
A Experimental details

A.1 Experimental setup

Architectures. As stated in Section 5, we use v2 instantiations of ResNets and instantiations of
ResNeXts having the same reordering of operations inside residual blocks as ResNets v2. Practically,
our instantiations of ResNeXts are obtained by starting from ResNets v2 and applying the same
changes in bottleneck widths and number of groups in 3× 3 convolutions as the changes yielding
ResNeXts v1 from ResNets v1, using a cardinality 32 and a dimension 4 [78].

As also stated in Section 6, we consider two variants of EfficientNets: (i) the original variant with one
depthwise convolution per MBConv block and with expansion ratio of 6 [52], and (ii) a variant with
each depthwise convolution replaced by a group convolution of group size 16 and with expansion
ratio of 4 [79]. Compared to the original variant, the variant with group convolutions has roughly the
same number of parameters and slightly more floating point operations (FLOPs) (cf Table 5), but it is
executed more efficiently on common A.I. accelerators. Interestingly, the fact that GN+WS does not
perform well even in this variant (cf Tables 4, 8 and Figure 7) suggests that the problem related to the
removal of degrees of freedom by WS goes beyond just depthwise convolutions [20].

Table 5: Number of parameters and number of FLOPs in EfficientNets. Quantities are reported for
EfficientNets-B0 (EN-B0) and EfficientNets-B2 (EN-B2) in the variant with depthwise convolutions
and expansion ratio of 6 (left) and in the variant with group convolutions of group size 16 and
expansion ratio of 4 (right).

depthwise convs group convs

EN-B0 EN-B2 EN-B0 EN-B2

Number of parameters 5.3M 9.1M 5.9M 9.5M
Number of FLOPs 0.4B 1.0B 0.6B 1.5B

PN. We always set PN’s numerical stability constant to ε = 0.03, as we found smaller ε can lead
to suboptimal performance. We use 200 samples uniformly sampled in probability in the proxy
distribution (cf Appendix B).

In all networks, we disable the scaling part of PN in the proxy-normalized activation step just before
the final mean pooling. This is to avoid an alteration of the effective learning rate. An alternative
option would be to altogether remove PN before the final mean pooling.

In EfficientNets, we disable PN in squeeze-excite (SE) blocks given that no normalization step
precedes each activation step in these blocks. When PN’s additional parameters β̃l, γ̃l are included,
we replace the final affine transformation of each MBConv block by a single channel-wise scaling
(i.e. we only keep the scaling parameter in the transformation). When PN’s additional parameters
β̃l, γ̃l are omitted, on the other hand, we leave this final affine transformation as it is.

WS. We set the numerical stability constant of WS to 0.

In all networks, we disable WS in fully-connected layers and in SE blocks. In ResNets and ResNeXts,
we add an extra scale parameter after the final convolution of each residual block when using WS.

Evo-S0. In EfficientNets, the final norm and affine transformation in each MBConv block are
replaced by a single affine transformation when using Evo-S0.

Initialization. We initialize the affine transformation’s parameters as βl = 0, γl = 1, and PN’s
additional parameters as β̃l = 0, γ̃l = 0 when these additional parameters are included. We initialize
weights ωl by sampling from truncated normal distributions with an inverse square root scaling
with respect to fan-in (expect for some kernels in EfficientNets where the scaling is with respect to
fan-out).

ResNets and ResNeXts trained on ImageNet. We train for 100 epochs with SGD with a momen-
tum of 0.9 and a batch size of 256. We start with a learning rate of 0.1 after a linear warmup over the
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first 5 epochs [77], and we decrease this learning rate four times at the epochs 30, 60, 80 and 90, each
time by a factor 10. We apply weight decay with a strength of 10−4 to all parameters including the
additional parameters β̃l, γ̃l of PN and the channel-wise scale and shift parameters βl, γl (this is
sensible as φ = ReLU is positive homogeneous).

We set the norm’s numerical stability constant to 10−6 and, unless otherwise specified, we set the
number of groups to G = 8 when using GN+PN and to G = 32 when using GN without PN. When
using BN, we compute BN’s statistics over 32 inputs x and we compute moving average statistics by
exponentially weighted average with decay factor 0.97.

For the pre-processing, we follow [71]. When using extra regularization, we use label smoothing
with factor 0.1 [82], dropout with rate 0.1 [83] and stochastic depth with rate 0.05 [84]. As the only
exception, when changing the choice of the extra regularization in Appendix A.3.4, we use Mixup
with strength 0.1 [85] in all networks, and in ResNet-101 and ResNeXt-101, we additionally use a
variant of CutMix [86] that samples U0 ∼ Uniform(0, 1) and U1 ∼ Uniform(e−4, 1) and sets the
combination ratio as λ = 1 if U0 ≤ 0.435 and λ = 1 + 1

4 log(U1) otherwise.

While we use float-16 to store and process intermediate activations (except in normalization steps and
PN’s statistics computation), model parameters are still stored and updated in float-32. Each time we
provide a result, the mean and standard deviation are computed over 3 independent runs, at the final
epoch of each run. As the only exception, the mean and 1σ intervals in the power plots of Figures 2, 6
are computed by “pooling together” either all 100 epochs in 5 independent runs (Figure 2) or the
initialization state in 5 independent runs (Figure 6).

EfficientNets with batch-independent norms trained on ImageNet. Our experimental setup
closely follows [52]. We train for 350 epochs with RMSProp with a batch size of 768. We start
with a learning rate of 768 × 2−14 (i.e. using a linear scaling [65]) after a linear warmup over the
first 5 epochs [77], and we decay the learning rate exponentially by a factor 0.97 every 2.4 epochs.
In RMSProp, we use a momentum of 0.9, a decay of 1.0− (768× 2−14) and a numerical stability
constant of 10−3. We apply weight decay with a strength of 10−5 on the convolutional weights and
the additional parameters β̃l, γ̃l of PN, but not on the other channel-wise parameters (this is sensible
as φ = Swish is not positive homogeneous).

We set the norm’s numerical stability constant to 10−3 and we set the number of groups to G = 4
when using GN or Evo-S0.

For the baseline pre-processing, we follow [52]. In terms of regularization, we always use label
smoothing with factor 0.1 [82], dropout with rate 0.2 [83] and stochastic depth with rate starting at
0.2 in the first MBConv block and decaying to zero linearly with the depth of the MBConv block
[84]. When using extra regularization, we use Mixup with strength 0.1 [85] in all networks, and in
EfficientNets-B2, we additionally use a variant of CutMix [86] that samples U0 ∼ Uniform(0, 1) and
U1 ∼ Uniform(e−4, 1) and sets the combination ratio as λ = 1 if U0 ≤ 0.435 and λ = 1+ 1

4 log(U1)
otherwise.

While we use float-16 to store and process intermediate activations (except in normalization steps
and PN’s statistics computation), model parameters are still stored and updated in float-32. Each time
we provide a result, the mean and standard deviation are computed over 3 independent runs. For each
run, performance is evaluated at the final epoch, with model parameters obtained by exponentially
weighted average with decay factor 0.97 over checkpoints from previous epochs.

EfficientNets with BN trained on ImageNet. For these experiments, we run the public EfficientNet
repository with the settings recommended in the repository.5 When considering the variant with
group convolutions, our only modifications consist in (i) replacing depthwise convolutions with group
convolutions of group size 16, and (ii) changing the expansion ratio from 6 to 4.

In addition to BN’s inherent regularization, these runs always incorporate label smoothing [82],
dropout [83] and stochastic depth [84]. The runs with extra regularization additionally incorporate
AutoAugment [87].

Each time we provide a result, the mean and standard deviation are computed over 3 independent
runs.

5https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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ResNets trained on CIFAR-10 and CIFAR-100 (cf Appendix A.4). We train for 160 epochs with
SGD with a momentum of 0.9 and a batch size of 128. We start with a learning rate of 0.1 after
a linear warmup over the first 5 epochs [77], and we decrease this learning rate two times at the
epochs 80 and 120, each time by a factor 10. We apply weight decay with a strength of 10−4 to all
parameters including the additional parameters β̃l, γ̃l of PN and the channel-wise scale and shift
parameters βl, γl (this is sensible as φ = ReLU is positive homogeneous).

We set the norm’s numerical stability constant to 10−6 and we set the number of groups to G = 4
when using GN. When using BN, we compute BN’s statistics over 128 inputs x and we compute
moving average statistics by exponentially weighted average with decay factor 0.97.

For the pre-processing, we follow [71]. When using extra regularization, we use label smoothing
with factor 0.1 [82], dropout with rate 0.25 [83] and stochastic depth with rate 0.1 [84].

We use float-16 to store and process intermediate activations (except in normalization steps and PN’s
statistics computation) and to store and update model parameters. Each time we provide a result, the
mean and standard deviation are computed over 10 independent runs, at the final epoch of each run.

Random nets. We consider random nets following Definition 1. For the cases of BN, IN, LN, GN,
random nets implement Eq. (2), (3), (4) at every layer l. For the case of LN+PN, we replace the
activation step of Eq. (4) by the proxy-normalized activation step of Eq. (7). For the case of LN+WS,
we add a step of kernel standardization before the convolution of Eq. (2). In all cases, convolutions
use periodic boundary conditions to remain consistent with the assumptions of Theorem 1.

We set the activation function to φ = ReLU, widths to Cl = 1024, kernel sizes to Kl = 3.

We sample the components of the affine transformation’s parameters βl, γl i.i.d. from νβ =
N (0, 0.22) and νγ = N (1, 0.22), respectively. This yields β2 = 0.22, γ2 = 12 + 0.22 and
ρ = 12+0.22

12+0.22+0.22 ≈ 0.963 in Definition 1. We sample the components of weight parameters ωl i.i.d.
from truncated normal distributions with 1√

Cl
scaling. We set PN’s additional parameters β̃l, γ̃l to 0.

We set the norm’s numerical stability constant to 10−6 and we set the number of groups to G = 128
when using GN to roughly preserve group sizes compared to ResNet-50. We use a batch size of 128
and we compute BN’s statistics over all 128 inputs x in the mini-batch when using BN.

We use CIFAR-10 as the datasetD and we follow [71] for the pre-processing. To alleviate the memory
burden, we add a downsampling by setting the stride to 2 in the first convolution of the network.

We use float-32 to store and process intermediate activations. Each time we provide a result, the mean
and 1σ intervals are computed over 50 independent realizations.

A.2 Additional details on power plots

A.2.1 Power plots in random nets

Additional experimental details. We obtain the power plots in random nets using the experimental
setup described in Appendix A.1 for random nets. We compute the terms P(1)(yl), P(2)(yl),
P(3)(yl), P(4)(yl) (as well as the additional terms from Figure 5) for each layer l using the 128
randomly sampled inputs x in the mini-batch as a proxy for the full dataset D.

While we set the total depth to L = 200, we show only the first 20 layers in Figure 2 to facilitate a side-
by-side comparison with ResNet-50. Indeed, while the “effective” depth is smaller than the “compu-
tational” depth in ResNet-50 (cf Appendix A.2.2), the two notions of depth coincide in random nets.

Verification of Theorem 1. The case of random nets with LN enables us to precisely verify
Theorem 1. We provide this verification in the left and center subplots of Figure 5.

In the left subplot of Figure 5, we show P(yl) − P(1)(yl) (mean and 1σ interval) and the upper

bound ρl−1 =
(

12+0.22

12+0.22+0.22

)l−1

from Theorem 1 for depths l up to L = 200. We confirm that

P(yl)− P(1)(yl) is upper bounded with high probability by ρl−1 as predicted by Theorem 1. The
rate of decay of P(yl)−P(1)(yl) is initially above the prediction of Theorem 1 due to the aggravating
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effect of φ = ReLU. In very deep layers (l� 1), this rate of decay ends up very slightly below the
prediction of Theorem 1 due to the facts that: (i) φ becomes effectively close to channel-wise linear;
(ii) the channel-wise collapse is slightly mitigated by LN in the case of a finite width Cl = 1024.

In the center subplot of Figure 5, we show P(yl) (mean and 1σ interval) for depths l up to L = 200.
We confirm that P(yl) is with high probability very close to one.

Quantification of channel-wise linearity. To confirm the connection between channel-wise col-
lapse and channel-wise linearity, we finally report the evolution with depth of an additional measure of
channel-wise linearity. In the right subplot of Figure 5, we show the measureP(φ(ỹl)−z̃l)/P(φ(ỹl))
(mean and 1σ interval) for depths l up to L = 200, with z̃l the channel-wise linear best-fit of φ(ỹl)
using ỹl, that is defined in Eq. (8), (9). We confirm that deep in random nets, layers are effectively:
(i) very close to channel-wise linear with LN; (ii) close to channel-wise linear with GN.
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Figure 5: Verification of Theorem 1 and quantification of channel-wise linearity. Results are
reported in random nets of Definition 1 for depths l up to L = 200. Left: P(yl)− P(1)(yl) (mean
and 1σ interval) and upper bound ρl−1 from Theorem 1. Center: P(yl) (mean and 1σ interval).
Right: Additional measure of channel-wise linearity P(φ(ỹl)− z̃l)/P(φ(ỹl)) (mean and 1σ interval),
with z̃l the channel-wise linear best-fit of φ(ỹl) using ỹl, that is defined in Eq. (8), (9)

A.2.2 Power plots in ResNet-50

Additional experimental details. We obtain the power plots in ResNet-50 using the experimental
setup described in Appendix A.1 for ResNets on ImageNet. At each epoch, we compute the power
terms P(1)

c (yl), P(2)
c (yl), P(3)

c (yl), P(4)
c (yl) for each layer l and each channel c using the last 256

randomly sampled inputs x as a proxy for the full dataset D.

When looking at each norm separately in ResNets, we noticed artefacts that we attributed to the dis-
crepancy between the “computational” depth l and the “effective” depth (that oscillates with l). Indeed,
the effective depth, defined in terms of the statistical properties of intermediate activations, grows
linearly inside each residual block but gets reduced each time a residual path is summed with a skip
connection path (since the latter originates from earlier layers). This phenomenon is tightly connected
to the property discussed in Section 2 on the control of activation scale in residual networks.

To avoid such an artefact in Figures 2, 6, we report only a single measurement of P(1)(yl), P(2)(yl),
P(3)(yl), P(4)(yl) per residual block by “pooling together” all the channels from the three norms
inside each residual block. For the same reason, we do not report P(1)(yl), P(2)(yl), P(3)(yl),
P(4)(yl) for the final norm just before the final mean pooling.

The presence of this artefact confirms the fact that the effective depth evolves more slowly than the
computational depth l in residual networks. This explains why yl with LN or GN is not immoderately
collapsed even at large l in Figures 2, 6.

Numerical stability issues with IN. As stated in the caption of Figure 2, we did not succeed
at training ResNet-50 v2 with IN. We found that using float-16 to store and process intermediate
activations caused divergence in these networks. When replacing float-16 by float-32, even though
divergence was avoided, ResNets-50 v2 still did not reach satisfactory performance with IN. We
attributed this to a plain incompatibility of IN with v2 instantiations of ResNets, which could stem
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from the presence of a final block of normalization and activation just before the final mean pooling.
Intuitively, if we denote this final block as L and if we subtract away the activation function by
supposing φ = identity, then µx,c(z

L) in channel c is constant for all x, equal to βLc (cf Section 4).
Thus, if we subtract away the activation function, with IN all inputs x end up mapped to the same
channel-wise constants after the final mean pooling, i.e. they become indistinguishable.

Power plots at initialization. Figure 6 reports the same power plots as Figure 2, except with
P(1)(yl), P(2)(yl), P(3)(yl), P(4)(yl) computed at initialization (mean and 1σ intervals).

