
Published as a conference paper at ICLR 2024

A MOTIVATING OUR DEFINITION OF MISSPECIFICATION ROBUSTNESS

In this section, we provide further discussion and motivation for our formalisation of misspecifica-
tion robustness, given in Definition 1, beyond the discussion we give in Section 2.1.

A.1 ADDITIONAL COMMENTS ON THE CONDITIONS FOR MISSPECIFICATION ROBUSTNESS

In this section, we make a few additional comments on some of the four conditions in Definition 1.
In particular, while the first condition ought to be reasonably clear, we have further comments on
each of the remaining three conditions.

Condition 2 says that for all R1, R2 ∈ R̂, if f(R1) = f(R2) then dR(R1, R2) ≤ ϵ. In other words,
any learning algorithm L based on f is guaranteed to learn a reward function that has a distance
of at most ϵ to the true reward function when trained on data generated by f , i.e. when there is
no misspecification. It may not be immediately obvious why this assumption is included, since we
assume that the data is generated by g, where f ̸= g. To see this, suppose R̂ = {R1, R2, R3, R4}
where dR(R1, R2) < ϵ, dR(R3, R4) < ϵ, and dR(R2, R3) ≫ ϵ, and let f, g : R̂ → Π be two
behavioural models where f(R1) = π1, f(R2) = f(R3) = π2, f(R4) = π3, and g(R1) =
g(R2) = π1, g(R3) = g(R4) = π3. This is illustrated in the diagram below:

In this case, we have that f(R2) = f(R3), but dR(R2, R3) ≫ ϵ. As such, f violates condition 2 in
Definition 1; a learning algorithm L based on f is not guaranteed to learn a reward function that has
distance at most ϵ to the true reward function when there is no misspecification, because f cannot
distinguish between R2 and R3, which have a large distance. However, if f(R) = g(R′), it does in
this case follow that dR(R,R′) ≤ ϵ. In other words, if the training data is coming from g, then a
learning algorithm L based on f is guaranteed to learn a reward function that has distance at most
ϵ to the true reward function. As such, we could define misspecification robustness in such a way
that f would be considered to be robust to misspecification with g in this case. However, this seems
unsatisfactory, because g essentially has to be carefully designed specifically to avoid certain blind
spots in f . In other words, while condition 1 in Definition 1 is met, it is only met spuriously. To rule
out these kinds of edge cases, we have therefore included the condition that for all R1, R2 ∈ R̂, if
f(R1) = f(R2), then it must be that dR(R1, R2) ≤ ϵ.

Condition 3 says that there for all R1 ∈ R̂ exists an R2 ∈ R̂ such that f(R2) = g(R1). Stated
differently, the image of g on R̂ is a subset of the image of f on R̂. The reason for why this
assumption is necessary is to ensure that the learning algorithm can never observer data that is
impossible according to its assumed model. For example, suppose f maps each reward function to
a deterministic policy; in that case, the learning algorithm L will assume that the observed policy
must be deterministic. What happens if such an algorithm is given data from a nondeterministic
policy? This is undefined, absent further details about L, because L cannot possibly find a reward
function that fits the training data under its assumed model. Since we do not want to make any strong
assumptions about L, it therefore seems reasonable to say that if f always produces a deterministic
policy, and g sometimes produces nondeterministic policies, then f is not robust to misspecification
with g. More generally, it has to be the case that any policy that could be produced by g, can be

12

Published as a conference paper at ICLR 2024

explained under f . This is encompassed by the condition that there for all R1 ∈ R̂ exists an R2 ∈ R̂
such that f(R2) = g(R1). Of course, in many cases we may have that Im(f) = Π, i.e. that f can
produce any policy, and in that case this condition is vacuous.

Condition 4 says that there exists R1, R2 ∈ R̂ such that f(R1) ̸= f(R2); in other words, that f ̸= g

on R̂. This condition is not strictly necessary – from a mathematical standpoint, very little would
change if we were to simply remove it from Definition 1. Indeed, the only effect that this condition
has on the results in this paper is that Theorem 1 and Corollary 1 add the condition that f ̸= g, and
that f ̸= g is part of the definition of δ-perturbations (Definition 3). Rather, the reason for including
the assumption that f ̸= g is purely to make Definition 1 more intuitive. If f = g, then f is not
misspecified, and it would seem odd to say that “f is ϵ-robust to misspecification with itself”. As
such, there is no deeper significance to this condition besides making our terminology more clear.

A.2 ON THE ASSUMPTION THAT BEHAVIOURAL MODELS ARE FUNCTIONS

Here, we will comment on the fact that behavioural models are assumed to be functions; i.e., we
assume that a behavioural model associate each reward function R with a unique policy π. This
is true for the Boltzmann-rational model and the maximal causal entropy model, but it may not be
a natural assumption in all cases. For example, there may in general be more than one optimal
policy. Thus, an optimal agent could associate some reward functions R with multiple policies π.
This particular example is not too problematic, because the set of all optimal policies still form a
convex set. As such, it is natural to assume that an optimal agent would take all optimal actions
with equal probability, which is what we have done in the definition of oτ,γ .7 However, we could
imagine alternative criteria which would associate some rewards with multiple policies, and where
there may not be any canonical way to select a single policy among them. Such criteria may then
not straightforwardly translate into a functional behavioural model.

There are several ways to handle such cases within our framework. First of all, we may simply
assume that the observed agent still has some fixed method for breaking ties between policies that it
considers to be equivalent (as we do for oτ,γ). In that case, we still ultimately end up with a function
from R to Π, in which case our framework can be applied without modification. We expect this
approach to be satisfactory in most cases.

It is worth noting that this approach does not necessarily require us to actually know how the ob-
served agent breaks ties between equivalent policies. To see this, let G : R → P(Π) be a function
that associates each reward function with a set of policies. We can then say that a behavioural model
g : R → Π implements G if g(R) ∈ G(R) for all R ∈ R. Using this definition, we could then say
that f : R → Π is robust to misspecification with G : R → P(Π) if f is robust to misspecification
with each g that implements G, where f being robust to misspecification with g is defined as in
Definition 1. In other words, we assume that the observed agent has a fixed method for breaking ties
between policies in G, but without making any assumptions about what this method is. Using that
definition, our framework can then be applied without modification.

An alternative approach could be to generalise the definition of behavioural models to allow them to
return a set of policies, i.e. f : R → P(Π). Most of our results can be extended to cover this case
in a mostly straightforward manner. However, this approach is somewhat unsatisfactory, because
we would then assume that the learning algorithm L gets to observe all policies in the set f(R⋆).
However, in reality, it seems more realistic to assume that L only gets to observe a single element of
f(R⋆), unless perhaps L gets data from multiple similar agents acting in the same environment.

A.3 ON RESTRICTED SPACES OF REWARD FUNCTIONS

Our definitions are given relative to a set of reward functions R̂, which in general may be any subset
of R. It may not be immediately obvious why this is necessary, and so we will say a few words
about that issue here.

