0.742 0.723-0.735 0.73 0.805

80% 0.814 0.636 0.749-0.776 0.745-0.776 0.723-0.754 0.762 0.832

100% 0.832 0.653 0.764-0.788 0.764-0.788 0.752-0.789 0.773 0.853

#features

20% 0.602 0.424 0.541-0.561 0.541-0.561 0.535-0.558 0.542 0.621

50% 0.724 0.552 0.655-0.679 0.655-0.678 0.659-0.678 0.669 0.742

80% 0.771 0.592 0.704-0.735 0.704-0.735 0.698-0.728 0.713 0.791

100% 0.832 0.653 0.764-0.788 0.764-0.788 0.762-0.784 0.773 0.853

C.10 RESULTS OF COD-RNA

The results of cod-rna with different numbers of guests and levels of heterogeneity are presented
in Figure 9, corresponding to Section 5.4 and Section C.3 of the main paper. HybridTree still
outperforms the other baselines on this dataset.

D DISCUSSIONS

Broader Impact Federated learning offers a compelling avenue that fosters multi-party collabora-
tion, and our approach propels this direction a step further. Our approach encourages collaborative
learning between heterogeneous parties to provide better services for people while preserving data
privacy. However, our approach rests upon the premise of trust amongst the participating parties. In
circumstances where collusion among multiple parties occurs, there lies the potential risk of inferring
sensitive information from other parties. Thus, ensuring the integrity of the system is paramount prior
to any real-world deployment.

Limitations Our method is well-suited for tabular data, as it allows for the representation of knowl-
edge through meta-rules. However, when dealing with image, text, and graph data, the knowledge
inherent in these types of data often cannot be easily captured by rule-based expressions, rendering
our method less applicable in those cases. One interesting future direction is to combine deep
neural networks (DNNs) with trees, where DNNs are trained locally to extract the low-dimensional
representations, and trees are trained in the federated setting to classify the representations. This
hybrid approach holds promise for addressing the challenges associated with image, text, and graph
data in the context of hybrid federated learning.

Related Work We have summarized the related work on federated GBDTs in Section 2.2. Here
we compare HybridTree and related federated GBDT studies in Table 13. We can observe that
HybridTree is the first federated GBDT algorithm on hybrid data setting. Moreover, instead of using
node-level or tree-level knowledge aggregation in existing studies, HybridTree adopts layer-level
aggregation that effectively and efficiently incorporates the knowledge of guest parties by appending
layers, which makes it more practical.
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Figure 9: Experiments on scalability and heterogeneity of HybridTree on Cod-rna. We omit Secure-
Boost as its curve overlaps with FedTree.

Table 13: Comparison between HybridTree and other federated GBDT studies.
Setting Knowledge aggregation

Horizontal Vertical Hybrid node-level tree-level layer-level

SecureBoost (Cheng et al., 2019) ✗ ✓ ✗ ✓ ✗ ✗

FedTree (Li et al., 2023) ✓ ✓ ✗ ✓ ✗ ✗

Federboost (Tian et al., 2020) ✓ ✓ ✗ ✓ ✗ ✗

TFL (Zhao et al., 2018) ✓ ✗ ✗ ✗ ✓ ✗

SimFL (Li et al., 2020) ✓ ✗ ✗ ✗ ✓ ✗

Secure XGB (Fang et al., 2021) ✗ ✓ ✗ ✓ ✗ ✗

Pivot (Wu et al., 2020) ✗ ✓ ✗ ✓ ✗ ✗

Feverless (Wang et al., 2022) ✗ ✓ ✗ ✓ ✗ ✗

FBDT-DP (Maddock et al., 2022) ✓ ✗ ✗ ✓ ✗ ✗

HybridTree ✗ ✓ ✓ ✗ ✗ ✓
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