When comparing Figure 6 to Figure 2, it is clearly visible that the channel-wise collapse with
LN+WS gets aggravated during training compared to initialization. This confirms the importance of
compensating during training the mean shift associated with the affine transformation.

It is also visible that the difference between GN and LN gets narrower during training compared to
initialization. This means that despite a similar behavior of P(1)(yl) along the training trajectories
with GN and LN, differences could still exist in the vicinity of these trajectories, implying a better
conditioning of the loss landscape with GN. A similar argument would make us expect a better
conditioning of the loss landscape when enforcing yl to be channel-wise normalized via an operation
directly embedded in the network mapping [62, 64] as opposed to via an external penalty [88, 49, 89],
despite the two approaches potentially leading to the same reduction of P(1)(yl).

We believe that the notions of “channel-wise collapse” and “conditioning of the loss landscape”
[62, 64] enable to quantify more accurately the underlying phenomenons at play than the notion of
“internal covariate shift” [1, 90], despite the former and latter notions being connected.
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Figure 6: Power plots at initialization. P(1)(yl), P(2)(yl), P(3)(yl), P(4)(yl) are shown as a
function of the depth l in ResNet-50 at initialization with BN and different batch-independent norms:
LN, GN, LN+PN, LN+WS.

A.3 More detailed results on ImageNet

A.3.1 1σ intervals

In Tables 6, 7, 8, we complement the results of Tables 2, 3, 4 with 1σ intervals. In Figure 7, we
provide a visualization of the results of Tables 4, 8.

Table 6: Effect of adding PN. ResNet-50 is trained on ImageNet with BN and LN, GN, GN+WS
with G groups, either without or with PN added on top (plain vs. PN). Results are formatted as X / Y
with X, Y the validation accuracies (mean and 1σ interval in %) without and with extra regularization,
respectively.

RN50
G plain +PN

BN 76.3±0.1 / 75.8±0.2 76.2±0.1 / 76.0±0.1

LN 1 74.5±0.0 / 74.6±0.1 75.9±0.1 / 76.5±0.0

GN 8 75.4±0.1 / 75.4±0.1 76.3±0.1 / 76.7±0.0

GN 32 75.4±0.1 / 75.3±0.1 75.8±0.2 / 76.1±0.1

GN+WS 8 76.6±0.0 / 76.7±0.1 76.8±0.1 / 77.1±0.1
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Table 7: BN vs. GN, GN+PN. ResNets and ResNeXts are trained on ImageNet with BN and GN,
GN+PN. Results are formatted as in Table 6.

RN50 RN101 RNX50 RNX101

BN 76.3±0.1 / 75.8±0.2 77.9±0.1 / 78.0±0.1 77.6±0.1 / 77.2±0.1 78.7±0.1 / 78.9±0.1

GN 75.4±0.1 / 75.3±0.1 77.0±0.1 / 77.4±0.1 76.2±0.2 / 76.6±0.1 77.4±0.2 / 78.1±0.1

GN+PN 76.3±0.1 / 76.7±0.0 77.6±0.2 / 78.6±0.2 76.7±0.1 / 77.8±0.2 77.7±0.2 / 79.0±0.1

Table 8: BN vs. batch-independent approaches. EfficientNets are trained on ImageNet with BN
and various batch-independent approaches: GN, GN+PN, Evo-S0, GN+WS, FRN+TLU. Results are
formatted as in Table 6.

depthwise convs group convs

EN-B0 EN-B2 EN-B0 EN-B2

BN 76.9±0.1 / 77.2±0.1 79.4±0.0 / 80.0±0.0 76.8±0.1 / 76.7±0.2 79.5±0.1 / 79.7±0.1

GN 76.2±0.1 / 76.2±0.1 78.9±0.1 / 79.4±0.1 76.2±0.1 / 76.2±0.2 79.0±0.1 / 79.6±0.1

GN+PN 76.8±0.0 / 77.0±0.1 79.3±0.1 / 80.0±0.1 76.7±0.1 / 76.8±0.1 79.3±0.1 / 80.1±0.1

Evo-S0 75.8±0.1 / 75.8±0.2 78.5±0.1 / 78.7±0.1 76.2±0.0 / 76.5±0.1 78.9±0.0 / 79.6±0.0

GN+WS 74.2±0.1 / 74.1±0.1 77.8±0.0 / 77.8±0.1 76.2±0.1 / 76.3±0.1 79.2±0.1 / 79.4±0.1

FRN+TLU 75.7±0.1 / 75.7±0.2 78.4±0.1 / 78.9±0.1 74.9±0.2 / 75.1±0.1 78.2±0.1 / 78.6±0.1
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Figure 7: BN vs. batch-independent approaches. Validation accuracies (%) of EfficientNets
trained on ImageNet with BN and various batch-independent approaches, without and with extra
regularization.

A.3.2 Training accuracies

In Tables 9, 10, 11, we complement the results of Tables 2, 3, 4 with training accuracies.

We stress that these training accuracies are highly dependent on the strength of applied regularization.
This leads us to: (i) always separate the training accuracies obtained without and with extra regulariza-
tion; (ii) report only the training accuracies obtained with batch-independent approaches, given that
training accuracies obtained with BN would not be comparable due to BN’s inherent regularization.

As visible in Tables 9, 10, 11, GN+PN outperforms alternative batch-independent approaches in
terms of training accuracy on ImageNet. This applies both to training without extra regularization and
to training with extra regularization. This suggests that, on larger datasets, GN+PN would outperform
these alternative batch-independent approaches in terms of both training and validation accuracies
[81, 72].

In Table 11, the fact that with extra regularization EfficientNets-B2 reach lower training accuracies
than EfficientNets-B0 is explained by the different level of applied regularization (we add CutMix
when training EfficientNets-B2).
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Table 9: Training accuracies in ResNet-50. Networks are trained on ImageNet with LN, GN,
GN+WS with G groups, either without or with PN added on top (plain vs. +PN). Results are
formatted as X with X the training accuracy at the final epoch (mean and 1σ interval in %). We report
separately the results without extra regularization (top) and with extra regularization (bottom).

RN50
G plain +PN

without extra regul

LN 1 75.7±0.1 79.9±0.1

GN 8 77.2±0.1 80.3±0.1

GN 32 77.0±0.0 79.2±0.2

GN+WS 8 80.1±0.0 80.4±0.0

with extra regul

LN 1 71.8±0.1 75.8±0.0

GN 8 73.3±0.1 76.2±0.1

GN 32 73.1±0.1 75.1±0.1

GN+WS 8 75.8±0.0 76.3±0.0

Table 10: Training accuracies in ResNets and ResNeXts. Networks are trained on ImageNet with
GN, GN+PN. Results are formatted as in Table 9.

RN50 RN101 RNX50 RNX101

without extra regul GN 77.0±0.0 79.9±0.1 79.6±0.1 81.6±0.0

GN+PN 80.3±0.1 83.5±0.0 84.1±0.1 86.2±0.0

with extra regul GN 73.1±0.1 76.5±0.0 76.0±0.1 78.6±0.1

GN+PN 76.2±0.1 79.7±0.1 79.8±0.0 82.7±0.0

Table 11: Training accuracies in EfficientNets. Networks are trained on ImageNet with various
batch-independent approaches: GN, GN+PN, Evo-S0, GN+WS, FRN+TLU. Results are formatted as
in Table 9.

depthwise convs group convs

EN-B0 EN-B2 EN-B0 EN-B2

without extra regul

GN 75.4±0.0 80.9±0.1 74.7±0.0 80.1±0.1

GN+PN 77.3±0.0 82.7±0.0 75.8±0.0 81.4±0.1

Evo-S0 74.6±0.2 79.8±0.2 75.1±0.0 80.4±0.1

GN+WS 71.4±0.0 77.6±0.0 74.5±0.0 80.2±0.1

FRN+TLU 75.0±0.1 80.4±0.0 72.9±0.1 78.5±0.1

with extra regul

GN 71.2±0.1 66.2±0.1 70.5±0.1 65.6±0.1

GN+PN 72.8±0.0 67.8±0.1 71.5±0.1 66.7±0.0

Evo-S0 70.2±0.2 64.4±0.3 70.8±0.1 65.6±0.1

GN+WS 67.3±0.1 63.4±0.1 70.4±0.1 65.4±0.0

FRN+TLU 70.4±0.3 65.1±0.2 68.8±0.2 64.0±0.1

A.3.3 Effect of omitting PN’s additional parameters

In Tables 12, 13 and Figure 8, we report results with PN’s additional parameters β̃l, γ̃l set to 0. In
that case, β̃l, γ̃l can be equivalently omitted and the proxy variable Y l can be simply considered
as a standard Gaussian variable in each channel c, i.e. Y lc ∼ N (0, 1) (cf our implementation of
Appendix B).

As visible in Tables 12, 13 and Figure 8, the omission of PN’s additional parameters β̃l, γ̃l is indeed
harmful. However, the drop of performance that results from omitting β̃l, γ̃l in GN+PN is very small
(in average less than 0.1% in validation accuracy).

Given that the omission of PN’s additional parameters β̃l, γ̃l leads to slight benefits in terms of
computational requirements and simplicity of implementation, this variant of PN with β̃l, γ̃l omitted
might sometimes be a better trade-off.
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Table 12: Effect of omitting PN’s additional parameters in ResNets and ResNeXts. Networks
are trained on ImageNet with BN and GN, GN+PN with β̃l, γ̃l included, and GN+PN with β̃l, γ̃l
omitted. Results are formatted as in Table 6.

RN50 RN101 RNX50 RNX101

BN 76.3±0.1 / 75.8±0.2 77.9±0.1 / 78.0±0.1 77.6±0.1 / 77.2±0.1 78.7±0.1 / 78.9±0.1

GN 75.4±0.1 / 75.3±0.1 77.0±0.1 / 77.4±0.1 76.2±0.2 / 76.6±0.1 77.4±0.2 / 78.1±0.1

GN+PN with β̃l, γ̃l included 76.3±0.1 / 76.7±0.0 77.6±0.2 / 78.6±0.2 76.7±0.1 / 77.8±0.2 77.7±0.2 / 79.0±0.1

GN+PN with β̃l, γ̃l omitted 76.3±0.0 / 76.7±0.1 77.5±0.0 / 78.5±0.1 76.5±0.1 / 77.6±0.1 77.5±0.1 / 79.0±0.1

Table 13: Effect of omitting PN’s additional parameters in EfficientNets. Networks are trained on
ImageNet with BN and GN, GN+PN with β̃l, γ̃l included, and GN+PN with β̃l, γ̃l omitted. Results
are formatted as in Table 6.

depthwise convs group convs

EN-B0 EN-B2 EN-B0 EN-B2

BN 76.9±0.1 / 77.2±0.1 79.4±0.0 / 80.0±0.0 76.8±0.1 / 76.7±0.2 79.5±0.1 / 79.7±0.1

GN 76.2±0.1 / 76.2±0.1 78.9±0.1 / 79.4±0.1 76.2±0.1 / 76.2±0.2 79.0±0.1 / 79.6±0.1

GN+PN with β̃l, γ̃l included 76.8±0.0 / 77.0±0.1 79.3±0.1 / 80.0±0.1 76.7±0.1 / 76.8±0.1 79.3±0.1 / 80.1±0.1

GN+PN with β̃l, γ̃l omitted 76.6±0.2 / 77.0±0.1 79.2±0.0 / 79.9±0.1 76.7±0.1 / 76.7±0.1 79.3±0.1 / 80.0±0.2

RN50

75

76
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78
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GN+PN with β̃l, γ̃ l included

GN+PN with β̃l, γ̃ l included w/ extra regul

GN+PN with β̃l, γ̃ l omitted

GN+PN with β̃l, γ̃ l omitted w/ extra regul

Figure 8: Effect of omitting PN’s additional parameters. Validation accuracies (%) of ResNets,
ResNeXts and EfficientNets trained on ImageNet with BN and GN, GN+PN with β̃l, γ̃l included,
and GN+PN with β̃l, γ̃l omitted, without and with extra regularization. EfficientNets are considered
in the variant with group convolutions [79].

A.3.4 Effect of changing the choice of the extra regularization

In Table 14 and Figure 9, we report results in ResNets and ResNeXts with a change in the choice
of the extra regularization. When using extra regularization, instead of using label smoothing [82],
dropout [83] and stochastic depth [84], we use Mixup [85] in all networks, and in ResNet-101 and
ResNeXt-101, we additionally use CutMix [86] (cf Appendix A.1).

We reach similar conclusions with the results of Table 14 and Figure 9 as with the results of Table 7:
(i) BN is matched or outperformed by GN+PN, except for a small gap of performance in ResNeXt-50
(this gap of performance might be due to the imperfect “abstraction away” of regularization); (ii)
good performance remains tied to the combination of both an efficient normalization and an efficient
regularization.
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Table 14: Effect of changing the choice of the extra regularization. ResNets and ResNeXts
are trained on ImageNet with BN and GN, GN+PN. Results are formatted as X / Z with X, Z the
validation accuracies (mean and 1σ interval in %) without extra regularization and with an extra
regularization other than the one used in Table 7, respectively.

RN50 RN101 RNX50 RNX101

BN 76.3±0.1 / 76.3±0.0 77.9±0.1 / 78.1±0.1 77.6±0.1 / 78.0±0.0 78.7±0.1 / 79.5±0.0

GN 75.4±0.1 / 75.9±0.1 77.0±0.1 / 77.7±0.1 76.2±0.2 / 76.7±0.1 77.4±0.2 / 78.3±0.1

GN+PN 76.3±0.1 / 77.0±0.0 77.6±0.2 / 78.9±0.1 76.7±0.1 / 77.6±0.1 77.7±0.2 / 79.6±0.1
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Figure 9: Effect of changing the choice of the extra regularization. Validation accuracies (%) of
ResNets and ResNeXts trained on ImageNet with BN and GN, GN+PN, without extra regularization
and with an extra regularization other than the one used in Table 7.

A.4 Results on CIFAR-10 and CIFAR-100

In this section, we report results on CIFAR with different sizes of ResNets: ResNet-20 (RN20),
ResNet-32 (RN32), ResNet-44 (RN44), ResNet-56 (RN56), ResNet-110 (RN110).

We report results on CIFAR-10 in Table 15, and results on CIFAR-100 in Table 16. We further
provide a visualization of these results in Figure 10.

While slightly underperforming BN on CIFAR-10, GN+PN tends to slightly outperform BN on
CIFAR-100. As a possible reason, BN’s regularization could be more beneficial on the “easy” task of
CIFAR-10 than on the “harder” task of CIFAR-100. To the extent that BN’s regularization can be
seen as a reduction of the network’s effective capacity, such a reduction of the network’s effective
capacity could be more harmful for tasks that require more capacity, i.e. for harder tasks.

Table 15: BN vs. GN, GN+PN on CIFAR-10. ResNets are trained with BN and GN, GN+PN.
Results are formatted as X / Y with X, Y the validation accuracies (mean and 1σ interval in %)
without and with extra regularization, respectively.

RN20 RN32 RN44 RN56 RN110

BN 91.6±0.3 / 91.8±0.2 92.4±0.1 / 92.7±0.2 92.7±0.2 / 93.1±0.2 93.0±0.1 / 93.4±0.2 93.5±0.1 / 93.7±0.2

GN 90.8±0.2 / 90.7±0.1 91.5±0.2 / 91.5±0.1 91.8±0.2 / 92.0±0.1 92.2±0.2 / 92.2±0.2 92.6±0.2 / 92.9±0.3

GN+PN 91.4±0.2 / 91.6±0.3 92.3±0.2 / 92.5±0.2 92.8±0.2 / 92.9±0.2 92.9±0.2 / 93.2±0.2 93.2±0.1 / 93.6±0.1

Table 16: BN vs. GN, GN+PN on CIFAR-100. ResNets are trained with BN and GN, GN+PN.
Results are formatted as in Table 15.