7Note also that this is equivalent to assuming that an optimal agent would take all optimal actions with
positive probability, but that the exact probability that it associates with each action does not convey any further
information about R.

13

Published as a conference paper at ICLR 2024

First of all, we should note that we always allow R̂ = R. This means that the introduction of
R̂ makes our analysis strictly more general, in the sense that we always can assume that R̂ is
unrestricted. In other words, nothing is lost by giving our definitions and theorem statements relative
to a set of reward functions R̂, instead of the set of all reward functions.

Moreover, there are many cases where it is interesting to restrict R. To start with, we use reward
functions with type signature S×A×S → R, but it is quite common to use reward functions with a
different type signature, such as for example S×A → R or S → R. We can ensure that our analysis
covers these settings as well, by noting that we can allow R̂ to be equal to {R ∈ R | ∀s, a, s1, s2 :
R(s, a, s1) = R(s, a, s2)}, or {R ∈ R | ∀s, a1, a2, s1, s2 : R(s, a1, s1) = R(s, a2, s2)}, and so on.
As such, by using a (potentially restricted) set of rewards R̂, we can make sure that our results do
not depend on these design choices.

Additionally, there are many cases where we may have prior information about the underlying true
reward function R⋆, over and above the information provided by the observed policy. For example,
we may know that the reward function cannot depend on certain features of the environment, or
we may know that it only depends on the state of the environment at the end of an episode, and
so on. This information may come from expert knowledge, or from auxiliary data sources, etc. In
these cases, it makes sense to restrict R̂ to the set of all reward functions that are viable in light of
this prior knowledge. Moreover, restricted reward sets also allow us to handle the case where this
information is given in the form of a Bayesian prior, see Appendix A.4.

Another reason for restricting R is that Definition 1 is existential, in the sense that a single coun-
terexample in principle is enough to prevent f from being ϵ-robust to misspecification with g, even
if f(R1) = g(R2) implies dR(R1, R2) ≤ ϵ for “most” R1 and R2, etc. As such, even if f is not
ϵ-robust to misspecification with g, it could in theory still be the case that a learning algorithm L
based on f is guaranteed to learn a reward function Rh that is close to the true reward function R⋆

for most choices of R⋆. We can rule out this possibility by restricting R̂ in a way that excludes
gerrymandered counter-examples.

As such, by giving our definitions relative to a set of reward functions R̂, we make our analysis more
versatile and more general.

A.4 ON MAKING THE ANALYSIS MORE PROBABILISTIC

The formalisation of misspecification robustness in Definition 1 is essentially a worst-case analysis,
in the sense that it requires each condition to hold for all reward functions. For example, a single
pair of rewards R1, R2 with f(R1) = g(R2) and dR(R1, R2) > ϵ is enough to make it so that
f is not ϵ-robust to misspecification with g, even if f(R1) = g(R2) implies dR(R1, R2) ≤ ϵ for
“most” reward functions. This makes sense if we do not want to make any assumptions about the
true reward function R⋆, or about the inductive bias of the learning algorithm. However, in certain
cases, we may know that R⋆ is sampled from a particular distribution D over R. In those cases, it
may be more relevant to know whether dR(R⋆, Rh) ≤ ϵ with high probability.

To make this more formal, we may assume that we have two behavioural models f, g : R → Π and
a distribution D over R, that R⋆ is sampled from D, and that the learning algorithm L observes the
policy π = g(R⋆). We then assume that L returns the reward function Rh such that f(Rh) = π, and
that L selects among all such reward functions using some (potentially nondeterministic) inductive
bias. We then want to know if dR(R⋆, Rh) ≤ ϵ with probability at least 1− δ, for some δ and ϵ.

Our framework can, to an extent, be used to study this setting as well. In particular, suppose we pick
a set R̂ of “likely” reward functions such that PR∼D(R ∈ R̂) ≥ 1 − δ, and such that the learning
algorithm L will return a reward function Rh ∈ R̂ if there exists a reward function Rh ∈ R̂ such
that f(Rh) = g(R⋆). Then if f is ϵ-robust to misspecification with g on R̂, we have that L will
learn a reward function Rh such that dR(R⋆, Rh) ≤ ϵ with probability at least 1− δ.

So, for example, suppose R̂ is the set of all reward functions that have “low complexity”, for some
complexity measure and complexity threshold. The above argument then informally tells us that if
the true reward function is likely to have low complexity, and if L will attempt to fit a low-complexity
reward function to its training data, then the learnt reward function will be close to the true reward

14

Published as a conference paper at ICLR 2024

function with high probability, as long as f is ϵ-robust to misspecification with g on the set of all
low-complexity reward functions.

Thus, while Definition 1 gives us a worst-case formalisation of misspecification robustness, it is
relatively straightforward to carry out a more probabilistic analysis within the same framework.

B EXPLAINING AND MOTIVATING STARC-METRICS

In this section, we will explain Definition 2, and provide the theoretical justification for measuring
the difference between reward functions using dSTARC

τ,γ .

Let us first walk through the definition of dSTARC
τ,γ , and explain each of the steps. Intuitively speak-

ing, we want to consider R1 and R2 to be equivalent if (and only if) they induce the same ordering of
policies. Moreover, also recall that R1 and R2 have the same ordering of policies if and only if they
differ by potential shaping, S′-redistribution, and positive linear scaling (see Proposition 1). For this
reason, dSTARC

τ,γ first standardises each reward function in a way that maps all equivalent rewards to
a single representative in their respective equivalence class, before measuring their difference.

To do this, we first use cSTARC
τ,γ to map all rewards that differ by potential shaping and S′-

redistribution to a single representative. Note that for all R, the set of all rewards that differ from
R by potential shaping and S′-redistribution forms an affine subspace. This means that there is a
well-defined “smallest” element of each such equivalence class, which is the reward function that
cSTARC
τ,γ returns. It is also worth noting that cSTARC

τ,γ is an orthogonal linear transformation, that
maps R to an |S|(|A| − 1)-dimensional linear subspace of R.

After this, we normalise the resulting reward functions, by dividing them by their ℓ2-norm. This
collapses positive linear scaling, which now means that sSTARC

τ,γ (R1) = sSTARC
τ,γ (R2) if and only if

R1 and R2 have the same ordering of policies. We then measure the distance between the resulting
reward functions, and multiply this distance by 0.5 to ensure that the resulting value is between 0
and 1. For more details, see Skalse et al. (2023).