RN20 RN32 RN44 RN56 RN110

BN 66.8±0.3 / 65.1±0.2 68.2±0.3 / 68.7±0.2 69.2±0.4 / 70.5±0.2 70.1±0.2 / 71.4±0.3 71.7±0.3 / 73.3±0.3

GN 65.0±0.3 / 61.7±0.3 66.5±0.4 / 65.3±0.4 67.3±0.6 / 67.0±0.3 67.8±0.4 / 68.1±0.5 69.5±0.3 / 70.2±0.4

GN+PN 66.3±0.4 / 66.7±0.2 67.8±0.4 / 69.5±0.2 68.9±0.3 / 70.8±0.4 69.8±0.3 / 71.7±0.4 71.4±0.2 / 73.1±0.4
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Figure 10: BN vs. GN, GN+PN. Validation accuracies (%) of ResNets trained on CIFAR-10 (top)
and CIFAR-100 (bottom) with BN and GN, GN+PN, without and with extra regularization.

B Implementation of Proxy Norm

In this section, we provide a Tensorflow 1 implementation of the proxy-normalized activation step
when PN’s additional parameters β̃l, γ̃l are set to zero, i.e. omitted (cf Section 5).

import tensorflow as tf
import numpy as np
from scipy.special import erfinv
def uniformly_sampled_gaussian(num_rand):

rand = 2 * (np.arange(num_rand) + 0.5) / float(num_rand) - 1
return np.sqrt(2) * erfinv(rand)

def proxy_norm_act(y,
activation_fn=tf.nn.relu,
proxy_epsilon=0.03,
num_samples=256):

"""
TensorFlow 1 implementation of the proxy normalized activation step.

Following the same convention as in the main text of this paper,
the affine transform is applied in this step rather than in the normalization step.

:param y: 4D activation tensor after the normalization step
:param activation_fn: activation function
:param proxy_epsilon: PN's numerical stability constant (should not be too low)
:param num_samples: number of samples in the proxy distribution
:return tilde_z: 4D activation tensor after the proxy-normalized activation step
"""
def create_channelwise_variable(name, init):

num_channels = int(y.get_shape()[-1])
return tf.get_variable(name,

dtype=y.dtype,
shape=[1, 1, 1, num_channels],
initializer=tf.constant_initializer(init))

# shift and scale parameters after the norm
beta = create_channelwise_variable('beta', 0.0)
gamma = create_channelwise_variable('gamma', 1.0)
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# activation step
z = gamma * y + beta # affine transform
z = activation_fn(z) # activation function

# proxy normalization
proxy_y = tf.constant(uniformly_sampled_gaussian(num_samples), y.dtype)
proxy_y = tf.reshape(proxy_y, [num_samples, 1, 1, 1])
proxy_z = gamma * proxy_y + beta # affine transform on proxy distribution
proxy_z = activation_fn(proxy_z) # activation function on proxy distribution
# compute proxy statistics in float32
proxy_mean, proxy_var = tf.nn.moments(

tf.cast(proxy_z, tf.float32), axes=[0], keepdims=True)
proxy_mean = tf.cast(proxy_mean, y.dtype)
inv_proxy_std = tf.cast(tf.rsqrt(proxy_var + proxy_epsilon), y.dtype)
# normalize z according to proxy statistics
tilde_z = (z - proxy_mean) * inv_proxy_std
return tilde_z

C Proofs of results other than Theorems 1, 2, 3

C.1 Layer-wise power equals one

Proposition 1. If σIx,c(x
l) 6= 0 for all x ∈ D and c ∈ {1, . . . , Cl}, then it holds that P(yl) = 1 for

any choice of Norm ∈ {BN,LN, IN,GN}.

Proof. The proof proceeds by distinguishing each case in Norm ∈ {BN,LN, IN,GN}.

Case of BN. If we fix a channel c, the assumption σc(x
l) 6= 0 implies that

Pc(yl) =
Ex,α

[(
xlα,c − µc(xl)

)2]

σc(xl)2
=
σc(x

l)2

σc(xl)2
= 1.

We immediately get P(yl) = Ec
[
Pc(yl)

]
= 1.

Case of GN. Let us fix x ∈ D and let us denote Gg for g ∈ {1, . . . , G} the G groups of channels
and I(g)

x = {x, c ∈ Gg} for g ∈ {1, . . . , G} the G conditional sets of standardization.

The assumption σ
I
(g)
x

(xl) 6= 0 implies for any g that

P
I
(g)
x

(yl) =
Eα,c|c∈Gg

[(
xlα,c − µI(g)x

(xl)
)2]

σ
I
(g)
x

(xl)2
=
σ
I
(g)
x

(xl)2

σ
I
(g)
x

(xl)2
= 1.

This implies

Px(yl) =
1

Cl

∑

c

Px,c(y
l) =

1

Cl

∑

g

∑

c∈Gg

Px,c(y
l)

=
1

Cl

∑

g

|Gg|PI(g)x
(yl) =

1

Cl

∑

g

|Gg| = 1,

where we used P
I
(g)
x

(yl) = 1
|Gg|

∑
c∈Gg Px,c(y

l).

We immediately get P(yl) = Ex

[
Px(yl)

]
= 1.

Cases of LN and IN. The cases of LN and IN immediately follow from the cases of GN with
G = 1 group and G = Cl groups.
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C.2 Channel-wise collapse implies channel-wise linearity

Some additional notations are required in this section. We denote Θl ≡ (ω1,β1,γ1, . . . ,ωl,βl,γl)
the aggregated model parameters up to layer l.

We further define the linearized post-activations z̃l as

∀α, c : z̃lα,c = λ̃cỹ
l
α,c, (8)

∀c : λ̃c = arg min
λc

Ex,α

[(
zlα,c − λcỹlα,c

)2]
= arg min

λc

Ex,α

[(
φ(ỹlα,c)− λcỹlα,c

)2]
. (9)

The linearized post-activations z̃l are the channel-wise linear best-fit of zl = φ(ỹl) using ỹl.

We start by proving that the inequality Pc(ỹl) − P(1)
c (ỹl) ≤ η̃P(1)

c (ỹl) for sufficiently small η̃
implies channel-wise linearity (Proposition 2). We then prove that the inequality Pc(ỹl)−P(1)

c (ỹl) ≤
η̃Pc(ỹl) for sufficiently small η̃ implies channel-wise-linearity (Proposition 3).

Proposition 2. If we fix some d ∈ N∗, there exists η̃ > 0 such that for any choice of (φ,H,W,D,Θl),
it holds that

(
HW |D| = d

)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃P(1)
c (ỹl)

)
=⇒ zlα,c = z̃lα,c ∀x, α,

where z̃l are the linearized post-activations defined in Eq. (8), (9) and ∧ is the logical “and”.

Proof. Any positive homogeneous φ satisfies φ(r) = rφ(1) and φ(−r) = rφ(−1) for any r ≥ 0.
This means that any positive homogeneous φ is: (i) fully determined by its values at +1 and −1; (ii)
linear on the intervals (−∞, 0] and [0,+∞).

A sufficient condition for the linearity with respect to x, α in channel c is therefore a constant sign of
ỹlα,c for all x, α. Let us see that this constant sign is implied by a sufficiently severe channel-wise
collapse.

We start by proving the result with the two distinct conditionalities: (i) σc(ỹl) = 0 and (ii) σc(ỹl) > 0.

Conditionality σc(ỹl) = 0. If σc(ỹl) = 0, then ỹlα,c = µc(ỹ
l), ∀x, α.

Let us then define λc such that λc = 0 if µc(ỹl) = 0, and λc = φ(µc(ỹ
l))

µc(ỹl)
otherwise.

For any choice of positive homogeneous φ, it holds that φ(0) = 0. Combined with the definition of
λc, this implies φ(µc(ỹ

l)) = λcµc(ỹ
l) and thus ∀x, α:

zlα,c = φ(ỹlα,c) = φ(µc(ỹ
l)) = λcµc(ỹ

l) = λcỹ
l
α,c.

Given the definition of the linearized post-activations z̃l, this means

Ex,α

[(
zlα,c − z̃lα,c

)2] ≤ Ex,α

[(
zlα,c − λcỹlα,c

)2]
= 0.

This immediately implies ∀x, α: zlα,c = z̃lα,c. Thus, for any (φ,H,W,D,Θl) such that σc(ỹl) = 0,
it holds that ∀x, α: zlα,c = z̃lα,c.

More concisely, it holds for any choice of (φ,H,W,D,Θl) that

σc(ỹ
l) = 0 =⇒ zlα,c = z̃lα,c ∀x, α. (10)

Conditionality σc(ỹl) > 0. We start by fixing (φ,H,W,D,Θl). For any given k > 0, Chebyshev’s
inequality implies

Px,α

[
|ỹlα,c − µc(ỹl)| ≥ kσc(ỹl)

]
≤ 1

k2
,

Px,α

[(
ỹlα,c − µc(ỹl)

)2 ≥ k2σc(ỹ
l)2
]
≤ 1

k2
.
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Thus, if Pc(ỹl)− P(1)
c (ỹl) ≤ ηP(1)

c (ỹl) for some η > 0, it holds for any given k > 0 that

1− 1

k2
≤ Px,α

[(
ỹlα,c − µc(ỹl)

)2
< k2σc(ỹ

l)2
]

= Px,α

[(
ỹlα,c − µc(ỹl)

)2
< k2

(
Pc(ỹl)− P(1)

c (ỹl)
)]

≤ Px,α

[(
ỹlα,c − µc(ỹl)

)2
< k2ηP(1)

c (ỹl)
]

= Px,α

[(
ỹlα,c − µc(ỹl)

)2
< k2ηµc(ỹ

l)2
]

≤ Px,α

[
|ỹlα,c − µc(ỹl)| < k

√
η|µc(ỹl)|

]
.

Choosing k = 1√
η , we get

Px,α

[
|ỹlα,c − µc(ỹl)| ≥ |µc(ỹl)|

]
≤ η.

Now if we suppose that η is such that 1
HW |D| > η > 0, we get

Px,α

[
|ỹlα,c − µc(ỹl)| ≥ |µc(ỹl)|

]
<

1

HW |D| . (11)

Eq. (11) could not hold if there existed x ∈ D and α ∈ {1, . . . ,H} × {1, . . . ,W} such that
|ỹlα,c − µc(ỹl)| ≥ |µc(ỹl)|. Consequently, |ỹlα,c − µc(ỹl)| < |µc(ỹl)| for all x, α, implying that
there exists a tensor rl ∈ RH×W×Cl that implicitly depends on x such that ∀x, α:

ỹlα,c = rlα,cµc(ỹ
l), rlα,c ≥ 0. (12)

Now if we combine σc(ỹl) > 0 with Pc(ỹl)−P(1)
c (ỹl) ≤ ηP(1)

c (ỹl), we deduce that P(1)
c (ỹl) > 0

and thus that µc(ỹl) 6= 0. Combining this with Eq. (12), we get ∀x, α:

zlα,c = φ(ỹlα,c) = rlα,cφ(µc(ỹ
l)) =

φ(µc(ỹ
l))

µc(ỹl)
rlα,cµc(ỹ

l) = λcỹ
l
α,c,

where we defined λc ≡ φ(µc(ỹ
l))

µc(ỹl)
.

Given the definition of the linearized post-activations z̃l, this means

Ex,α

[(
zlα,c − z̃lα,c

)2] ≤ Ex,α

[(
zlα,c − λcỹlα,c

)2]
= 0.

This immediately implies ∀x, α: zlα,c = z̃lα,c.

Thus, if we fix some d ∈ N∗ and if we define η̃ = 1
2d , it holds for any choice of (φ,H,W,D,Θl) such

that (i) HW |D| = d, (ii) Pc(ỹl)− P(1)
c (ỹl) ≤ η̃P(1)

c (ỹl), (iii) σc(ỹl) > 0, that ∀x, α: zlα,c = z̃lα,c.

More concisely, it holds for any choice of (φ,H,W,D,Θl) that(
HW |D| = d

)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃P(1)
c (ỹl)

)
∧
(
σc(ỹ

l) > 0
)

=⇒ zlα,c = z̃lα,c ∀x, α.
(13)

General case. To wrap up, if we fix some d ∈ N∗ and if we reuse the definition η̃ = 1
2d , it holds

for any choice of (φ,H,W,D,Θl) that(
HW |D| = d

)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃P(1)
c (ỹl)

)

=⇒
((

HW |D| = d
)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃P(1)
c (ỹl)

)
∧
(
σc(ỹ

l) = 0
))

∨
((

HW |D| = d
)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃P(1)
c (ỹl)

)
∧
(
σc(ỹ

l) > 0
))

=⇒
(
zlα,c = z̃lα,c ∀x, α

)
∨
(
zlα,c = z̃lα,c ∀x, α

)
(14)

=⇒
(
zlα,c = z̃lα,c ∀x, α

)
,

where Eq. (14) is obtained using Eq. (10) and Eq. (13) and ∧, ∨ are the logical “and” and “or”.
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Proposition 3. If we fix some d ∈ N∗, there exists η̃ > 0 such that for any choice of (φ,H,W,D,Θl),
it holds that(

HW |D| = d
)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃Pc(ỹl)
)

=⇒ zlα,c = z̃lα,c ∀x, α,

where z̃l are the linearized post-activations defined in Eq. (8), (9) and ∧ is the logical “and”.

Proof. We start by noting that for any 1 > η > 0:

Pc(ỹl)− P(1)
c (ỹl) ≤ ηPc(ỹl) ⇐⇒ Pc(ỹl)− P(1)

c (ỹl) ≤ η
(
Pc(ỹl)− P(1)

c (ỹl) + P(1)
c (ỹl)

)

⇐⇒ Pc(ỹl)− P(1)
c (ỹl) ≤ η

1− ηP
(1)
c (ỹl).

Thus, if we fix some d ∈ N∗ and if we define η̃ = 1
2d and η̃ = η̃

1+η̃ , it holds for any choice of
(φ,H,W,D,Θl) that

(
HW |D| = d

)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃Pc(ỹl)
)

⇐⇒
(
HW |D| = d

)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃

1− η̃P
(1)
c (ỹl)

)

⇐⇒
(
HW |D| = d

)
∧
(
Pc(ỹl)− P(1)

c (ỹl) ≤ η̃P(1)
c (ỹl)

)

=⇒
(
zlα,c = z̃lα,c ∀x, α

)
, (15)

where Eq. (15) is obtained using Proposition 2 and ∧ is the logical “and”.

C.3 Alteration of expressivity with IN

In this section, we first prove that, for any dataset D, networks without normalization can express
mappings arbitrarily close to the identity (Proposition 4). We then prove that, in general, networks
with IN cannot express mappings arbitrarily close to the identity (Proposition 5).
Proposition 4. Lift any assumptions on φ and suppose instead that φ is non-polynomial. Further
suppose that each layer l up to depth L implements the following two steps ∀α, c:

ylα,c = (ωl ∗ zl−1)α,c + blc, (16)

zlα,c = φ
(
ylα,c

)
, (17)

where z0 ≡ x, and ωl ∈ RKl×Kl×Cl−1×Cl and bl ∈ RCl are the weights and biases at layer l.

Now fix a layer l ∈ {1, . . . , L}, the spatial extents H , W , the widths C0, Cl assumed equal at layer 0
and layer l, and the dataset D. Further denote Φl the network mapping from x to yl such that
yl = Φl(x).

Then for any ε > 0, there exists a choice of intermediate widths (Ck)1≤k<l and model parameters
(ω1,b1, . . . ,ωl,bl) such that

max
x∈D
||Φl(x)− x|| ≤ ε.

Proof. The proof proceeds in multiple steps of increasing generality.

Case of unit spatial extent of activations and kernels. When H , W are equal to 1 and Kk is
equal to one at every layer k, the propagation of Eq. (16), (17) becomes strictly equivalent to the
propagation in a fully-connected network.

If l is the first layer in the network (l = 1), we may obtain the strict equality Φl = identity by
choosing the reshaped matricial versionW l ∈ RC0×Cl of ωl as the identity and bl as zero.

Otherwise (l ≥ 2), we may apply the universal approximation theorem [91]. Given the assumption
of non-polynomial activation function φ, this means that for any ε > 0, there exists a choice of
intermediate widths (Ck)1≤k<l and model parameters (ω1,b1, . . . ,ωl,bl) such that

max
x∈D
||Φl(x)− x|| ≤ ε. (18)
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Case of unit spatial extent of kernels. When Kk is equal to one at every layer k, the propagation
of Eq. (16), (17) “occurs” strictly independently for each spatial position α.

Let us then consider a neural network that takes an input x̄ ∈ R1×1×C0 and provides ȳl, z̄l at every
layer l by implementing the same steps as Eq. (16), (17). Let us denote Ψl the network mapping from
x̄ to ȳl such that ȳl = Ψl(x̄). And let us further denote D = {x̄(x,α)}x∈D,α∈{1,...,H}×{1,...,W},
where x̄(x,α) ∈ R1×1×C0 denotes the reshaped version of xα,: ∈ RC0 for any x, α.

If we fix any ε > 0 and if we apply Eq. (18) from the previous case with 1√
HW

ε, we get that there ex-
ists a choice of intermediate widths (Ck)1≤k<l and model parameters (ω1,b1, . . . ,ωl,bl) such that

max
x̄∈D
||Ψl(x̄)− x̄|| = max

x∈D,α∈{1,...,H}×{1,...,W}
||Ψl(x̄

(x,α))− x̄(x,α)|| ≤ 1√
HW

ε. (19)

Let us then fix (Ck)1≤k<l and (ω1,b1, . . . ,ωl,bl) such that Eq. (19) holds.

Due to the independence of spatial positions, the mapping Φl is such that Φl(x)α,: is a reshaped
version of Ψl(x̄

(x,α)) for any x, α. This means that ∀x ∈ D and ∀α ∈ {1, . . . ,H} × {1, . . . ,W}:

||Φl(x)α,: − xα,:|| = ||Ψl(x̄
(x,α))− x̄(x,α)|| ≤ 1√

HW
ε,

||Φl(x)− x||2 =
∑

α∈{1,...,H}×{1,...,W}

||Φl(x)α,: − xα,:||2 ≤
∑

α∈{1,...,H}×{1,...,W}

1

HW
ε2 ≤ ε2.

This immediately implies
max
x∈D
||Φl(x)− x|| ≤ ε.

General case. Let us consider the neural network that takes x ∈ D as input and provides ȳl, z̄l at
every layer l by implementing Eq. (16), (17) with weights ω̄l ∈ R1×1×Cl−1×Cl , biases b̄l ∈ RCl and
activation function φ. Let us then denote Ψl the network mapping from x to ȳl such that ȳl = Ψl(x).

If we fix any ε > 0, we get from the previous case that there exists a choice of intermediate widths
(Ck)1≤k<l and model parameters (ω̄1, b̄1, . . . , ω̄l, b̄l) such that

max
x∈D
||Ψl(x)− x|| ≤ ε. (20)

Let us then fix (Ck)1≤k<l and (ω̄1, b̄1, . . . , ω̄l, b̄l) such that Eq. (20) holds. Let us further define
the weights and biases ωk, bk at each layer k such that ∀h,w, c, c′:

ωkh,w,c,c′ ≡





if the multi-index (h,w, c, c′) in the weights
ω̄k1,1,c,c′ associates spatial positions α in the convolution input zl−1

α,c

to the same spatial positions α in the convolution output ylα,c′ ,

0 otherwise,

bkc′ ≡ b̄kc′ .

Then it holds that Φl = Ψl, which in turn implies
max
x∈D
||Φl(x)− x|| ≤ ε.

Proposition 5. Suppose that the neural network implements Eq. (2), (3), (4) in every layer up to
depth L and suppose Norm = IN.

Further fix a layer l ∈ {1, . . . , L}, the spatial extents H , W , the widths C0, Cl assumed equal at
layer 0 and layer l, and any dataset D such that there exists at least one channel in which the inputs
of D do not all share the same statistics of instance mean, i.e.

∃c, ∃x′,x′′ ∈ D : Eα[x′α,c] 6= Eα[x′′α,c].

Then there exists ε > 0 such that for any choice of intermediate widths (Ck)1≤k<l and model
parameters (ω1,β1,γ1, . . . ,ωl,βl,γl), it holds that

max
x∈D
||Φl(x)− x|| > ε,

where Φl denotes the network mapping from x to ỹl such that ỹl = Φl(x), ∀x.
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Proof. Let us proceed by contradiction and suppose that for any ε > 0, there exists a choice of
intermediate widths (Ck)1≤k<l and model parameters (ω1,β1,γ1, . . . ,ωl,βl,γl) such that

max
x∈D
||Φl(x)− x|| ≤ ε. (21)

Given the assumption on D, there exists some channel c and some inputs x′,x′′ ∈ D such that

Eα[x′α,c] 6= Eα[x′′α,c]. (22)

Let us then fix c and x′,x′′ ∈ D satisfying Eq. (22), and let us define η ≡
∣∣Eα[x′α,c]−Eα[x′′α,c]

∣∣ > 0.

Applying Eq. (21) with ε =
√
HW
4 η, we get that there exists a choice of intermediate widths

(Ck)1≤k<l and model parameters (ω1,β1,γ1, . . . ,ωl,βl,γl) such that

max
x∈D
||Φl(x)− x|| ≤

√
HW

4
η. (23)

Let us then fix (Ck)1≤k<l and (ω1,β1,γ1, . . . ,ωl,βl,γl) such that Eq. (23) holds. This gives

∑

α

(
Φl(x

′)α,c − x′α,c
)2 ≤ ||Φl(x′)− x′||2 ≤

(√HW
4

η
)2

,

∑

α

(
Φl(x

′′)α,c − x′′α,c
)2 ≤ ||Φl(x′′)− x′′||2 ≤

(√HW
4

η
)2

,

Eα
[(

Φl(x
′)α,c − x′α,c

)2]
+ Eα

[(
Φl(x

′′)α,c − x′′α,c
)2] ≤ 2

HW

(√HW
4

η
)2

. (24)

At the same time, for any input x, it holds that

Eα
[(

Φl(x)α,c − xα,c
)2]

= Eα
[
Φl(x)α,c − xα,c

]2
+ Varα

[
Φl(x)α,c − xα,c

]

≥ Eα
[
Φl(x)α,c − xα,c

]2
. (25)

Using ∀a, b: (a− b)2 ≤ 2a2 + 2b2, combined with Eq. (25) and Eq. (24), we get
(
Eα
[
Φl(x

′)α,c − x′α,c

]
− Eα

[
Φl(x

′′)α,c − x′′α,c

])2

≤ 2Eα
[
Φl(x

′)α,c − x′α,c

]2
+ 2Eα

[
Φl(x

′′)α,c − x′′α,c

]2

≤ 2Eα
[(

Φl(x
′)α,c − x′α,c

)2]
+ 2Eα

[(
Φl(x

′′)α,c − x′′α,c
)2]

≤ 4

HW

(√HW
4

η
)2

. (26)

Next, we note that with IN all inputs x are associated to the same instance means in each channel of
ỹl = Φl(x). This means in particular that

Eα
[
Φl(x

′)α,c

]
= Eα

[
Φl(x

′′)α,c

]
. (27)

Combining Eq. (26) with Eq. (27), we get
(
Eα[x′α,c]− Eα[x′′α,c]

)2

≤ 4

HW

(√HW
4

η
)2

,

∣∣Eα[x′α,c]− Eα[x′′α,c]
∣∣ ≤ 2√

HW

√
HW

4
η =

η

2
.

Since we earlier defined η as η ≡
∣∣Eα[x′α,c]− Eα[x′′α,c]

∣∣ > 0, we reach a contradiction.
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D Proof of Theorem 1

D.1 Additional notations

Some additional notations are required in this section.

Model parameters. We introduce the notations θl ≡ (ωl,βl,γl) for the model parameters at
layer l and Θl ≡ (ω1,β1,γ1, . . . ,ωl,βl,γl) for the aggregated model parameters up to layer l.

Activation tensors. For each layer l, we define the tensors ẑl−1, x̂l, ŷl, y̌l, žl such that ∀α, c:

ẑl−1
α,c =

√
P(zl−1)

Px(zl−1)
zl−1
α,c , (28)

x̂lα,c =

√
P(zl−1)

Px(zl−1)
xlα,c = (ωl ∗ ẑl−1)α,c, (29)

ŷlα,c =
1

ω
√
P(zl−1)

x̂lα,c, (30)

y̌lα,c = γlcŷ
l
α,c + βlc, (31)

žlα,c = φ(y̌lα,c), (32)

with the convention that, if Px(zl−1) = 0, then ∀α, c: ẑl−1
α,c = 0, x̂lα,c = 0 and if P(zl−1) = 0, then

∀α, c: ŷlα,c = 0.

Moments. We introduce the notation %(yl) for the ratio of the traces of the covariance matrix and
Gram matrix of the activation vectors (ylα,1, . . . ,y

l
α,Cl

)T with respect to the randomness from (x, α),
i.e.

%(yl) ≡ P(yl)− P(1)(yl)

P(yl)
≤ 1,

with the convention that, if P(yl) = 0, then %(yl) = 0.

We extend the definition of the terms P(1)
c (yl), P(2)

c (yl), P(3)
c (yl), P(4)

c (yl) and P(1)(yl), P(2)(yl),
P(3)(yl), P(4)(yl), %(yl) to all the other activation tensors of layer l.

D.2 Required Lemmas

Lemma 1. Fix a layer l ≥ 1, νω , νβ, νγ , D in Definition 1 and model parameters Θl−1 up to layer
l − 1 such that Px(zl−1) > 0, ∀x. Further suppose Norm = LN and suppose that the convolution
of Eq. (2) uses periodic boundary conditions.

Then for any η > 0 and any δ > 0, there exists N ′(η, δ) ∈ N∗ independent of Θl−1, l such that if
Cl ≥ N ′(η, δ), it holds for random nets of Definition 1 that

Pθl
[
|%(ŷl)− %(ẑl−1)| ≤ η

]
≥ 1− δ,

Pθl
[
|%(žl)− ρχ(ẑl−1)%(ẑl−1)| ≤ η

]
≥ 1− δ,

where ẑl−1, ŷl, žl are defined in Eq. (28), (30), (32), and where ρ = γ2

γ2+β2 < 1 and χ(ẑl−1) ∈ R+

is dependent on Θl−1 but independent of θl such that χ(ẑl−1) ≤ 1 in general and χ(ẑl−1) = 1 if
φ = identity.

Proof. First noting that x̂l = ωl ∗ ẑl−1, we define r̂l−1 ∈ RH×W×K2
l Cl−1 the “receptive field”

tensor containing at each spatial position α ∈ {1, . . . ,H} × {1, . . . ,W} the K2
l Cl−1 elements of

ẑl−1 belonging to the receptive field of (x̂lα,1, . . . , x̂
l
α,Cl

)T.
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For a fixed fan-in element c′ originating from channel c, the assumption of periodic boundary
conditions implies that r̂l−1

α,c′ has the same distribution as ẑl−1
α,c with respect to (x, α), implying

Pc′(r̂l−1) = Pc(ẑl−1), P(1)
c′ (r̂l−1) = P(1)

c (ẑl−1).

Since the number of fan-in elements c′ originating from channel c is equal to K2
l for any choice of c,

it follows that

P(r̂l−1) = P(ẑl−1), P(1)(r̂l−1) = P(1)(ẑl−1). (33)

Now if we denote W l ∈ RCl×K2
l Cl−1 the reshaped matricial form of ωl, we obtain that ∀α:

(x̂lα,1, . . . , x̂
l
α,Cl

)T = W l(r̂l−1
α,1 , . . . , r̂

l−1
α,K2

l Cl−1
)T, implying ∀c:

µc(x̂
l) = Ex,α

[
x̂lα,c

]
= Ex,α

[∑

c′

W l
cc′ r̂

l−1
α,c′

]
, (34)

Pc(x̂l) = Ex,α

[
(x̂lα,c)

2
]

= Ex,α

[(∑

c′

W l
cc′ r̂

l−1
α,c′

)2
]
, (35)

P(1)
c (x̂l) = µc(x̂

l)2 = Ex,α

[∑

c′

W l
cc′ r̂

l−1
α,c′

]2

. (36)

Further expanding Eq. (34), (35), (36), we get ∀c:

µc(x̂
l) =

∑

c′

W l
cc′Ex,α

[
r̂l−1
α,c′

]
,

Pc(x̂l) =
∑

c′,c′′

W l
cc′W

l
cc′′Ex,α

[
r̂l−1
α,c′ r̂

l−1
α,c′′

]
,

P(1)
c (x̂l) =

∑

c′,c′′

W l
cc′W

l
cc′′Ex,α

[
r̂l−1
α,c′

]
Ex,α

[
r̂l−1
α,c′′

]
,

Pc(x̂l)− P(1)
c (x̂l) =

∑

c′,c′′

W l
cc′W

l
cc′′

(
Ex,α

[
r̂l−1
α,c′ r̂

l−1
α,c′′

]
− Ex,α

[
r̂l−1
α,c′

]
Ex,α

[
r̂l−1
α,c′′

])
.

Since the components of
√
K2
l Cl−1W

l are sampled i.i.d. from the fixed distribution νω which is
assumed symmetric around zero, we get ∀c:

Eθl
[
µc(x̂

l)
]

= 0, (37)

Eθl
[
Pc(x̂l)

]
=
∑

c′

Eθl
[
(W l

cc′)
2
]
Ex,α

[
(r̂l−1
α,c′)

2
]

=
∑

c′

ω2

K2
l Cl−1

Pc′(r̂l−1)

= ω2P(ẑl−1), (38)

Eθl
[
Pc(x̂l)− P(1)

c (x̂l)
]

=
∑

c′

Eθl
[
(W l

cc′)
2
](

Ex,α

[
(r̂l−1
α,c′)

2
]
− Ex,α

[
r̂l−1
α,c′

]2
)

=
∑

c′

ω2

K2
l Cl−1

(
Pc′(r̂l−1)− P(1)

c′ (r̂l−1)

)

= ω2

(
P(ẑl−1)− P(1)(ẑl−1)

)
, (39)
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where we recall that ω ≡ Eθl
[(√

K2
l Cl−1W

l
cc′

)2]1/2
> 0 is the L2 norm (i.e. the root mean square)

of
√
K2
l Cl−1W

l
cc′ ∼ νω , and where we used Eq. (33) in Eq. (38) and Eq. (39).