To get an intuitive sense of how dSTARC
τ,γ behaves, first note that dSTARC

τ,γ is a pseudometric on R.
Moreover, as we have already alluded to, dSTARC

τ,γ (R1, R2) = 0 if and only if R1 and R2 induce the
same ordering of policies under τ and γ. In addition to this, we also have that dSTARC

τ,γ (R1, R2) = 1
if and only if R1 and R2 induce the opposite ordering of policies under τ and γ. Furthermore, if R0

is trivial and R is non-trivial, then we have that dSTARC
τ,γ (R,R0) = 0.5. More generally, if R1 and

R2 are approximately orthogonal, then dSTARC
τ,γ (R1, R2) ≈ 0.5. As such, dSTARC

τ,γ gives each pair
of reward functions R1, R2 a distance between 0 and 1, where a distance close to 0 means that R1

and R2 have approximately the same policy order, a distance close to 1 means that they have ap-
proximately the opposite policy order, and a distance close to 0.5 means that they are approximately
orthogonal. Almost all reward functions have a distance close to 0.5.

In addition to this, dSTARC
τ,γ induces an upper bound on worst-case regret. Specifically:

Definition 6. A pseudometric d on R is sound if there exists a positive constant U , such that for
any reward functions R1 and R2, if two policies π1 and π2 satisfy that J2(π2) ≥ J2(π1), then

J1(π1)− J1(π2) ≤ U · (max
π

J1(π)−min
π

J1(π)) · d(R1, R2).

Proposition 5. dSTARC
τ,γ is sound.

For a proof of Proposition 5, see Skalse et al. (2023). Before moving on, let us briefly unpack
Definition 6. J1(π1) − J1(π2) is the regret, as measured by R1, of using policy π2 instead of π1.
Division by maxπ J1(π)−minπ J1(π) normalises this quantity to lie between 0 and 1 (though the
term is put on the right-hand side of the inequality, instead of being used as a denominator, in order
to avoid division by zero when R1 is trivial. The condition that J2(π2) ≥ J2(π1) says that R2

prefers π2 over π1. Taken together, this means that a pseudometric d on R is sound if d(R1, R2)
gives an upper bound on the (normalised) maximal regret that could be incurred under R1 if an
arbitrary policy π1 is optimised to another policy π2 according to R2. Note that we, as a special
case, may assume that π1 is optimal under R1, and that π2 is optimal under R2. Since dSTARC

τ,γ is
sound, it induces such a bound.

15

Published as a conference paper at ICLR 2024

In addition to this, dSTARC
τ,γ also induces a lower bound on worst-case regret. It may not be immedi-

ately obvious why this property is desirable. To see why this is the case, note that if a pseudometric
d on R does not induce a lower bound on worst-case regret, then there are reward functions that have
a low regret, but large distance under d. This would in turn mean that d is not tight, and that it should
be possible to find a better way to measure the distance between reward functions. If a pseudometric
induces a lower bound on regret, then these kinds of cases are ruled out. When a pseudometric has
this property, we say that it is complete:
Definition 7. A pseudometric d on R is complete if there exists a positive constant L, such that for
any reward functions R1 and R2, there exists two policies π1 and π2 such that J2(π2) ≥ J2(π1) and

J1(π1)− J1(π2) ≥ L · (max
π

J1(π)−min
π

J1(π)) · d(R1, R2),

and moreover, if R1 and R2 have the same policy order then d(R1, R2) = 0.
Proposition 6. dSTARC

τ,γ is complete.

Note that if R1 and R2 have the same policy order and maxπ J1(π) − minπ J1(π) > 0, then
d(R1, R2) = 0; the last condition ensures that this also holds when maxπ J1(π)−minπ J1(π) = 0.
Intuitively, if d is sound, then a small d is sufficient for low regret, and if d is complete, then a small
d is necessary for low regret. Soundness implies the absence of false positives, and completeness
the absence of false negatives. As per Proposition 6, we have that dSTARC

τ,γ is complete, and hence
tight. For a proof, see Skalse et al. (2023).

Moreover, if a pseudometric is both sound and complete, then this implies that it, in a certain sense,
is unique. Specifically:
Proposition 7. If two pseudometrics d1, d2 on R are both sound and complete, then d1 and d2 are
bilipschitz equivalent.

For a proof, see Skalse et al. (2023). Note that this means that any pseudometric on R that is both
sound and complete must be bilipschitz equivalent to dSTARC

τ,γ . As such, dSTARC
τ,γ is a canonical pseu-

dometric on R, in the sense that a small dSTARC
τ,γ -distance is both necessary and sufficient for low

worst-case regret, and that any other pseudometric on R with this property also must be equivalent
to dSTARC

τ,γ . Therefore, we think it is justified to regard dSTARC
τ,γ as the “right” way to quantify the

difference between reward functions.

Recent literature has proposed other pseudometrics for quantifying the difference between reward
functions, namely EPIC (Gleave et al., 2021) and DARD (Wulfe et al., 2022). However, these do
not enjoy the same strong theoretical guarantees as dSTARC

τ,γ . In particular, they are neither sound
nor complete in the sense of dSTARC

τ,γ . For more details, see Skalse et al. (2023).

C WHY NOT USE EPIC?

Many of our results are invariant to the choice of pseudometric on R, but when we do have to pick
a particular metric, we use dSTARC

τ,γ . Another prominent pseudometric on R is EPIC, which was
first proposed by Gleave et al. (2021), and has since become the most widely used pseudometric
on R (as judged by the number of citations at the time of writing). So why are we not using EPIC
in this paper? There is a simple reason for this, namely that EPIC is sensitive to S′-redistribution.
Specifically, for any reward function R and any δ ∈ (0, 1] there exists two reward functions R1,
R2 such that R, R1, and R2 differ by S′-redistribution, but such that the EPIC-distance between
R1 and R2 is 1 − δ. In other words, starting from an arbitrary reward function R and using only
S′-redistribution, we can find reward functions whose EPIC-distance is arbitrarily close to 1.

This is problematic, because essentially any behavioural model of interest is invariant to S′-
redistribution (including oτ,γ , bτ,γ,β , and cτ,γ,α). This means that any such model will violate con-
dition 2 in Definition 1 for all ϵ < 1 when dR is the EPIC pseudometric. Moreover, this also means
that if f is ϵ-robust to misspecification with g (as defined by the EPIC distance), and g is invariant
to S′-redistribution, then it must be the case that ϵ ≥ 0.5 (c.f. Lemma 1). Since an EPIC-distance of
0.5 is very large, such results are essentially vacuous. In other words, the EPIC-pseudometric is too
loose, and cannot be used to derive any non-trivial results within the setting that we are concerned
with in this paper.

16

Published as a conference paper at ICLR 2024

In addition to this, dSTARC
τ,γ also yields stronger theoretical guarantees than EPIC; see Appendix B

and Skalse et al. (2023).

D WHY ARE CONTINUOUS MODELS NOT ROBUST TO PERTURBATIONS?

In this section, we give a more in-depth interpretation and explanation of Theorem 3.