Let us now bound Eθl
[
µc(x̂

l)2
]
, Eθl

[
Pc(x̂l)2

]
, with the aim of bounding Varθl

[
µc(ŷ

l)
]
,

Varθl
[
Pc(ŷl)

]
later on. We start by expanding µc(x̂l)2 and Pc(x̂l)2 as

µc(x̂
l)2 = Pc(x̂l)−

(
Pc(x̂l)− P(1)

c (x̂l)
)
,

Pc(x̂l)2 =

(∑

c′

(W l
cc′)

2Ex,α

[
(r̂l−1
α,c′)

2
]

+
∑

c′

∑

c′′ 6=c′
W l

cc′W
l
cc′′Ex,α

[
r̂l−1
α,c′ r̂

l−1
α,c′′

])2

=

(∑

c′

(W l
cc′)

2Ex,α

[
(r̂l−1
α,c′)

2
]

+ 2
∑

c′

∑

c′′<c′

W l
cc′W

l
cc′′Ex,α

[
r̂l−1
α,c′ r̂

l−1
α,c′′

])2

.

For Eθl
[
µc(x̂

l)2
]
, we get from Eq. (38) and Eq. (39) that

Eθl
[
µc(x̂

l)2
]

= ω2P(ẑl−1)− ω2
(
P(ẑl−1)− P(1)(ẑl−1)

)

= ω2P(1)(ẑl−1)

≤ ω2P(ẑl−1). (40)

As for Eθl
[
Pc(x̂l)2

]
, given that only terms in (W l

cc′)
4 and (W l

cc′)
2(W l

cc′′)
2 remain when taking

the expectation over θl, we get

Eθl
[
Pc(x̂l)2

]

= Eθl

[(∑

c′

(W l
cc′)

2Ex,α

[
(r̂l−1
α,c′)

2
])2

+ 4
∑

c′

∑

c′′<c′

(W l
cc′)

2(W l
cc′′)

2Ex,α

[
r̂l−1
α,c′ r̂

l−1
α,c′′

]2
]

≤ Eθl

[(∑

c′

(W l
cc′)

2Pc′(r̂l−1)

)2

+ 4
∑

c′

∑

c′′<c′

(W l
cc′)

2(W l
cc′′)

2Pc′(r̂l−1)Pc′′(r̂l−1)

]
(41)

≤ Eθl

[∑

c′

(W l
cc′)

4Pc′(r̂l−1)2 + 6
∑

c′

∑

c′′<c′

(W l
cc′)

2(W l
cc′′)

2Pc′(r̂l−1)Pc′′(r̂l−1)

]

≤
∑

c′

Eθl
[
(W l

cc′)
4
]
Pc′(r̂l−1)2 + 3

∑

c′

∑

c′′ 6=c′
Eθl
[
(W l

cc′)
2(W l

cc′′)
2
]
Pc′(r̂l−1)Pc′′(r̂l−1)

≤
∑

c′

Eθl
[
(W l

cc′)
4
]
Pc′(r̂l−1)2 + 3

∑

c′

∑

c′′ 6=c′
Eθl
[
(W l

cc′)
4
]
Pc′(r̂l−1)Pc′′(r̂l−1), (42)

where Eq. (41) and Eq. (42) are obtained using Cauchy-Schwarz inequality combined with
Ex,α

[
(r̂l−1
α,c′)

2
]

= Pc′(r̂l−1) and Ex,α

[
(r̂l−1
α,c′′)

2
]

= Pc′′(r̂l−1).

We may further process Eq. (42) to get

Eθl
[
Pc(x̂l)2

]
≤ 3

∑

c′

Eθl
[
(W l

cc′)
4
]
Pc′(r̂l−1)2 + 3

∑

c′

∑

c′′ 6=c′
Eθl
[
(W l

cc′)
4
]
Pc′(r̂l−1)Pc′′(r̂l−1)

≤ 3
∑

c′,c′′

Eθl
[
(W l

cc′)
4
]
Pc′(r̂l−1)Pc′′(r̂l−1)

≤ 3Eθl
[
(W l

c,1)4
](
K2
l Cl−1

)2P(r̂l−1)2

≤ 3Eθl
[(√

K2
l Cl−1W

l
c,1

)4]P(ẑl−1)2

≤ 3ω̃4P(ẑl−1)2, (43)
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where ω̃ ≡ Eθl
[(√

K2
l Cl−1W

l
c,1

)4]1/4 ≥ ω > 0 is the L4 norm of
√
K2
l Cl−1W

l
c,1 ∼ νω .

Now we turn to ŷl and y̌l defined in Eq. (30) and Eq. (31).

Due to µc(ŷl) = 1

w
√
P(zl−1)

µc(x̂
l), Pc(ŷl) = 1

w2P(zl−1)
Pc(x̂l) and P(1)

c (ŷl) = 1
w2P(zl−1)

P(1)
c (x̂l)

and due to P(ẑl−1) = P(zl−1)Ex

[
1

Px(zl−1)
Px(zl−1)

]
= P(zl−1), Eq. (37), (38), (39) imply

Eθl
[
µc(ŷ

l)
]

= 0,

Eθl
[
Pc(ŷl)

]
= 1, (44)

Eθl
[
Pc(ŷl)− P(1)

c (ŷl)
]

=
P(ẑl−1)− P(1)(ẑl−1)

P(ẑl−1)
= %(ẑl−1). (45)

Using Eq. (40) and Eq. (43), we further get

Varθl
[
µc(ŷ

l)
]

= Eθl
[
µc(ŷ

l)2
]
≤ 1,

Varθl
[
Pc(ŷl)

]
≤ Eθl

[
Pc(ŷl)2

]
≤ 3ω̃4ω−4, (46)

Varθl
[
Pc(ŷl)− P(1)

c (ŷl)
]
≤ Eθl

[(
Pc(ŷl)− P(1)

c (ŷl)
)2] ≤ Eθl

[
Pc(ŷl)2

]
≤ 3ω̃4ω−4.

The terms µc(ŷl), Pc(ŷl) and Pc(ŷl) − P(1)
c (ŷl) being i.i.d. with respect to θl in the different

channels c, we get

Eθl
[
µ(ŷl)

]
= 0, Varθl

[
µ(ŷl)

]
≤ 1

Cl
, (47)

Eθl
[
P(ŷl)

]
= 1, Varθl

[
P(ŷl)

]
≤ 3ω̃4ω−4

Cl
, (48)

Eθl
[
P(ŷl)− P(1)(ŷl)

]
= %(ẑl−1), Varθl

[
P(ŷl)− P(1)(ŷl)

]
≤ 3ω̃4ω−4

Cl
. (49)

Combining Eq. (48) and Eq. (49) with Chebyshev’s inequality, we get for any 1 > η > 0 that

Pθl

[
|P(ŷl)− 1| > η

1 + η

]
≤
(

1 + η

η

)2
3ω̃4ω−4

Cl
,

Pθl

[
|P(ŷl)− 1| > η

1− η

]
≤
(

1− η
η

)2
3ω̃4ω−4

Cl
,

Pθl

[∣∣∣P(ŷl)− P(1)(ŷl)− %(ẑl−1)
∣∣∣ > η

]
≤
(

1

η

)2
3ω̃4ω−4

Cl
.

Thus, for any 1 > η > 0 and any δ > 0, there exists N1(η, δ) ∈ N∗ independent of Θl−1, l, such
that if Cl ≥ N1(η, δ), it holds that

Pθl

[
P(ŷl) ≥ 1

1 + η

]
≥ Pθl

[
|P(ŷl)− 1| ≤ η

1 + η

]
≥ 1− δ,

Pθl

[
P(ŷl) ≤ 1

1− η

]
≥ Pθl

[
|P(ŷl)− 1| ≤ η

1− η

]
≥ 1− δ,

Pθl

[
∣∣P(ŷl)− P(1)(ŷl)− %(ẑl−1)

∣∣ ≤ η
]
≥ 1− δ.
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Thus, if Cl ≥ N1(η, δ) with 1 > η > 0, it holds with probability greater than 1 − 3δ with respect
to θl that (i) (1 + η)P(ŷl) ≥ 1, (ii) (1 − η)P(ŷl) ≤ 1, (iii) |P(ŷl) − P(1)(ŷl) − %(ẑl−1)| ≤ η,
implying

P(ŷl)− P(1)(ŷl) ≤ %(ẑl−1) + η

≤ (%(ẑl−1) + η)(1 + η)P(ŷl)

≤ (%(ẑl−1) + %(ẑl−1)η + η + η2)P(ŷl)

≤ (%(ẑl−1) + 3η)P(ŷl),

P(ŷl)− P(1)(ŷl) ≥ max
(

0, %(ẑl−1)− η
)

≥ max
(

0, %(ẑl−1)− η
)

(1− η)P(ŷl)

≥ max
(

0, (%(ẑl−1)− η)(1− η)P(ŷl)
)

≥ (%(ẑl−1)− η)(1− η)P(ŷl)

≥ (%(ẑl−1)− %(ẑl−1)η − η + η2)P(ŷl)

≥ (%(ẑl−1)− 2η)P(ŷl),

where we used %(ẑl−1) ≤ 1 and η2 ≤ η due to η < 1 , as well as P(ŷl)− P(1)(ŷl) ≥ 0.

Given that (1 + η)P(ŷl) ≥ 1 =⇒ P(ŷl) > 0, it follows that if Cl ≥ N1(η, δ) with 1 > η > 0, it
holds with probability greater than 1− 3δ with respect to θl that

%(ŷl) ≤ %(ẑl−1) + 3η,

%(ŷl) ≥ %(ẑl−1)− 2η,

|%(ŷl)− %(ẑl−1)| ≤ 3η.

Now, let N2 be defined independently of Θl−1, l as N2(η, δ) = N1

(
min

(
η
3 ,

1
2

)
, δ3

)
, ∀η > 0,

∀δ > 0. Then for any η > 0 and any δ > 0, if Cl ≥ N2(η, δ), it holds that

Pθl

[
|%(ŷl)− %(ẑl−1)| ≤ η

]
≥ Pθl

[
|%(ŷl)− %(ẑl−1)| ≤ 3 min

(η
3
,

1

2

)]

≥ 1− 3
δ

3
≥ 1− δ. (50)

Let us apply a similar approach with respect to žl, first noting that ∀α, c:

(y̌lα,c)
2 =

(
γlcŷ

l
α,c + βlc

)2

= (γlc)
2(ŷlα,c)

2 + (βlc)
2 + 2γlcβ

l
cŷ
l
α,c,

Pc(y̌l) = (γlc)
2Pc(ŷl) + (βlc)

2 + 2γlcβ
l
cµc(ŷ

l),

Eθl
[
Pc(y̌l)

]
= Eθl

[
(γlc)

2Pc(ŷl) + (βlc)
2
]

= γ2Eθl
[
Pc(ŷl)

]
+ β2, (51)

where γ, β are the L2 norms (i.e. the root mean squares) of γlc ∼ νγ and βlc ∼ νβ, and where we
used the fact that γlc is independent from Pc(ŷl) with respect to θl, while βlc is independent from
γlcµc(ŷ

l) with respect to θl, with the distribution of βlc symmetric around zero.

At the same time, ∀α, c:
(
y̌lα,c − µc(y̌l)

)2

=
(
γlcŷ

l
α,c + βlc −

(
γlcµc(ŷ

l) + βlc
))2

= (γlc)
2
(
ŷlα,c − µc(ŷl)

)2

,

Pc(y̌l)− P(1)
c (y̌l) = (γlc)

2
(
Pc(ŷl)− P(1)

c (ŷl)
)
,

Eθl
[
Pc(y̌l)− P(1)

c (y̌l)
]

= γ2Eθl
[
Pc(ŷl)− P(1)

c (ŷl)
]
, (52)
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where we used the fact that γlc is independent from Pc(ŷl)− P(1)
c (ŷl) with respect to θl.

Using Eq. (44) and Eq. (45), Eq. (51) and Eq. (52) imply that ∀c:
Eθl
[
Pc(y̌l)

]
= γ2 + β2, (53)

Eθl
[
Pc(y̌l)− P(1)

c (y̌l)
]

= γ2%(ẑl−1). (54)

Now, we may bound Eθl
[
Pc(y̌l)2

]
using ∀α, c:

(y̌lα,c)
2 =

(
γlcŷ

l
α,c + βlc

)2

≤ 2
(

(γlc)
2(ŷlα,c)

2 + (βlc)
2
)
,

Pc(y̌l) ≤ 2
(

(γlc)
2Pc(ŷl) + (βlc)

2
)
,

Pc(y̌l)2 ≤ 8
(

(γlc)
4Pc(ŷl)2 + (βlc)

4
)
,

Eθl
[
Pc(y̌l)2

]
≤ 8
(
γ̃4Eθl

[
Pc(ŷl)2

]
+ β̃4

)
, (55)

where we defined γ̃ ≡ Eθl
[(
γlc
)4]1/4

> γ > 0 and β̃ ≡ Eθl
[(
βlc
)4]1/4

> β > 0 the L4 norms of

γlc ∼ νγ and βlc ∼ νβ, and where we used twice (a+ b)2 ≤ 2(a2 + b2), ∀a, b.
Using Eq. (46), we then get ∀c:

Eθl
[
Pc(y̌l)2

]
≤ 24γ̃4ω̃4ω−4 + 8β̃4. (56)

Next, we consider žl. We adopt the notations y̌l,+, y̌l,− for the positive and negative parts of y̌l such
that ∀α, c:

y̌l,+α,c = max(y̌lα,c, 0), y̌l,−α,c = max(−y̌lα,c, 0).

The positive homogeneity of φ implies that ∀α, c:
žlα,c = φ(y̌lα,c) = φ(1) · y̌l,+α,c + φ(−1) · y̌l,−α,c, (žlα,c)

2 = φ(1)2 · (y̌l,+α,c)2 + φ(−1)2 · (y̌l,−α,c)2.

For any c, this implies for µc(žl)2 and Pc(žl) that

µc(ž
l)2 =

(
φ(1)Ex,α

[
y̌l,+α,c

]
+ φ(−1)Ex,α

[
y̌l,−α,c

])2

=
(
φ(1)µc(y̌

l,+) + φ(−1)µc(y̌
l,−)
)2

= φ(1)2µc(y̌
l,+)2 + φ(−1)2µc(y̌

l,−)2 + 2φ(1)φ(−1)µc(y̌
l,+)µc(y̌

l,−), (57)

Pc(žl) = Ex,α

[
φ(1)2(y̌l,+α,c)

2 + φ(−1)2(y̌l,−α,c)
2
]

= φ(1)2Pc(y̌l,+) + φ(−1)2Pc(y̌l,−). (58)

Now turning to y̌l, we have ∀α, c:
y̌lα,c = y̌l,+α,c − y̌l,−α,c, (y̌lα,c)

2 = (y̌l,+α,c)
2 + (y̌l,−α,c)

2.

For any c, this implies for µc(y̌l)2 and Pc(y̌l) that

µc(y̌
l)2 =

(
Ex,α

[
y̌l,+α,c

]
− Ex,α

[
y̌l,−α,c

])2

=
(
µc(y̌

l,+)− µc(y̌l,−)
)2

= µc(y̌
l,+)2 + µc(y̌

l,−)2 − 2µc(y̌
l,+)µc(y̌

l,−), (59)

Pc(y̌l) = Ex,α

[
(y̌l,+α,c)

2 + (y̌l,−α,c)
2
]

= Pc(y̌l,+) + Pc(y̌l,−). (60)
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At this point, we note that ŷl and −ŷl have the same distribution with respect to θl by symmetry
around zero of νω. From this and the symmetry around zero of νβ, we deduce that y̌l and −y̌l
have the same distribution with respect to θl. In turn, this implies that y̌l,+ and y̌l,− have the same
distribution with respect to θl.