Intuitively speaking, the fundamental reason that Theorem 3 holds is because there is a mismatch
between ℓ2-distance and STARC-distance. In particular, if f is continuous, then it must send reward
functions that are close under the ℓ2-norm to policies that are close under the ℓ2-norm. However,
there are reward functions that are close under the ℓ2-norm but have a large STARC distance. Hence,
if f is continuous then it will send some reward functions that are far apart under dSTARC

τ,γ (but close
under ℓ2) to policies which are close (under ℓ2), which in turn means that f is not ϵ/δ-separating.

To see this, let R be an arbitrary non-trivial reward function, and let ϵ be any positive constant. We
then have that ϵ · R and −ϵ · R have the opposite policy ordering, which means that dSTARC

τ,γ (ϵ ·
R,−ϵ · R) = 1. However, by making ϵ small enough, we can ensure that the ℓ2-distance between
ϵ ·R and −ϵ ·R is arbitrarily small, and hence that dΠ(ϵ ·R,−ϵ ·R) < δ. Thus, we have two reward
functions that have a large STARC-distance that are sent to policies that are close.

This example is not too concerning by itself, because it only demonstrates that we may run into
trouble for reward functions that are very close to 0, and we may expect such reward functions to be
unlikely (both in the sense that the observed agent is unlikely to have such a reward function, and in
the sense that the inductive bias of the learning algorithm is unlikely to generate such a hypothesis).
It would therefore be natural to restrict R̂ in some way, for example by imposing a minimum size on
the ℓ2-norm of all considered reward functions, or by supposing that they are normalised. However,
Theorem 3 tells us that this will not work either: as long as there is some positive constant c such
that if ||R||2 = c then R ∈ R̂, then we can always find reward functions R1, R2 such that their
ℓ2-distance is small but dSTARC

τ,γ (R1, R2) is large. Theorem 3 thus applies very widely.

E WHY IS IRL SENSITIVE TO MISSPECIFIED PARAMETERS?

In this section, we give a more in-depth explanation of Theorems 4 and 5.

To start with, the reason that Theorem 4 is true is that we for any reward function R1 can find
a reward function R2 such that R1 and R2 differ by potential shaping with γ1, but such that R1

and R2 have a different policy ordering under γ2 (when γ1 ̸= γ2). To see this, consider a simple
environment with three states s0, s1, s2, where s0 is the initial state, and where the agent can choose
to either go directly from s0 to s2, or choose to first visit state s1:

s0start

s1

s2

γ1 · x

−x

Let R1 be any reward function over this environment, and let R2 be the reward function that we get
if we take R1 and increase the reward of going from s0 to s1 by γ1 · x, and decrease the reward of

17

Published as a conference paper at ICLR 2024

going from s1 to s2 by x. Now, the policy order under discounting with γ1 is completely unchanged.
At s1, the value of every action is changed by the same amount, and so there is no reason to change
action. Similarly, at s0, the value of going to s1 is changed by γ1 · x − γ1 · x = 0, and so there
is likewise no reason to change action. This transformation corresponds to potential shaping where
Φ(s1) = x and Φ(s0) = Φ(s2) = 0. Therefore, if f : R → Π is invariant to potential shaping with
γ1, then f(R1) = f(R2).

However, if we discount with γ2, then R1 and R2 have a different policy order. In particular, the
value of going from s0 to s1 is changed by γ1 · x − γ2 · x = (γ1 − γ2) · x ̸= 0. Thus, if the
optimal action under R1 at s0 is to go to s1, then by making x sufficiently large or sufficiently small
(depending on whether γ1 > γ2, or vice versa), then we can create a reward function R2 for which
the optimal action instead is to go to s2, and vice versa.

Thus, in this environment, for every reward function R1 and every γ1, γ2 such that γ1 ̸= γ2, we can
find a reward function R2 such that R1 and R2 differ by potential shaping with γ1, but such that they
have a different ordering of policies when we discount with γ2. This in turn means that we cannot
be robust to misspecification of γ; if the observed policy is computed using γ2, then there are reward
functions that would lead to the same observed policy (and which hence cannot be distinguished by
the learning process) but which nonetheless are a large distance from each other as evaluated by γ1.
This issue is present as long as γ1 ̸= γ2, and so the degree of misspecification does not matter.

This is the basic mechanism behind Theorem 4, although this theorem additionally shows that the
dynamic which we describe above shows up for any non-trivial transition function. Intuitively speak-
ing, we can use potential shaping to move reward around in the MDP (so that the agent receives a
larger immediate reward at the cost of a lower reward later, or vice versa). However, because of
the discounting, later rewards must be made larger than immediate rewards. If the discount values
do not match, then this “compensation” will also not match, leading to a distortion of the policy
ordering. Indeed, we can make it so that this distortion dominates the rest of the reward function.
For the full details, see the proof of Theorem 4.

As for Theorem 4, this theorem is similarly true because we for any reward function R1 can find a
reward function R2 such that R1 and R2 differ by S′-redistribution with τ1, but such that R1 and
R2 have a different policy ordering under τ2 (when τ1 ̸= τ2). To see this, suppose we have an MDP
with (at least) three states s0, s1, s2, and that taking action a in state s0 under transition function τ1
takes you to state s1 with probability p, and s2 with probability 1− p. Similarly, taking action a in
state s0 under transition function τ2 takes you to state s1 with probability q, and s2 with probability
1− q, where p ̸= q.

s0start

s1 s2

p, q 1− p, 1− q

Let R1 be any reward function, and X any real number. Now note that we, regardless of the values
of R1 and X , can find values of R2(s0, a, s1) and R2(s0, a, s2) such that

p ·R2(s0, a, s1) + (1− p) ·R2(s0, a, s2) = p ·R1(s0, a, s1) + (1− p) ·R1(s0, a, s2)

and such that q ·R2(s0, a, s1) + (1− q) ·R2(s0, a, s2) = X .

Note that this means that ES′∼τ1(s0,a)[R2(s0, a, S
′)] = ES′∼τ1(s0,a)[R1(s0, a, S

′)], and that
ES′∼τ2(s0,a)[R2(s0, a, S

′)] = X . Note also that X was selected arbitrarily. In other words, the
fact that R1 and R2 differ by S′-redistribution under τ1, leaves the expectation of R2 under τ2 com-
pletely unconstrained for all transitions where τ1 ̸= τ2. If τ1 ̸= τ2 for all states, then the policy
order of R2 under τ2 can be literally any possible policy ordering. This in turn means that we cannot
be robust to misspecification of τ ; if the observed policy is computed using τ2, then there are reward
functions that would lead to the same observed policy (and which hence cannot be distinguished by
the learning process) but which nonetheless have an arbitrarily large distance under τ1.

18

Published as a conference paper at ICLR 2024

It is also important to note that Theorem 4 does not require that τ1 ̸= τ2 for all states; indeed, it
is enough for them to differ at just a single transition s, a. Using the same strategy as above, we
can find two reward functions R1 and R2 such that R1 and R2 differ by S′-redistribution under τ1,
but such that under τ2, the value of a given policy π under R1 depends primarily on visiting s, a as
many times as possible, but the value of π under R2 depends primarily on visiting s, a as few times
as possible. For the full details, see the proof of Theorem 4.