Combined with Eq. (57) and Eq. (58), we deduce that ∀c:

Eθl
[
µc(ž

l)2
]

=
(
φ(1)2 + φ(−1)2

)
Eθl
[
µc(y̌

l,+)2
]

+ 2φ(1)φ(−1)Eθl
[
µc(y̌

l,+)µc(y̌
l,−)
]

= FφEθl
[
µc(y̌

l,+)2 + µc(y̌
l,−)2

]
+ 2φ(1)φ(−1)Eθl

[
µc(y̌

l,+)µc(y̌
l,−)
]
,

Eθl
[
Pc(žl)

]
=
(
φ(1)2 + φ(−1)2

)
Eθl
[
Pc(y̌l,+)

]

= FφEθl
[
Pc(y̌l,+) + Pc(y̌l,−)

]
,

where we defined Fφ ≡ φ(1)2+φ(−1)2

2 > 0, with the strict positivity of Fφ following from the
assumption that φ is nonzero.

Given |φ(1)φ(−1)| ≤ φ(1)2+φ(−1)2

2 =⇒ φ(1)φ(−1) ≥ −Fφ, and given µc(y̌l,+)µc(y̌
l,−) ≥ 0,

we deduce that ∀c:
Eθl
[
µc(ž

l)2
]
≥ FφEθl

[
µc(y̌

l,+)2 + µc(y̌
l,−)2 − 2µc(y̌

l,+)µc(y̌
l,−)
]

≥ FφEθl
[
µc(y̌

l)2
]

≥ FφEθl
[
P(1)
c (y̌l)

]
, (61)

Eθl
[
Pc(žl)

]
= FφEθl

[
Pc(y̌l)

]

= Fφ
(
γ2 + β2

)
, (62)

Eθl
[
Pc(žl)− P(1)

c (žl)
]

= Eθl
[
Pc(žl)− µc(žl)2

]

≤ FφEθl
[
Pc(y̌l)− P(1)

c (y̌l)
]

≤ Fφγ2%(ẑl−1). (63)

where we used Eq. (59), (60) and Eq. (53), (54).

Let us now define χ(ẑl−1) ∈ R+ independently of c as

χ(ẑl−1) ≡
{

E
θl

[
Pc(žl)−P(1)

c (žl)
]

Fφγ2%(ẑl−1)
if %(ẑl−1) > 0,

1 otherwise.

We note that χ(ẑl−1) is independent of θl and that χ(ẑl−1) ≤ 1 in general, and χ(ẑl−1) = 1 if
φ = identity since the inequalities of Eq. (61) and Eq. (63) become equalities when φ = identity.

Given this definition of χ(ẑl−1), we may rewrite Eθl
[
Pc(žl)− P(1)

c (žl)
]

for any c as

Eθl
[
Pc(žl)− P(1)

c (žl)
]

= χ(ẑl−1)Fφγ
2%(ẑl−1). (64)

Now let us bound Eθl
[
Pc(žl)2

]
with the goal of bounding Varθl

[
Pc(žl)

]
, Varθl

[
Pc(žl)−P(1)

c (žl)
]
.

We get from Eq. (58) that ∀c:

Pc(žl) ≤
(
φ(1)2 + φ(−1)2

)(
Pc(y̌l,+) + Pc(y̌l,−)

)

≤ 2FφPc(y̌l),
Eθl
[
Pc(žl)2

]
≤ 4F 2

φEθl
[
Pc(y̌l)2

]

≤ 4F 2
φ

(
24γ̃4ω̃4ω−4 + 8β̃4

)
,
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where we used Eq. (56).

This gives for Varθl
[
Pc(žl)

]
, Varθl

[
Pc(žl)− P(1)

c (žl)
]

that

Varθl
[
Pc(žl)

]
≤ Eθl

[
Pc(žl)2

]

≤ 4F 2
φ

(
24γ̃4ω̃4ω−4 + 8β̃4

)
, (65)

Varθl
[
Pc(žl)− P(1)

c (žl)
]
≤ Eθl

[(
Pc(žl)− P(1)

c (žl)
)2]

≤ Eθl
[
Pc(žl)2

]

≤ 4F 2
φ

(
24γ̃4ω̃4ω−4 + 8β̃4

)
. (66)

Using Eq. (62), (64),(65), (66) and the fact that the terms Pc(žl) and Pc(žl)− P(1)
c (žl) are i.i.d. in

the different channels c, we get

Eθl
[
P(žl)

]
= Fφ

(
γ2 + β2

)
, Varθl

[
P(žl)

]
≤

4F 2
φ

(
24γ̃4ω̃4ω−4 + 8β̃4

)

Cl
,

(67)

Eθl
[
P(žl)− P(1)(žl)

]
= χ(ẑl−1)Fφγ

2%(ẑl−1), Varθl
[
P(žl)− P(1)(žl)

]
≤

4F 2
φ

(
24γ̃4ω̃4ω−4 + 8β̃4

)

Cl
.

Now if we define z̆l such that ∀α, c: z̆lα,c =
žlα,c√

Fφ(γ2+β2)
, we get

Eθl
[
P(z̆l)

]
= 1, Varθl

[
P(z̆l)

]
≤ 1

Cl

4
(

24γ̃4ω̃4ω−4 + 8β̃4
)

(
γ2 + β2

)2 ,

Eθl
[
P(z̆l)− P(1)(z̆l)

]
= ρχ(ẑl−1)%(ẑl−1), Varθl

[
P(z̆l)− P(1)(z̆l)

]
≤ 1

Cl

4
(

24γ̃4ω̃4ω−4 + 8β̃4
)

(
γ2 + β2

)2 ,

where ρ = γ2

γ2+β2 .

The reasoning that yielded Eq. (50) from Eq. (48) and Eq. (49) can be immediately transposed by

replacing ŷl by z̆l, %(ẑl−1) by ρχ(ẑl−1)%(ẑl−1) and 3ω̃4ω−4 by
4
(

24γ̃4ω̃4ω−4+8β̃4
)

(
γ2+β2

)2 .

Consequently, for any η > 0 and any δ > 0, there exists N3(η, δ) ∈ N∗ independent of Θl−1, l, such
that if Cl ≥ N3(η, δ), it holds that

Pθl

[
|%(z̆l)− ρχ(ẑl−1)%(ẑl−1)| ≤ η

]
≥ 1− δ,

Pθl

[
|%(žl)− ρχ(ẑl−1)%(ẑl−1)| ≤ η

]
≥ 1− δ,

where we used the fact that %(žl) = %(z̆l).

Let us finally define N ′ independently of Θl, l as N ′(η, δ) = max
(
N2(η, δ), N3(η, δ)

)
, ∀η > 0,

∀δ > 0. Then for any η > 0 and any δ > 0, if Cl ≥ N ′(η, δ), it holds that

Pθl
[
|%(ŷl)− %(ẑl−1)| ≤ η

]
≥ 1− δ,

Pθl
[
|%(žl)− ρχ(ẑl−1)%(ẑl−1)| ≤ η

]
≥ 1− δ,

where we recall that χ(ẑl−1) ≤ 1 in general, and that χ(ẑl−1) = 1 if φ = identity.
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Lemma 2. Fix a layer l ≥ 1, νω, νβ, νγ , D in Definition 1 and model parameters Θl−1 up to
layer l − 1 such that Px(zl−1) > 0, ∀x. Further suppose Norm = LN and suppose and that the
convolution of Eq. (2) uses periodic boundary conditions.

Then for any η > 0 and any δ > 0, there exists N ′′(η, δ) ∈ N∗ independent of Θl−1, l such that if
Cl ≥ N ′′(η, δ), it holds for random nets of Definition 1 with probability greater than 1 − δ with
respect to θl that

|P(1)(ŷl)− P(1)(yl)| ≤ η, |P(1)(žl)− P(1)(zl)| ≤ η,
|Px(ŷl)− Px(yl)| ≤ η, ∀x ∈ D, |Px(žl)− Px(zl)| ≤ η, ∀x ∈ D,

|Px(ŷl)− 1| ≤ η, ∀x ∈ D,
∣∣Px(žl)− Fφ

(
γ2 + β2

)∣∣ ≤ η, ∀x ∈ D,

where Fφ ≡ φ(1)2+φ(−1)2

2 > 0 and ŷl, žl are defined in Eq. (30) and Eq. (32).

Proof. Let us start by noting that ∀α, c:

x̂lα,c =

√
P(zl−1)

Px(zl−1)
xlα,c, ŷlα,c =

1

ω
√
P(zl−1)

x̂lα,c =
1

ω
√
Px(zl−1)

xlα,c.

This implies that ŷl only depends on x and not on other inputs in the dataset.

Thus, Eq. (47), (48), (67) still hold when considering the moments conditioned on x, such that ∀x:

Eθl
[
µx(ŷl)

]
= 0, Varθl

[
µx(ŷl)

]
≤ 1

Cl
, (68)

Eθl
[
Px(ŷl)

]
= 1, Varθl

[
Px(ŷl)

]
≤ 3ω̃4ω−4

Cl
, (69)

Eθl
[
Px(žl)

]
= Fφ

(
γ2 + β2

)
, Varθl

[
Px(žl)

]
≤

4F 2
φ

(
24γ̃4ω̃4ω−4 + 8β̃4

)

Cl
. (70)

Combining Eq. (68), (69), (70) with Chebyshev’s inequality, we get for any η > 0 and any δ > 0 that
there exists N4(η, δ) ∈ N∗ independent of Θl−1, l such that, if Cl ≥ N4(η, δ), it holds for any x that

Pθl
[
|µx(ŷl)| ≤ η

]
≥ 1− δ, (71)

Pθl
[
|Px(ŷl)− 1| ≤ η

]
≥ 1− δ, (72)

Pθl

[
∣∣Px(žl)− Fφ(γ2 + β2)

∣∣ ≤ η
]
≥ 1− δ. (73)

Next we turn to Px(ŷl − yl), Px(žl − zl). Given that ylα,c =
xlα,c−µx(xl)

σx(xl)
=

ŷlα,c−µx(ŷl)

σx(ŷl)
, ∀x, α, c,

we deduce ∀x, α, c:
ŷlα,c = σx(ŷl)ylα,c + µx(ŷl)

= ylα,c + (σx(ŷl)− 1)ylα,c + µx(ŷl),

y̌lα,c = γlcy
l
α,c + βlc + γlc(σx(ŷl)− 1)ylα,c + γlcµx(ŷl)

= ỹlα,c + γlc(σx(ŷl)− 1)ylα,c + γlcµx(ŷl).

Now let us fix x and bound Px(ŷl − yl) and Px(žl − zl). We start by noting that

(ŷlα,c − ylα,c)
2 ≤ 2(σx(ŷl)− 1)2(ylα,c)

2 + 2µx(ŷl)2,

(y̌lα,c − ỹlα,c)
2 ≤ 2(σx(ŷl)− 1)2(γlcy

l
α,c)

2 + 2µx(ŷl)2(γlc)
2,

(žlα,c − zlα,c)
2 =

(
φ(y̌lα,c)− φ(ỹlα,c)

)2

≤ 2Fφ(y̌lα,c − ỹlα,c)
2

≤ 4Fφ(σx(ŷl)− 1)2(γlcy
l
α,c)

2 + 4Fφµx(ŷl)2(γlc)
2,
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where we used (a+ b)2 ≤ 2a2 + 2b2, ∀a, b and
(
φ(a)− φ(b)

)2 ≤ (F ′φ)2(a− b)2 ≤ 2Fφ(a− b)2,
∀a, b, by F ′φ-Lipschitzness of φ with F ′φ = max

(
|φ(1)|, |φ(−1)|

)
≤
√

2Fφ.

We deduce for Px(ŷl − yl) and Px(žl − zl) that
Px(ŷl − yl) ≤ 2(σx(ŷl)− 1)2Px(yl) + 2µx(ŷl)2

≤ 2
(

(σx(ŷl)− 1)2 + µx(ŷl)2
)
, (74)

Px(žl − zl) ≤ 4Fφ(σx(ŷl)− 1)2Ec
[
(γlc)

2Px,c(y
l)
]

+ 4Fφµx(ŷl)2Ec
[
(γlc)

2
]

≤ 4Fφ

(
(σx(ŷl)− 1)2 + µx(ŷl)2

)
Ec
[
(γlc)

2
(
Px,c(y

l) + 1
)]
, (75)

where we used Px(yl) ≤ 1.

Next, let us bound the expectation over θl of Ec
[
(γlc)

2
(
Px,c(y

l) + 1
)]

:

Eθl
[
Ec
[
(γlc)

2
(
Px,c(y

l) + 1
)]]

= Ec
[
Eθl
[
(γlc)

2
(
Px,c(y

l) + 1
)]]

= Ec
[
Eθl
[
(γlc)

2
]
Eθl
[
Px,c(y

l) + 1
]]

= γ2Eθl
[
Ec
[
Px,c(y

l) + 1
]]

= γ2Eθl
[
Px(yl) + 1

]

≤ 2γ2,

where we used the independence of γlc andPx,c(y
l) with respect to θl for any c, and again Px(yl) ≤ 1.

Markov’s inequality then gives for any δ > 0 that

Pθl

[
Ec
[
(γlc)

2
(
Px,c(y

l) + 1
)]
≥ 2γ2

δ

]
≤ 2γ2 δ

2γ2
= δ.

Thus, for any 1 ≥ η > 0 and any δ > 0, if Cl ≥ N4(η, δ), it holds for any x with probability greater
than 1− 4δ with respect to θl that

|µx(ŷl)| ≤ η, (76)

|Px(ŷl)− 1| ≤ η, (77)
∣∣Px(žl)− Fφ(γ2 + β2)

∣∣ ≤ η, (78)

Ec
[
(γlc)

2
(
Px,c(y

l) + 1
)]
≤ 2γ2

δ
. (79)

If both inequalities of Eq. (76) and Eq. (77) hold with 1 ≥ η > 0, then
|σx(ŷl)− 1| ≤ |σx(ŷl)− 1||σx(ŷl) + 1| = |σx(ŷl)2 − 1|

≤ |Px(ŷl)− 1|+ µx(ŷl)2

≤ η + η2 ≤ 2η,

(σx(ŷl)− 1)2 ≤ 4η2 ≤ 4η,

µx(ŷl)2 ≤ η2 ≤ η,
where we used η2 ≤ η for 1 ≥ η > 0.

Injecting this into Eq. (74) and Eq. (75), we get that, if Cl ≥ N4(η, δ) with 1 ≥ η > 0, it holds for
any x with probability greater than 1− 4δ with respect to θl that

|Px(ŷl)− 1| ≤ η,
Px(ŷl − yl) ≤ 10η,

∣∣Px(žl)− Fφ(γ2 + β2)
∣∣ ≤ η,

Px(žl − zl) ≤ 20Fφη
2γ2

δ
.
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Let us define N5 independently of Θl−1, l as N5(η, δ) = N4

(
min( η10 ,

η
20Fφ

δ
2γ2 , 1), δ

4|D|

)
, ∀η > 0,

∀δ > 0. Then ∀η > 0, ∀δ > 0 if Cl ≥ N5(η, δ), it holds with probability greater than 1 − δ with
respect to θl that

|Px(ŷl)− 1| ≤ η, ∀x ∈ D,
∣∣Px(žl)− Fφ(γ2 + β2)

∣∣ ≤ η, ∀x ∈ D, (80)

Px(ŷl − yl) ≤ η, ∀x ∈ D, Px(žl − zl) ≤ η, ∀x ∈ D. (81)

If Eq. (80) and Eq. (81) hold, then
∣∣P(1)(ŷl)− P(1)(yl)

∣∣ =
∣∣P(1)(ŷl)− P(1)(ŷl + yl − ŷl)

∣∣

≤ P(1)(yl − ŷl) + 2
∣∣∣Ec
[
µc(ŷ

l)µc(y
l − ŷl)

]∣∣∣

≤ P(1)(yl − ŷl) + 2Ec
[
|µc(ŷl)||µc(yl − ŷl)|

]

≤ P(1)(yl − ŷl) + 2

√
Ec
[
µc(ŷl)2

]
Ec
[
µc(yl − ŷl)2

]

≤ P(yl − ŷl) + 2
√
P(ŷl)P(yl − ŷl)

≤ Ex

[
Px(yl − ŷl)

]
+ 2

√
Ex

[
Px(ŷl)

]
Ex

[
Px(yl − ŷl)

]

≤ η + 2
√

(1 + η)η,

where we used P(1)(yl − ŷl) ≤ P(yl − ŷl) and P(1)(ŷl) ≤ P(ŷl), as well as Jensen’s inequality
and Cauchy-Schwartz inequality.

Similarly, if Eq. (80) and Eq. (81) hold, then ∀x:
∣∣Px(ŷl)− Px(yl)

∣∣ =
∣∣Px(ŷl)− Px(ŷl + yl − ŷl)

∣∣
≤ Px(yl − ŷl) + 2µx(|ŷl||yl − ŷl|)

≤ Px(yl − ŷl) + 2
√
Px(ŷl)Px(yl − ŷl)

≤ η + 2
√

(1 + η)η.

A similar calculation with žl, zl shows that if Eq. (80) and Eq. (81) hold, then

∣∣P(1)(žl)− P(1)(zl)
∣∣ ≤ η + 2

√
η
√
Fφ(γ2 + β2) + η,

∣∣Px(žl)− Px(zl)
∣∣ ≤ η + 2

√
η
√
Fφ(γ2 + β2) + η, ∀x.

Given that the three terms η, η + 2
√

(1 + η)η and η + 2
√
η
√
Fφ(γ2 + β2) + η converge to 0 as

η → 0, it follows that there exists a mapping h such that for any η > 0: h(η) > 0 and

h(η) ≤ η,
h(η) + 2

√
(1 + h(η))h(η) ≤ η,

h(η) + 2
√
h(η)

√
Fφ(γ2 + β2) + h(η) ≤ η.

Let us finally define N ′′ independently of Θl, l as N ′′(η, δ) = N5(h(η), δ), ∀η > 0, ∀δ > 0. Then
∀η > 0, ∀δ > 0, if Cl ≥ N ′′(η, δ), it holds with probability greater than 1− δ with respect to θl that

|P(1)(ŷl)− P(1)(yl)| ≤ η, |P(1)(žl)− P(1)(zl)| ≤ η,
|Px(ŷl)− Px(yl)| ≤ η, ∀x ∈ D, |Px(žl)− Px(zl)| ≤ η, ∀x ∈ D,

|Px(ŷl)− 1| ≤ η, ∀x ∈ D,
∣∣Px(žl)− Fφ(γ2 + β2)

∣∣ ≤ η, ∀x ∈ D.
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Lemma 3. Fix a layer l ≥ 1, νω , νβ, νγ , D in Definition 1 and model parameters Θl−1 up to layer
l − 1 such that Px(zl−1) > 0, ∀x. Further suppose Norm = LN and suppose that the convolution
of Eq. (2) uses periodic boundary conditions.

Then for any η > 0 and any δ > 0, there exists N ′′′(η, δ) ∈ N∗ independent of Θl−1, l such that if
Cl ≥ N ′′′(η, δ), it holds for random nets of Definition 1 with probability greater than 1 − δ with
respect to θl that

|%(yl)− %(ẑl−1)| ≤ η, |%(zl)− ρχ(ẑl−1)%(ẑl−1)| ≤ η,
|Px(yl)− 1| ≤ η, ∀x ∈ D,

∣∣Px(zl)− Fφ(γ2 + β2)
∣∣ ≤ η, ∀x ∈ D,

where Fφ ≡ φ(1)2+φ(−1)2

2 > 0, ρ = γ2

γ2+β2 < 1 and χ(ẑl−1) ∈ R+ is dependent on Θl−1 but
independent of θl such that χ(ẑl−1) ≤ 1 in general and χ(ẑl−1) = 1 if φ = identity.

Proof. First let us note that

|Px(ŷl)− Px(yl)| ≤ η, ∀x ∈ D =⇒ |P(ŷl)− P(yl)| ≤ η,
|Px(ŷl)− 1| ≤ η, ∀x ∈ D =⇒ |P(ŷl)− 1| ≤ η,

|Px(žl)− Px(zl)| ≤ η, ∀x ∈ D =⇒ |P(žl)− P(zl)| ≤ η,
∣∣Px(žl)− Fφ(γ2 + β2)

∣∣ ≤ η, ∀x ∈ D =⇒ |P(žl)− Fφ(γ2 + β2)
∣∣ ≤ η.

Combined with Lemma 2, we deduce for any η > 0 and any δ > 0 that there exists N ′′(η, δ) ∈ N∗
independent of Θl−1, l such that if Cl ≥ N ′′(η, δ), it holds with probability greater than 1− δ with
respect to θl that

|P(1)(ŷl)− P(1)(yl)| ≤ η, |P(1)(žl)− P(1)(zl)| ≤ η, (82)

|P(ŷl)− P(yl)| ≤ η, |P(žl)− P(zl)| ≤ η, (83)

|P(ŷl)− 1| ≤ η,
∣∣P(žl)− Fφ(γ2 + β2)

∣∣ ≤ η, (84)

where Fφ ≡ φ(1)2+φ(−1)2

2 > 0.

If all inequalities of Eq. (82), (83), (84) hold with η ≤ 1
4Fφ(γ2 + β2), then %(zl) − %(žl) may be

upper bounded using

P(zl)− P(1)(zl) ≤ P(žl)− P(1)(žl) + |P(zl)− P(žl)|+ |P(1)(žl)− P(1)(zl)|
≤ %(žl)P(žl) + 2η

≤ %(žl)
(
Fφ(γ2 + β2) + η

)
+ 2η

≤ %(žl)Fφ(γ2 + β2) + 3η,

P(zl) ≥ P(žl)− η
≥ Fφ(γ2 + β2)− 2η,

%(zl) ≤ %(žl)Fφ(γ2 + β2) + 3η

Fφ(γ2 + β2)− 2η

≤
%(žl) + 3η

Fφ(γ2+β2)

1− 2η
Fφ(γ2+β2)

≤
(
%(žl) +

3η

Fφ(γ2 + β2)

)(
1 +

8η

Fφ(γ2 + β2)

)

≤ %(žl) +
35η

Fφ(γ2 + β2)
,

where we used %(žl) ≤ 1, as well as 1
1−x ≤ 1 + 4x for x ≤ 1

2 and
(

η
Fφ(γ2+β2)

)2

≤ η
Fφ(γ2+β2) for

η
Fφ(γ2+β2) ≤ 1.
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Similarly, if all inequalities of Eq. (82), (83), (84) hold with η ≤ 1
4Fφ(γ2 + β2), then %(zl)− %(žl)

may be lower bounded using

P(zl)− P(1)(zl) ≥ P(žl)− P(1)(žl)− |P(zl)− P(žl)| − |P(1)(žl)− P(1)(zl)|
≥ %(žl)P(žl)− 2η

≥ %(žl)
(
Fφ(γ2 + β2)− η

)
− 2η

≥ %(žl)Fφ(γ2 + β2)− 3η,

P(zl) ≤ P(žl) + η ≤ Fφ(γ2 + β2) + 2η,

%(zl) ≥
max

(
%(žl)Fφ(γ2 + β2)− 3η, 0

)

Fφ(γ2 + β2) + 2η

≥
max

(
%(žl)− 3η

Fφ(γ2+β2) , 0
)

1 + 2η
Fφ(γ2+β2)

≥ max

((
%(žl)− 3η

Fφ(γ2 + β2)

)(
1− 2η

Fφ(γ2 + β2)

)
, 0

)

≥ %(žl)− 5η

Fφ(γ2 + β2)
,

where we used %(žl) ≤ 1, as well as 1
1+x ≥ 1− x ≥ 0 for 0 ≤ x ≤ 1.

We deduce that if all inequalities of Eq. (82), (83), (84) hold with η ≤ 1
4Fφ(γ2 + β2), then

|%(zl)− %(žl)| ≤ 35η

Fφ(γ2 + β2)
. (85)

The reasoning that yielded Eq. (85) from Eq. (82), (83), (84) can be immediately transposed by
replacing zl by yl, žl by ŷl and Fφ(γ2 + β2) by 1.

Consequently, if all inequalities of Eq. (82), (83), (84) hold with η ≤ 1
4 , then

|%(yl)− %(ŷl)| ≤ 35η.

Lemma 1 also tells us that for any η > 0 and any δ > 0, there exists N ′(η, δ) ∈ N∗ independent of
Θl−1, l such that if Cl ≥ N ′(η, δ), it holds with probability greater than 1− 2δ with respect to θl that

|%(ŷl)− %(ẑl−1)| ≤ η, |%(žl)− ρχ(ẑl−1)%(ẑl−1)| ≤ η,
where ρ = γ2

γ2+β2 < 1 and χ(ẑl−1) ∈ R+ is dependent on Θl−1 but independent of θl such that
χ(ẑl−1) ≤ 1 in general and χ(ẑl−1) = 1 if φ = identity.

Let us then define N6 independently of Θl−1, l as

N6(η, δ) = max

(
N ′(η, δ), N ′′

(
min

(
η,

1

4
,

1

4
Fφ(γ2 + β2)

)
, δ
))

, ∀η > 0, ∀δ > 0.

Then ∀η > 0, ∀δ > 0, if Cl ≥ N6(η, δ), it holds with probability greater than 1− 3δ with respect to θl that

|%(yl)− %(ẑl−1)| ≤ |%(yl)− %(ŷl)|+ |%(ŷl)− %(ẑl−1)|
≤ 35η + η

≤ 36η,

|%(zl)− ρχ(ẑl−1)%(ẑl−1)| ≤ |%(zl)− %(žl)|+ |%(žl)− ρχ(ẑl−1)%(ẑl−1)|

≤ 35η

Fφ(γ2 + β2)
+ η

≤
(

35 + Fφ(γ2 + β2)

Fφ(γ2 + β2)

)
η.
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Now, let us define N7 independently of Θl−1, l as

N7(η, δ) = N6

(
min

( η
36
,

Fφ(γ2 + β2)

35 + Fφ(γ2 + β2)
η
)
,
δ

3

)
, ∀η > 0, ∀δ > 0.

Then ∀η > 0, ∀δ > 0, if Cl ≥ N7(η, δ), it holds with probability greater than 1− δ with respect to
θl that

|%(yl)− %(ẑl−1)| ≤ η, |%(zl)− ρχ(ẑl−1)%(ẑl−1)| ≤ η.

Lemma 2 can be used again to deduce for any η > 0 and any δ > 0, that if Cl ≥ N ′′(η, δ), it holds
with probability greater than 1− δ with respect to θl that ∀x ∈ D:

|Px(yl)− 1| ≤ |Px(yl)− Px(ŷl)|+ |Px(ŷl)− 1|
≤ 2η,

|Px(zl)− Fφ(γ2 + β2)| ≤ |Px(zl)− Px(žl)|+ |Px(žl)− Fφ(γ2 + β2)|
≤ 2η.

Let us finally define N ′′′ independently of Θl−1, l as N ′′′(η, δ) = max
(
N7(η, δ2 ), N ′′

(
η
2 ,

δ
2

))
,

∀η > 0, ∀δ > 0. Then, for any η > 0 and any δ > 0, if Cl ≥ N ′′′(η, δ), it holds with probability
greater than 1− δ with respect to θl that

|%(yl)− %(ẑl−1)| ≤ η, |%(zl)− ρχ(ẑl−1)%(ẑl−1)| ≤ η,
|Px(yl)− 1| ≤ η, ∀x ∈ D,

∣∣Px(zl)− Fφ(γ2 + β2)
∣∣ ≤ η, ∀x ∈ D.

D.3 Proof of Theorem 1

Theorem 1. Fix a layer l ≥ 1 and νω , νβ, νγ , D in Definition 1. Further suppose Norm = LN and
suppose that the convolution of Eq. (2) uses periodic boundary conditions.

Then for any η > 0 and any δ > 0, there exists N(η, δ) ∈ N∗ such that if min1≤k≤l Ck ≥ N(η, δ),
it holds for random nets of Definition 1 with probability greater than 1− δ with respect to Θl that

P(yl)− P(1)(yl) ≤ ρl−1 + η, P(yl) = 1, (86)

where ρ ≡ γ2

γ2+β2 < 1.

Proof. For fixed Θk−1 such that Px(zk−1) > 0, ∀x ∈ D, Lemma 3 tells us for any δ > 0 that, if
Ck ≥ N ′′′

(
min

(
1
2 ,

Fφ(γ2+β2)
2

)
, δ
)

with Fφ ≡ φ(1)2+φ(−1)2

2 > 0, it holds with probability greater

than 1− δ with respect to θk that ∀x ∈ D:

|Px(yk)− 1| ≤ 1

2
, Px(yk) ≥ 1− 1

2
> 0,

∣∣Px(zk)− Fφ(γ2 + β2)
∣∣ ≤ Fφ(γ2 + β2)

2
, Px(zk) ≥ Fφ(γ2 + β2)− Fφ(γ2 + β2)

2
> 0.

Let us define the event Ak−1 ≡
{
Px(yk−1) > 0,∀x ∈ D

}
∩
{
Px(zk−1) > 0,∀x ∈ D

}
with

A0 ≡
{
Px(x) > 0,∀x ∈ D

}
.

Given that N ′′′ is independent of Θk−1, k, we deduce for Ck ≥ N ′′′
(

min
(

1
2 ,

Fφ(γ2+β2)
2

)
, δ
)

that

PΘk|Ak−1

[
Ak
]

= PΘk|Ak−1

[(
Px(yk) > 0,∀x ∈ D

)
∧
(
Px(zk) > 0,∀x ∈ D

)]
≥ 1− δ.
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Using the fact that Px(x) > 0, ∀x ∈ D by Definition 1, this implies for min1≤k≤l Ck ≥
N ′′′

(
min

(
1
2 ,

Fφ(γ2+β2)
2

)
, δ
)

that

PΘl
[
Al
]

= PΘl

[(
Px(yl) > 0,∀x ∈ D

)
∧
(
Px(zl) > 0,∀x ∈ D

)]
≥ (1− δ)l.

Thus, for any δ > 0 there exists N8(δ) ∈ N∗ such that, if min1≤k≤l Ck ≥ N8(δ), it holds with
probability greater than 1− δ with respect to Θl that(

Px(yl) > 0,∀x ∈ D
)
∧
(
Px(zl) > 0,∀x ∈ D

)
.

Given that
(
Px(yl) > 0,∀x ∈ D

)
=⇒ P(yl) = 1, we deduce for any δ > 0 that, if

min1≤k≤l Ck ≥ N8(δ), it holds with probability greater than 1− δ with respect to Θl that
P(yl) = 1.

Now, until further notice, let us fix some k and some Θk−1 such that Px(zk−1) > 0, ∀x ∈ D.

Using again Lemma 3, we get for any 1 > η > 0 and any δ > 0 that, if Ck ≥ N ′′′
(
Fφ(γ2 +β2)η, δ

)
,

it holds with probability greater than 1− δ with respect to θk that
Fφ(γ2 + β2)(1− η) ≤ Px(zk) ≤ Fφ(γ2 + β2)(1 + η), ∀x ∈ D,
Fφ(γ2 + β2)(1− η) ≤ P(zk) ≤ Fφ(γ2 + β2)(1 + η), (87)

√
1− η
1 + η

≤
√
P(zk)

Px(zk)
≤
√

1 + η

1− η , ∀x ∈ D,

(√ P(zk)

Px(zk)
− 1
)2

≤ g(η) ≡ max

((√1− η
1 + η

− 1
)2

,
(√1 + η

1− η − 1
)2
)
, ∀x ∈ D. (88)

If Eq. (88) holds, then

ẑkα,c − zkα,c =
(√ P(zk)

Px(zk)
− 1
)
zkα,c,

Px(ẑk − zk) =
(√ P(zk)

Px(zk)
− 1
)2

Px(zk) ≤ g(η)Px(zk),

P(ẑk − zk) ≤ g(η)P(zk).