We can also give a somewhat less artificial example, to make this point more intuitive. Consider
a simple N × N gridworld environment. We assume that the agent has four actions, up, down,
left, and right. We assume that τ1 is deterministic, so that if the agent takes action up, then it
moves one step up, etc. Moreover, we assume that τ2 is slippery, so that if the agent takes action
up, then it moves up, up-left, and up-right with equal probability, and that if it takes action right,
then it moves right, up-right, and down-right with equal probability, etc. For simplicity, we will also
assume that the environment has a “PacMan-like” border, so that if the agent moves up from the top
of the environment, then it ends up at the bottom, etc.8

Now suppose that R1 and R2 reward each transition depending on how the agent moves, according
to the following schemas:

R1

0

1

1

1

0

−1

−1

−1

R2

0

3

−1

−1

0

1

1

−3

These two reward functions are identical under τ2, and give the agent 1 reward for going right, −1
for going left, and 0 for going up or down. However, under τ1, they are opposites; R1 rewards the
agent for going right, and R2 rewards the agent for going left. Thus, if we observe a policy computed
under τ2, then we will not be able to distinguish between R1 and R2, even though they have a large
distance under τ1. Similar issues will occur given any discrepancy between τ1 and τ2.

8In other words, the environment is shaped like a torus.

19

Published as a conference paper at ICLR 2024

F PROOFS

Here, we will provide the proofs of all our theorems and other theoretical results. The proofs are
split up in three sections, mirroring the three subsections in Section 3.

F.1 NECESSARY AND SUFFICIENT CONDITIONS

Theorem 1. Let R̂ be a set of reward functions, let f : R̂ → Π be a behavioural model, and let dR

be a pseudometric on R̂. Suppose that f(R1) = f(R2) =⇒ dR(R1, R2) = 0 for all R1, R2 ∈ R̂.
Then f is ϵ-robust to misspecification with g (as defined by dR) if and only if g = f ◦ t for some
t : R̂ → R̂ such that dR(R, t(R)) ≤ ϵ for all R ∈ R̂, and such that f ̸= g.

Proof. For the first direction, let t : R̂ → R̂ be a transformation such that dR(R, t(R)) ≤ ϵ for all
R ∈ R̂, and let g = f ◦ t. To show that f is ϵ-robust to misspecification with g, we need to show
that:

1. For all R1, R2 ∈ R̂, if f(R1) = g(R2) then dR(R1, R2) ≤ ϵ.

2. For all R1, R2 ∈ R̂, if f(R1) = f(R2) then dR(R1, R2) ≤ ϵ.

3. For all R1 ∈ R̂ there exists an R2 ∈ R̂ such that f(R2) = g(R1).

4. There exists R1, R2 ∈ R̂ such that f(R1) ̸= g(R2).

For the first condition, suppose f(R1) = g(R2), which implies that f(R1) = f ◦ t(R2). By
assumption, we have that if f(R) = f(R′), then dR(R,R′) = 0. This implies that dR(R1, t(R2)) =
0. Moreover, we have that dR(R, t(R)) ≤ ϵ for all R; this implies that dR(R2, t(R2)) ≤ ϵ. By
the triangle inequality, we then have that dR(R1, R2) ≤ 0 + ϵ = ϵ. Since R1 and R2 were chosen
arbitrarily, this means that condition 1 holds. For condition 2, note that we by assumption have that
if f(R1) = f(R2), then dR(R1, R2) = 0. Since 0 ≤ ϵ, this implies that condition 2 holds. For
condition 3, let R1 be any reward function, and let R2 = t(R1). Now f(R2) = g(R1). Since R1

was chosen arbitrarily, this means that condition 3 is satisfied. Condition 4 is satisfied by direct
assumption. We have thus shown that if g = f ◦ t for some t : R̂ → R̂ such that dR(R, t(R)) ≤ ϵ

for all R ∈ R̂ and such that f ̸= g, then f is ϵ-robust to misspecification with g (as defined by dR).

For the other direction, let f be ϵ-robust to misspecification with g (as defined by dR). For each
y ∈ Im(g), let Ry ∈ R̂ be some reward function such that f(Ry) = y; since Im(g) ⊆ Im(f), such
an Ry ∈ R̂ always exists. Now let t be the function that maps each R ∈ R̂ to Rg(R). Since by
construction g(R) = f(Rg(R)), and since f is ϵ-robust to misspecification with g on R̂, we have
that dR(R,Rg(R)) ≤ ϵ. Since by construction t(R) = Rg(R), this means that dR(R, t(R)) ≤ ϵ.
Thus t : R̂ → R̂ satisfies the condition that dR(R, t(R)) ≤ ϵ. Moreover, since f is ϵ-robust to
misspecification with g, we have that f ̸= g. Finally, note that g = f ◦ t. This completes the proof
of the other direction, which means that we are done.

Proposition 3. A transformation t : R → R satisfies that dSTARC
τ,γ (R, t(R)) ≤ ϵ for all R ∈ R if

and only if t can be expressed as t1 ◦ · · · ◦ tn−1 ◦ tn ◦ tn+1 ◦ · · · ◦ tm for some n and m where

||R− tn(R)||2 ≤ ||cSTARC
τ,γ (R)||2 · sin(2 arcsin(ϵ/2))

for all R, and for all i ̸= n and all R, we have that R and ti(R) differ by potential shaping (with
γ), S′-redistribution (with τ), or positive linear scaling.

Proof. For the first direction, suppose dSTARC
τ,γ (R, t(R)) ≤ ϵ for all R ∈ R, and let R be an

arbitrarily selected reward function. We will show that it is possible to navigate from R to t(R)
using the described transformations.

20

Published as a conference paper at ICLR 2024

Recall that dSTARC
τ,γ (R1, R2) is computed by first applying cSTARC

τ,γ to both R1 and R2, then normal-
ising the resulting vectors, and finally measuring their ℓ2-distance. This means that sSTARC

τ,γ (R) and
sSTARC
τ,γ (t(R)) can be placed in the following diagram, where ϵ′ ≤ ϵ:

Now, elementary trigonometry tells us that θ = 2arcsin(ϵ′/2). Moreover, suppose we extend
sSTARC
τ,γ (R) to make the triangle a right triangle, as follows:

Here elementary trigonometry again tells us that x/(1 + y) = sin(2 arcsin(ϵ′/2)), or that x =
(1 + y) sin(2 arcsin(ϵ′/2)). This means that we can go from R to t(R) as follows:

1. Apply cSTARC
τ,γ . Since R and cSTARC

τ,γ (R) differ by potential shaping and S′-redistribution,
this transformation can be expressed as a combination of potential shaping and S′-
redistribution. Call the resulting vector R′.

2. Normalise R′, so that its magnitude is 1. This transformation is an instance of positive
linear scaling. Call the resulting vector R′′.

3. Scale R′′ until it forms a right triangle with sSTARC
τ,γ (t(R)). This transformation is an

instance of positive linear scaling. Call the resulting vector R′′′.

21

Published as a conference paper at ICLR 2024

4. Move from R′′′ to sSTARC
τ,γ (t(R)). This will move R′′′ by (1 + y) sin(2 arcsin(ϵ′/2)),

where (1 + y) = ||R′′′||2. Moreover, since R′′′ is in the image of cSTARC
τ,γ , we have

that R′′′ = cSTARC
τ,γ (R′′′), and so ||R′′′||2 = ||cSTARC

τ,γ (R′′′)||2. This means that R′′′ is
moved by ||cSTARC

τ,γ (R′′′)||2 · sin(2 arcsin(ϵ′/2)). Since ϵ′ ≤ ϵ ≤ π/2, this means that
||R′′′ − sSTARC

τ,γ (t(R))||2 ≤ ||cSTARC
τ,γ (R′′′)||2 · sin(2 arcsin(ϵ/2)).

5. Move from sSTARC
τ,γ (t(R)) to cSTARC

τ,γ (t(R)). Since sSTARC
τ,γ (t(R)) is simply a normalised

version of cSTARC
τ,γ (t(R)), this is an instance of positive linear scaling.

6. Move from cSTARC
τ,γ (t(R)) to t(R). Since t(R) and cSTARC

τ,γ (t(R)) differ by potential shap-
ing and S′-redistribution, this transformation can be expressed as a combination of potential
shaping and S′-redistribution.

Thus, for an arbitrary reward function R, we can find a series of transformations that fit the given
description. This completes the first direction.

For the other direction, suppose t can be expressed as t1 ◦ · · · ◦ tn−1 ◦ tn ◦ tn+1 ◦ · · · ◦ tm where

||R− tn(R)||2 ≤ ||cSTARC
τ,γ (R)||2 · sin(2 arcsin(ϵ/2))

for all R, and for all i ̸= n and all R, we have that R and ti(R) differ by potential shaping (with γ),
S′-redistribution (with τ), or positive linear scaling.

Recall that dSTARC
τ,γ is invariant to potential shaping (with γ), S′-redistribution (with τ), and positive

linear scaling; this means that dSTARC
τ,γ (R, ti(R)) = 0 for i ̸= n.

For tn, recall that cSTARC
τ,γ is a linear orthogonal projection; this means that ||cSTARC

τ,γ (R1) −
cSTARC
τ,γ (R2)||2 ≤ ||R1 −R2||2. As such, if ||R− tn(R)||2 ≤ ||cSTARC

τ,γ (R)||2 · sin(2 arcsin(ϵ/2)),
then ||cSTARC

τ,γ (R)−cSTARC
τ,γ (tn(R))||2 ≤ ||cSTARC

τ,γ (R)||2 · sin(2 arcsin(ϵ/2)) as well. Consider the
following diagram:

Now cSTARC
τ,γ (tn(R)) is located within circle in the diagram above. The vector within this circle that

maximises the distance to cSTARC
τ,γ (R) after normalisation lies on the tangent of the circle:

22

Published as a conference paper at ICLR 2024

Elementary trigonometry now tells us that

sin(θ) =
||cSTARC

τ,γ (R)||2 · sin(2 arcsin(ϵ/2))
||cSTARC

τ,γ (R)||2
,

which gives that θ = 2arcsin(ϵ/2). From this, we have that δ = ϵ, and so dSTARC
τ,γ (R, t(R)) ≤ ϵ.

This completes the other direction, and hence the proof.

Corollary 1. Let R̂ be a set of reward functions, τ be a transition function, γ a discount factor,
β a temperature parameter, and α a weight parameter. Moreover, let T̂ϵ be the set of all functions
t : R → R that satisfy Proposition 3, and additionally satisfy that t(R) ∈ R̂ for all R ∈ R̂.
Then bτ,γ,β : R̂ → Π is ϵ-robust to misspecification with g (as defined by dSTARC

τ,γ) if and only if
g = bτ,γ,β ◦ t for some t ∈ T̂ϵ, and cτ,γ,α : R̂ → Π is ϵ-robust to misspecification with g (as defined
by dSTARC

τ,γ) if and only if g = cτ,γ,α ◦ t for some t ∈ T̂ϵ.

Proof. Immediate from Theorem 1 and Proposition 3.

Proposition 4. Unless |S| = 1 and |A| = 2, then for any τ and any γ there exists an E > 0 such
that for all ϵ < E, there is no behavioural model g such that oτ,γ is ϵ-robust to misspecification with
g (as defined by dSTARC

τ,γ).

Proof. We will first show that unless |S| = 1 and |A| = 2, there exists reward functions R1, R2

and an E > 0 such that oτ,γ(R1) = oτ,γ(R2), but dSTARC
τ,γ (R1, R2) = E. In particular, note that if

|S| ≥ 2 or |A| ≥ 3, then there exists uncountably many reward functions that do not have the same
ordering of policies. Moreover, also note that Im(oτ,γ) is finite. By the pigeonhole principle, this
means that there must exist a policy π ∈ Im(oτ,γ) and reward functions R1, R2 such that oτ,γ(R1) =
oτ,γ(R2) = π, and such that R1 and R2 do not have the same ordering of policies. Moreover, recall
that dSTARC

τ,γ (R1, R2) = 0 if and only if R1 and R2 have the same ordering of policies. Thus, unless
|S| = 1 and |A| = 2, there exists reward functions R1, R2 such that oτ,γ(R1) = oτ,γ(R2), but
dSTARC
τ,γ (R1, R2) = E > 0. Thus oτ,γ violates condition 2 of Definition 1 for all ϵ < E.

F.2 PERTURBATION ROBUSTNESS

Theorem 2. Let R̂ be a set of reward functions, let f : R̂ → Π be a behavioural model, let dR be
a pseudometric on R̂, and let dΠ be a pseudometric on Π. Then f is ϵ-robust to δ-perturbation (as
defined by dR and dΠ) if and only if f is ϵ/δ-separating (as defined by dR and dΠ).