In turn, this implies that if both Eq. (87) and Eq. (88) hold, then
|P(ẑk)− P(zk)| = |P(ẑk − zk + zk)− P(zk)|

≤ P(ẑk − zk) + 2µ(|ẑk − zk||zk|)

≤ P(ẑk − zk) + 2
√
P(ẑk − zk)P(zk)

≤
(
g(η) + 2

√
g(η)

)
P(zk)

≤
(
g(η) + 2

√
g(η)

)
Fφ(γ2 + β2)(1 + η),

|P(1)(ẑk)− P(1)(zk)| = |P(1)(ẑk − zk + zk)− P(1)(zk)|
≤ P(1)(ẑk − zk) + 2Ec

[∣∣µc(ẑk − zk)
∣∣∣∣µc(zk)

∣∣
]

≤ P(ẑk − zk) + 2
√
P(ẑk − zk)P(zk)

≤
(
g(η) + 2

√
g(η)

)
P(zk)

≤
(
g(η) + 2

√
g(η)

)
Fφ(γ2 + β2)(1 + η).
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Since
(
g(η) + 2

√
g(η)

)
Fφ(γ2 + β2)(1 + η)→ 0 as η → 0, we deduce for any η > 0 and any δ > 0

that there exists N9(η, δ) ∈ N∗ independent of Θk−1, k such that if Ck ≥ N9(η, δ), it holds with
probability greater than 1− δ with respect to θk that

|Px(zk)− Fφ(γ2 + β2)| ≤ η ∀x ∈ D, |P(zk)− Fφ(γ2 + β2)| ≤ η,
|P(ẑk)− P(zk)| ≤ η,

|P(1)(ẑk)− P(1)(zk)| ≤ η.
Defining N10 independently of Θk−1, k as N10(η, δ) = max

(
N ′′′

(
η, δ2

)
, N9(η, δ2 )

)
, ∀η > 0,

∀δ > 0, we deduce for any η > 0 and any δ > 0 that, if Ck ≥ N10(η, δ), it holds with probability
greater than 1− δ with respect to θk that

|%(yk)− %(ẑk−1)| ≤ η,
|%(zk)− ρχ(ẑk−1)%(ẑk−1)| ≤ η,

|P(zk)− Fφ(γ2 + β2)| ≤ η,
|P(ẑk)− P(zk)| ≤ η,

|P(1)(ẑk)− P(1)(zk)| ≤ η.
The reasoning that yielded Eq. (85) from Eq. (82), (83), (84) can be immediately transposed by
replacing žl by zk and zl by ẑk.

Thus, if Ck ≥ N10(η, δ), it holds with probability greater than 1− δ with respect to θk that

|%(yk)− %(ẑk−1)| ≤ η,
|%(zk)− ρχ(ẑk−1)%(ẑk−1)| ≤ η,

|%(ẑk)− %(zk)| ≤ 35η

Fφ(γ2 + β2)
,

|%(ẑk)− ρχ(ẑk−1)%(ẑk−1)| ≤ η +
35η

Fφ(γ2 + β2)
=
Fφ(γ2 + β2) + 35

Fφ(γ2 + β2)
η.

Defining N11 independently of Θk−1, k as N11(η, δ) = N10

(
Fφ(γ2+β2)

Fφ(γ2+β2)+35η, δ
)

, ∀η > 0, ∀δ > 0,
we deduce for any η > 0 and any δ > 0 that, if Ck ≥ N11(η, δ), it holds that

Pθk
[
|%(yk)− %(ẑk−1)| ≤ η

]
≥ Pθk

[
|%(yk)− %(ẑk−1)| ≤ Fφ(γ2 + β2)

Fφ(γ2 + β2) + 35
η

]
≥ 1− δ,

Pθk
[
|%(ẑk)− ρχ(ẑk−1)%(ẑk−1)| ≤ η

]
≥ 1− δ.

Considering again k and Θk−1 as not fixed, we deduce for any k that, if Ck ≥ N11(η, δ), it holds that

PΘk|Ak−1

[
|%(yk)− %(ẑk−1)| ≤ η

]
≥ 1− δ,

PΘk|Ak−1

[
|%(ẑk)− ρχ(ẑk−1)%(ẑk−1)| ≤ η

]
≥ 1− δ.

Defining N12 independently of Θk, k as N12(η, δ) = max
(
N11

(
η, δ2

)
, N8

(
δ
2

))
, ∀η > 0, ∀δ > 0,

we deduce for any k, any η > 0 and any δ > 0 that, if Ck ≥ N12(η, δ), it holds that

PΘk

[
|%(yk)− %(ẑk−1)| ≤ η

]
≥ PΘk|Ak−1

[
|%(yk)− %(ẑk−1)| ≤ η

]
PΘk−1

[
Ak−1

]

≥ PΘk|Ak−1

[
|%(yk)− %(ẑk−1)| ≤ η

]
PΘl
[
Al
]

≥
(

1− δ

2

)(
1− δ

2

)
≥ 1− δ,

PΘk

[
|%(ẑk)− ρχ(ẑk−1)%(ẑk−1)| ≤ η

]
≥ PΘk|Ak−1

[
|%(ẑk)− ρχ(ẑk−1)%(ẑk−1)| ≤ η

]
PΘl
[
Al
]

≥
(

1− δ

2

)(
1− δ

2

)
≥ 1− δ.
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Thus, for any η > 0 and any δ > 0, if min1≤k≤l Ck ≥ N12(η, δ), it holds with probability greater
than 1− lδ with respect to Θl that

|%(ẑk)− ρχ(ẑk−1)%(ẑk−1)| ≤ η, ∀k ≤ l − 1, (89)

|%(yl)− %(ẑl−1)| ≤ η. (90)

Given χ(ẑk−1) ≤ 1, ∀k and given %(z0) = %(x) ≤ 1, we note that if Eq. (89) and Eq. (90) hold, then

%(ẑ1) ≤ ρχ(z0)%(z0) + η ≤ ρ+ η,

%(ẑ2) ≤ ρχ(ẑ1)%(ẑ1) + η ≤ ρ2 + ρη + η,

...

%(ẑl−1) ≤ ρχ(ẑl−2)%(ẑl−2) + η ≤ ρl−1 +
( l−2∑

k=0

ρk
)
η ≤ ρl−1 +

1

1− ρη,

%(yl) ≤ %(ẑl−1) + η ≤ ρl−1 +
1

1− ρη + η ≤ ρl−1 +
(2− ρ

1− ρ
)
η. (91)

Defining N13 such that N13(η, δ) = N12

(
1−ρ
2−ρη,

1
l δ
)

, ∀η > 0, ∀δ > 0, we deduce for any η > 0

and any δ > 0 that, if min1≤k≤l Ck ≥ N13(η, δ), it holds with probability greater than 1− δ with
respect to Θl that

%(yl) ≤ ρl−1 + η.

Finally, let us define N such that N(η, δ) = max
(
N8( δ2 ), N13(η, δ2 )

)
, ∀η > 0, ∀δ > 0. Then for

any η > 0 and any δ > 0, if min1≤k≤l Ck ≥ N(η, δ), it holds with probability greater than 1 − δ
with respect to Θl that

%(yl) = P(yl)− P(1)(yl) ≤ ρl−1 + η, P(yl) = 1.

D.4 Case φ = identity

Proposition 6. Fix a layer l ≥ 1 and νω, νβ, νγ , D in Definition 1, with D “centered” such that
P(1)(z0) = P(1)(x) = 0. Further suppose Norm = LN, φ = identity, and suppose that the
convolution of Eq. (2) uses periodic boundary conditions.

Then for any η > 0 and any δ > 0, there exists N(η, δ) ∈ N∗ such that if min1≤k≤l Ck ≥ N(η, δ),
it holds for random nets of Definition 1 with probability greater than 1− δ with respect to Θl that

|P(yl)− P(1)(yl)− ρl−1| ≤ η, P(yl) = 1,

where ρ ≡ γ2

γ2+β2 < 1.

Proof. Since φ = identity is a particular case of positive homogeneous activation function, the
whole proof of Theorem 1 still applies. Let us then define N8, N12 as in the proof of Theorem 1.

Then for any δ > 0, if min1≤k≤l Ck ≥ N8(δ), it holds with probability greater than 1 − δ with
respect to Θl that

P(yl) = 1.

In addition, for any η > 0 and any δ > 0, if min1≤k≤l Ck ≥ N12(η, δ), it holds with probability
greater than 1− lδ with respect to Θl that

|%(ẑk)− ρχ(ẑk−1)%(ẑk−1)| = |%(ẑk)− ρ%(ẑk−1)| ≤ η, ∀k ≤ l − 1,

|%(yl)− %(ẑl−1)| ≤ η,
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where we used the fact that χ(ẑk−1) = 1, ∀k when φ = identity.

Next we note that: (i) the assumptions that P(1)(z0) = 0 and Px(z0) > 0, ∀x (cf Definition 1)
together imply %(z0) = %(x) = 1; (ii) the reasoning yielding Eq. (91) from Eq. (89), (90) still
applies.

We deduce that, if min1≤k≤l Ck ≥ N12(η, δ), it holds with probability greater than 1 − lδ with
respect to Θl that

%(ẑ1) ≥ ρ%(x)− η = ρ− η,
%(ẑ2) ≥ ρ%(ẑ1)− η ≥ ρ2 − ρη − η,

...

%(ẑl−1) ≥ ρ%(ẑl−2)− η ≥ ρl−1 −
( l−2∑

k=0

ρk
)
η ≥ ρl−1 − 1

1− ρη,

%(yl) ≥ %(ẑl−1)− η ≥ ρl−1 − 1

1− ρη − η ≥ ρ
l−1 −

(2− ρ
1− ρ

)
η,

%(yl) ≤ ρl−1 +
(2− ρ

1− ρ
)
η, (92)

|%(yl)− ρl−1| ≤
(2− ρ

1− ρ
)
η,

where Eq. (92) follows from Eq. (91).

As in the proof of Theorem 1, defining N13 such that N13(η, δ) = N12

(
1−ρ
2−ρη,

1
l δ
)

, we deduce for
any η > 0 and any δ > 0 that, if min1≤k≤l Ck ≥ N13(η, δ), it holds with probability greater than
1− δ with respect to Θl that

|%(yl)− ρl−1| ≤ η.

As in the proof of Theorem 1, defining N such that N(η, δ) = max
(
N8( δ2 ), N13(η, δ2 )

)
, ∀η > 0,

∀δ > 0, we deduce for any η > 0 and any δ > 0 that, if min1≤k≤l Ck ≥ N(η, δ), it holds with
probability greater than 1− δ with respect to Θl that

|%(yl)− ρl−1| = |P(yl)− P(1)(yl)− ρl−1| ≤ η, P(yl) = 1.

E Proof of Theorem 2

Theorem 2 . Fix a layer l ∈ {1, . . . , L} and lift any assumptions on φ. Further suppose Norm = IN,
with Eq. (3) having nonzero denominator at layer l for all inputs and channels.

Then it holds that

• yl is normalized in each channel c with
P(1)
c (yl) = 0, Pc(yl) = 1;

• yl lacks variability in instance statistics in each channel c with
P(2)
c (yl) = 0, P(3)

c (yl) = 1, P(4)
c (yl) = 0.

Proof. With Norm = IN, if ∀x, c: σx,c(x
l) > 0, then instance statistics are given by

µx,c(y
l) = Eα

[
ylα,c

]
=

Eα
[
xlα,c

]
− µx,c(x

l)

σx,c(xl)
=
µx,c(x

l)− µx,c(x
l)

σx,c(xl)
= 0,

Px,c(y
l) = Eα

[
(ylα,c)

2
]

=
Eα
[(
xlα,c − µx,c(x

l)
)2]

σx,c(xl)2
=
σx,c(x

l)2

σx,c(xl)2
= 1,

σx,c(y
l) =

√
Px,c(yl)− µx,c(yl)2 = 1.
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In turn, this implies for the different power terms:

Pc(yl) = Ex

[
Px,c(y

l)
]

= Ex

[
1
]

= 1,

P(1)
c (yl) = Ex

[
µx,c(y

l)
]2

= Ex

[
0
]2

= 0, P(2)
c (yl) = Varx

[
µx,c(y

l)
]

= Varx
[
0
]

= 0,

P(3)
c (yl) = Ex

[
σx,c(y

l)
]2

= Ex

[
1
]2

= 1, P(4)
c (yl) = Varx

[
σx,c(y

l)
]

= Varx
[
1
]

= 0.

F Proof of Theorem 3

Theorem 3 . Fix a layer l ∈ {1, . . . , L} and lift any assumptions on φ and x’s distribution. Further
suppose that the neural network implements Eq. (2), (3), (7) at every layer up to depth L, with ε = 0
and Eq. (3), (7) having nonzero denominators for all layers, inputs and channels.

Finally suppose that

• The proxy-normalized post-activations z̃l−1 at layer l− 1 are normalized in each channel c:

P(1)
c (z̃l−1) = 0, Pc(z̃l−1) = 1;

• The convolution and normalization steps at layer l do not cause any aggravation of channel-
wise collapse and channel imbalance, i.e. ∀c, c′:

P(1)
c (yl) = 0, Pc(yl) = Pc′(yl);

• The pre-activations yl at layer l are Gaussian in each channel c and PN’s additional
parameters β̃l, γ̃l are zero.

Then both the pre-activations yl and the proxy-normalized post-activations z̃l at layer l are normal-
ized in each channel c:

P(1)
c (yl) = 0, Pc(yl) = 1, (93)

P(1)
c (z̃l) = 0, Pc(z̃l) = 1. (94)

Proof of Eq. (93). If the denominator of Eq. (3) is nonzero for all layers, inputs and channels, then it
follows from Proposition 1 that P(yl) = Ec

[
Pc(yl)

]
= 1.

Combined with P(1)
c (yl) = 0, ∀c and Pc(yl) = Pc′(yl), ∀c, c′, we deduce that in each channel c:

P(1)
c (yl) = 0, Pc(yl) = 1.

Proof of Eq. (94). Given Eq. (93) and given that yl is Gaussian in each channel c, it holds ∀c:
ylα,c ∼

x,α
N
(
0, 1
)
.

We deduce that the distribution of zlα,c = φ
(
γlcy

l
α,c+β

l
c

)
with respect to (x, α) and the distribution of

φ
(
γlcY

l
c + βlc

)
with respect to Y lc ∼ N

(
β̃lc, (1 + γ̃lc)

2
)

= N
(
0, 1
)

are equal.

We then get from Eq. (7) at layer l that

z̃lα,c =
zlα,c − EY lc

[
φ
(
γlcY

l
c + βlc)

]
√

VarY lc
[
φ
(
γlcY

l
c + βlc)

]
+ ε

=
zlα,c − Ex,α

[
zlα,c

]
√

Varx,α
[
zlα,c

] =
zlα,c − µc(zl)

σc(zl)
,

where we used ε = 0.

We deduce that µc(z̃l) = 0 and Pc(z̃l) = 1 in each channel c, implying that in each channel c:

P(1)
c (z̃l) = µc(z̃

l)2 = 0, Pc(z̃l) = 1.
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