Proof. For the first direction, suppose f is ϵ/δ-separating, and let g be a δ-perturbation of f with
Im(g) ⊆ Im(f). We will show that f and g satisfy the conditions of Definition 1. For the first

23

Published as a conference paper at ICLR 2024

condition, let R1, R2 be two arbitrary reward functions in R̂ such that f(R1) = g(R2). Since g is
a δ-perturbation of f , we have that dΠ(g(R2), f(R2)) ≤ δ. Since f(R1) = g(R2), straightforward
substitution thus gives us that dΠ(f(R1), f(R2)) ≤ δ. Since f is ϵ/δ-separating, this means that
dR(R1, R2) ≤ ϵ. Since R1 and R2 were chosen arbitrarily, this means that if f(R1) = g(R2)
then dR(R1, R2) ≤ ϵ. Thus, the first condition of Definition 1 holds. For the second condition,
note that if f(R1) = f(R2), then dΠ(f(R1), f(R2)) = 0 ≤ δ. Since f is ϵ/δ-separating, this
means that dR(R1, R2) ≤ ϵ, which means that the second condition is satisfied as well. The third
condition is satisfied, since we assume that Im(g) ⊆ Im(f), and the fourth condition is satisfied by
the definition of δ-perturbations. This means that f and g satisfy all the conditions of Definition 1,
and thus f is ϵ-robust to misspecification with g. Since g was chosen arbitrarily, this means that f is
ϵ-robust to misspecification with any δ-perturbation g such that Im(g) ⊆ Im(f). Thus f is ϵ-robust
to δ-perturbation.

For the second direction, suppose f is not ϵ/δ-separating. This means that there exist R1, R2 ∈ R̂
such that dR(R1, R2) > ϵ and dΠ(f(R1), f(R2)) ≤ δ. Now let g : R̂ → R̂ be the behavioural
model where g(R1) = f(R2), g(R2) = f(R1), and g(R) = f(R) for all R ̸∈ {R1, R2}. Now g is
a δ-perturbation of f . However, f is not ϵ-robust to misspecification with g, since g(R1) = f(R2),
but dR(R1, R2) > ϵ. Thus, if f is not ϵ/δ-separating then f is not ϵ-robust to δ-perturbation, which
in turn means that if f is ϵ-robust to δ-perturbation, then f is must be ϵ/δ-separating.

Theorem 3. Let dR be dSTARC
τ,γ , and let dΠ be a pseudometric on Π which satisfies the condition

that for all δ1 there exists a δ2 such that if ||π1 − π2||2 < δ2 then dΠ(π1, π2) < δ1. Let c be any
positive constant, and let R̂ be a set of reward functions such that if ||R||2 = c then R ∈ R̂. Let
f : R̂ → Π be continuous. Then f is not ϵ/δ-separating for any ϵ < 1 or δ > 0.

Proof. Let R be a non-trivial reward function that is orthogonal to all trivial reward functions. Since
the set of all trivial reward functions form a linear subspace, such a reward function R exists. Note
that R must not necessarily be contained in R̂.

We now have that for any positive constant ϵ, it is the case that ϵR and −ϵR have the opposite
ordering of policies, and thus dSTARC

τ,γ (ϵR,−ϵR) = 1. Next, let RΦ be some potential-shaping
reward function such that ||ϵR+RΦ||2 = c. Since potential shaping does not change the ordering of
policies, we have that ϵR+RΦ and ϵR+RΦ must have the opposite ordering of policies as well, and
so dSTARC

τ,γ (ϵR+RΦ,−ϵR+RΦ) = 1. Moreover, since RΦ is trivial, we have that both ϵR and −ϵR
are orthogonal to RΦ, and so || − ϵR+RΦ||2 = c as well. Since ||ϵR+RΦ||2 = ||ϵR+RΦ||2 = c,
we have that both ϵR+RΦ and −ϵR+RΦ are contained in R̂.

Let δ1 be any positive constant. By assumption, there exists a δ2 such that if ||π1 − π2||2 < δ2 then
dΠ(π1, π2) < δ1. Moreover, since f is continuous, there exists an ϵ1 such that if ||R1 −R2||2 < ϵ1,
then ||f(R1) − f(R2)||2 < δ2. Next, note that by making ϵ sufficiently small, we can ensure that
the ℓ2-distance between ϵR+RΦ and ϵR+RΦ is arbitrarily small (and, in particular, less than ϵ1).

Thus, for any positive δ there exist reward functions ϵR+RΦ and −ϵR+RΦ that are both contained
in R̂, such that dΠ(f(ϵR+RΦ), f(−ϵR+RΦ)) < δ, and such that dSTARC

τ,γ (ϵR+RΦ,−ϵR+RΦ) =
1. Thus f is not ϵ/δ-separating for any δ > 0 and any ϵ < 1.

F.3 MISSPECIFIED PARAMETERS

Lemma 1. Let R̂ be a set of reward functions, let f, g : R̂ → Π be two behavioural models, and
let dR be a pseudometric on R̂. Suppose f is ϵ-robust to misspecification with g (as defined by dR).
Then if g(R1) = g(R2), we have that dR(R1, R2) ≤ 2ϵ.

Proof. Let f, g : R̂ → R̂ be two behavioural models, and suppose f is ϵ-robust to misspecification
with g. Let R1, R2 ∈ R̂ be any two reward functions such that g(R1) = g(R2). From condition 3 in
Definition 1, we have that there must be a reward function R3 such that f(R3) = g(R1) = g(R2).
From condition 1 in Definition 1, we have that dR(R3, R1) ≤ ϵ and dR(R3, R2) ≤ ϵ. The triangle
inequality then implies that dR(R1, R2) ≤ 2ϵ.

24

Published as a conference paper at ICLR 2024

Lemma 2. If fγ : R → Π is invariant to potential shaping with γ, then for all τ and all γ1, γ2
such that γ1 ̸= γ2 and τ is non-trivial, then there exists a reward function R† such that fγ1

(R) =
fγ1

(R+ αR†) for all R ∈ R and all α ∈ R.

Proof. Analogous to the proof of Lemma A.18 in Skalse & Abate (2023).

Lemma 3. If fτ : R → Π is invariant to S′-redistribution with τ , then for all γ and all τ1, τ2
such that τ1 ̸= τ2, there exists a reward function R† that is non-trivial under τ2 and γ, such that
fτ1(R) = fτ1(R+ αR†) for all R ∈ R and all α ∈ R.

Proof. Since fτ1 is invariant to S′-redistribution with τ1, we have that fτ1(R1) = fτ1(R2) for any
two reward functions R1, R2 such that

ES′∼τ1(s,a) [R1(s, a, S
′)] = ES′∼τ1(s,a) [R2(s, a, S

′)] .

Note that R1 and R2 satisfy this condition if and only if

ES′∼τ1(s,a) [(R2 −R1)(s, a, S
′)] = 0.

That is to say, if R′ is a reward function such that ES′∼τ1(s,a) [R
′(s, a, S′)] = 0, then fτ1(R) =

fτ1(R+R′) for all R. Next, note that the set of all such reward functions R′ form a linear subspace
of R, with |S||A|(|S| − 1) dimensions. We will show that this subspace contains reward functions
that are non-trivial under γ and τ2.

Since τ1 ̸= τ2, we have that there exists a state s and action a such that τ1(s, a) ̸= τ2(s, a).
Let R† be a reward function that is 0 everywhere, except that ES′∼τ1(s,a) [R

′(s, a, S′)] =
0, and ES′∼τ2(s,a) [R

′(s, a, S′)] = 1. Note that there is always a solution to this sys-
tem of linear equations. In particular, the values of R†(s, a, s′) for each transition s, a, s′

form a |S|-dimensional vector space. The set of all values for these variables that satisfy
ES′∼τ1(s,a) [R

′(s, a, S′)] = 0 form an (|S| − 1)-dimensional linear subspace, and the set of all
values that satisfy ES′∼τ2(s,a) [R

′(s, a, S′)] = 1 form an (|S| − 1)-dimensional affine subspace.
These two sets must intersect, unless they are parallel. However, since

∑
s′ P(τ1(s, a) = s′) =∑

s′ P(τ2(s, a) = s′) = 1, they cannot be parallel. Thus, such a reward function R† must exist.

It is clear that R† is non-trivial under γ and τ2. To spell it out; since all states are reachable under
τ2 and µ0, there exists a policy π that visits state s with positive probability. Let π1 and π2 be
two policies that are identical to π everywhere, except that π1 takes action a with probability 1 in
state s, and π2 takes action a with probability 0 in state s. Then J†(π1) > J†(π2). Moreover, since
ES′∼τ1(s,a)

[
R†(s, a, S′)

]
= 0 for all s and a, we have that R and R+αR† differ by S′-redistribution

(with τ1) for all reward functions R ∈ R and all scalars α ∈ R. Thus fτ1(R) = fτ1(R+ αR†).

Thus, if fτ : R → Π is invariant to S′-redistribution with τ , then for all γ and all τ1, τ2 such that
τ1 ̸= τ2, there exists a reward function R† that is non-trivial under τ2 and γ, such that fτ1(R) =
fτ1(R+ αR†) for all R ∈ R and all α ∈ R.

Theorem 4. If fγ : R → Π is invariant to potential shaping with γ, and γ1 ̸= γ2, then fγ1
is not

ϵ-robust to misspecification with fγ2
under dSTARC

τ,γ3
for any non-trivial τ , any γ3, and any ϵ < 0.5.

Proof. If γ1 ̸= γ2, then either γ1 ̸= γ3 or γ2 ̸= γ3.

If γ1 ̸= γ3, then Lemma 2 implies that there exists a reward function R† that is non-trivial under
τ and γ3, such that fγ1

(R) = fγ1
(R + αR†) for all R ∈ R and all α ∈ R. This means that

fγ1
(R†) = fγ1

(−R†) and dSTARC
τ,γ3

(R†,−R†) = 1. Thus fγ1
violates condition 2 of Definition 1 for

all ϵ < 1.

If γ2 ̸= γ3, then Lemma 2 implies that there exists a reward function R† that is non-trivial under
τ and γ3, such that fγ2(R) = fγ2(R + αR†) for all R ∈ R and all α ∈ R. This means that
fγ2(R

†) = fγ2(−R†) and dSTARC
τ,γ3

(R†,−R†) = 1. Then Lemma 1 implies that there can be no f

that is ϵ-robust to misspecification with fγ2 (as defined by dSTARC
τ,γ3

) for any ϵ < 0.5.

Theorem 5. If fτ : R → Π is invariant to S′-redistribution with τ , and τ1 ̸= τ2, then fτ1 is not
ϵ-robust to misspecification with fτ2 under dSTARC

τ3,γ for any τ3, any γ, and any ϵ < 0.5.

25

Published as a conference paper at ICLR 2024

Proof. If τ1 ̸= τ2, then either τ1 ̸= τ3 or τ2 ̸= τ3.

If τ1 ̸= τ3, then Lemma 3 implies that there exists a reward function R† that is non-trivial under
τ3 and γ, such that fτ1(R) = fτ1(R + αR†) for all R ∈ R and all α ∈ R. This means that
fτ1(R

†) = fτ1(−R†) and dSTARC
τ3,γ (R†,−R†) = 1. Thus fτ1 violates condition 2 of Definition 1 for

all ϵ < 1.

If τ2 ̸= τ3, then Lemma 3 implies that there exists a reward function R† that is non-trivial under
τ3 and γ, such that fτ2(R) = fτ2(R + αR†) for all R ∈ R and all α ∈ R. This means that
fτ2(R

†) = fτ2(−R†) and dSTARC
τ3,γ (R†,−R†) = 1. Then Lemma 1 implies that there can be no f

that is ϵ-robust to misspecification with fτ2 (as defined by dSTARC
τ3,γ) for any ϵ < 0.5.

G CONNECTING OUR ANALYSIS TO EARLIER PROPOSALS

In this section, we will explain how to connect the results of Skalse & Abate (2023) to our results
in a rigorous way. Skalse & Abate (2023) assume that we have a partition P on R, which of course
corresponds to an equivalence relation ≡P , and say that two reward functions R1, R2 should be
considered to be “close” if R1 ≡P R2. Like us, they consider functions f, g : R → Π that take a
reward function and return a policy. They then say that f is “P -robust to misspecification with g” if
each of the following conditions hold:

1. f(R1) = g(R2) =⇒ R1 ≡P R2.
2. f(R1) = f(R2) =⇒ R1 ≡P R2.
3. For all R1 there exists an R2 such that f(R2) = g(R1).
4. f ̸= g.

Note that this definition is analogous to Definition 1, except that an equivalence relation P plays the
role that a pseudometric dR does in our framework. Next, note that we for any pseudometric dR can
define an equivalence relation ≡P such that R1 ≡P R2 if and only if dR(R1, R2) = 0. In that case,
we would have that f is P -robust to misspecification with g (in the terminology of Skalse & Abate,
2023) if and only if f is 0-robust to misspecification with g (as evaluated by dR) in our terminology
(i.e. Definition 1). Moreover, if f is 0-robust to misspecification with g, then it of course follows
that f is ϵ-robust to misspecification with g for all ϵ ≥ 0. In this way, their results can be expressed
within our more general framework.

Next, also recall that dSTARC
τ,γ (R1, R2) = 0 if and only if R1 and R2 induce the same ordering of

policies (under τ and γ). Skalse & Abate (2023) use “ORDM” to denote this equivalence relation.
Thus, if f is ORDM-robust to misspecification with g (as defined by Skalse & Abate, 2023) then
f is ϵ-robust to misspecification with g (as evaluated by dSTARC

τ,γ) for all ϵ ≥ 0.

26

	Motivating Our Definition of Misspecification Robustness
	Additional Comments On the Conditions For Misspecification Robustness
	On the Assumption That Behavioural Models Are Functions
	On Restricted Spaces of Reward Functions
	On Making the Analysis More Probabilistic

	Explaining and Motivating STARC-Metrics
	Why Not Use EPIC?
	Why Are Continuous Models Not Robust to Perturbations?
	Why Is IRL Sensitive to Misspecified Parameters?
	Proofs
	Necessary and Sufficient Conditions
	Perturbation Robustness
	Misspecified Parameters

	Connecting Our Analysis To Earlier Proposals

