
A Appendix to Log-Concave and Multivariate Canonical Noise

Distributions for Differential Privacy

A.1 Broader impacts

Privacy is an important societal problem, and there is a natural tradeoff between the privacy afforded
to the individuals of the dataset, and the utility of the published result. One may be concerned that
differential privacy techniques reduce the utility of the results too much, in exchange for the privacy
protection. In our work, by providing a better understanding of differential privacy, and by developing
new mechanisms to achieve differential privacy, we make it possible to achieve higher utility at the
same privacy cost; or alternatively, we can maintain the same utility while giving a stronger privacy
protection. In our view, optimizing the privacy-utility tradeoff is universally beneficial to society, and
we do not foresee any negative societal impacts of this work.

A.2 Relations between functional composition and tensor product

Both the functional composition and the tensor product of tradeoff functions are essential concepts in
our constructions of CNDs. In the remainder of this section, we establish some new relations between
the two operations, which provide an interesting insight into the connection between group privacy
and composition. First, we recall a lemma from Dong et al. [2022]:
Lemma A.1 (Lemma A.5: Dong et al. [2022]). Suppose that T (P,Q) � f and T (Q,R) � g. Then

T (P,R) � g � f .

Lemma A.2. Let f and g be any two symmetric tradeoff functions. Then f ⌦ g � f � g.

Proof. First note that if either f or g is equal to Id, then the result is trivial. Now, suppose that both
f and g are nontrivial, and let N1 ⇠ F and N2 ⇠ G be independent, where F is a CND for f and G

is a CND for g.

By definition of the tensor product of tradeoff functions [Dong et al., 2022, Definition 3.1], we have
that

T
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= f ⌦ g, (1)

since T (0 +N1, 1 +N1) = f and T (0 +N2, 1 +N2) = g, by definition of CND.

It is also true that
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◆◆
= f,
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Then by Lemma A.1,

T
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0 +N1

0 +N2

◆
,

✓
1 +N1

1 +N2

◆◆
� g � f = f � g, (2)

where the last equality follows since f and g are symmetric, using [Dong et al., 2022, Lemma A.4].
Comparing Equations (1) and (2), we have that f ⌦ g � f � g.

Remark A.3. As a special case of Lemma A.2, we have that f ⌦ f � f � g, which has an interesting
interpretation: Suppose two situations: 1) your data is present once in two databases, and an f -DP
mechanism is applied to each database once. This gives f ⌦ f -DP cumulative privacy cost to you. 2)
your data is present twice in one database, and an f -DP mechanism is applied once to the database.
Since your data is present twice, by group privacy the incurred privacy cost to you is f � f -DP.
Lemma A.2 says that you would prefer to be in the two separate databases. The intuition behind
this can be understood as follows: in the second scenario, the privacy expert could choose to split
the database into two: each one containing a copy of your data, and apply an f -DP mechanism to
both. The nominal privacy cost of this would be f -DP (considering groups of size 1), as changing
one entry affects only one of the two calculations. However, for groups of size two, the privacy cost
is f � f -DP. This shows that all of the mechanisms in scenario 1 could also be applied to scenario
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2, but in general there are mechanisms in scenario two that are not possible in scenario 1 (since in
scenario 1, the databases cannot be merged).

Before we move on, we give a Lemma, extending Awan and Vadhan [2021, Lemma E.8] to arbitrary
k. Lemma A.5 shows that given a CND N for f , we can easily produce a CND for f�k by rescaling
N by 1

k . To establish Lemma A.5, we need another technical lemma, which appeared within the proof
Awan and Vadhan [2021, Lemma E.12]. We say that a cdf F is invertible at t if F�1(F (t)) = t.
Lemma A.4 (Awan and Vadhan [2021]). Let f be a nontrivial symmetric tradeoff function, and let

F be a CND for f . Call M := inf{t | 0 < F (t)}. Then if M < �1/2 and ↵ > 1� f(1), then F is

invertible at F
�1(↵)� 1.

Proof. Let ↵ > 1� f(1), or equivalently 1� ↵ < f(1). Note that F is invertible at F�1(↵), and by
Awan and Vadhan [2021, Lemma E.3] F is also invertible at F�1(↵)� 1 unless F�1(↵)� 1 < M .
So, we need to show that F�1(↵) � M + 1:

M + 1 = inf{t+ 1 | 0 < F (t)} (3)
= inf{t | 0 < F (t� 1)} (4)
= inf{t | 1 > 1� F (t� 1)} (5)
= inf{t | 1� f(1) < 1� f(1� F (t� 1)) & 0 < F (t� 1)} (6)
= inf{t | 1� f(1) < F (t) & 0 < F (t� 1)}, (7)

where (6) uses the fact that 1 � f is strictly decreasing at 1; (7) uses the fact that 0 < F (t � 1) to
apply the recursion of Lemma 2.3. Now, suppose that F (t� 1) = 0: then t� 1  M and because
M < �1/2, F (t) < 1. So, 0 = F (t � 1) implies that 0 = f(F (t)). But this in turn implies that
F (t)  1� f(1). We see that 1� f(1) < F (t) implies that 0 < F (t� 1). So,

M + 1 = inf{t | 1� f(1) < F (t)} (8)
 inf{t | ↵  F (t)} (9)

= F
�1(↵), (10)

where (9) uses the fact that ↵ > 1 � f(1). We see that F�1(↵) � 1 � M and conclude that F is
invertible at F�1(↵)� 1.

Lemma A.5. Let F be a CND for a nontrivial symmetric tradeoff function f . Then F (k·) is a CND

for f
�k

for any k 2 N+
.

Proof. For any k, denote Fk(x) = F (kx) and F
�1
k (x) = 1

kF
�1(x), where F

�1
k is the quantile

function of Fk. Symmetry and continuity of Fk are clear.

For induction, assume that for some k > 1, we have that Fk�1 is a CND for f�(k�1). In particular,
we have that

f
�(k�1) = Fk�1(F

�1
k�1(↵)� 1)

= F [(k � 1){[1/(k � 1)]F�1(↵)� 1}]
= F (F�1(↵)� (k � 1)).

Let M := inf{t | 0 < Fk�1(t)}. By symmetry of Fk�1, we know that M  0. If M � �1/2,
then we have that f�k(↵)  f

�(k�1)(↵) = Fk�1(F
�1
k�1(↵) � 1) = 0 for all ↵ 2 (0, 1); we also

have Fk(F
�1
k (↵) � 1) = F (F�1(↵) � k) = 0 = f

�k(↵). Furthermore, T (Fk(·), Fk(· � 1)) =
T (F (·), F (· � k)) = 0 = g, since F (·) and F (· � k) have disjoint support. Finally, note that
T (Fk(·), Fk(· �m)) � 0 = T (Fk(·), Fk(· � 1)), since 0 is a trivial lower bound for any tradeoff
function. We conclude that when M � �1/2, Fk is a CND for f�k.

Now suppose that M < �1/2 and let ↵ 2 (0, 1). If ↵  1 � f
�(k�1)(1), then f

�k(↵) =
f(f�(k�1)(↵)) = f(0) = 0 and F (F�1(1�↵)� k)  F (F�1(1�↵)� (k� 1)) = f

�(k�1)(↵) =
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0 = f
�k(↵) because F is increasing. We see that f�k = Fk(F

�1
k (↵)� 1) in this case. Now assume

that ↵ > 1� f(1). Then by Lemma A.4, we have that Fk�1 is invertible at F�1
k�1(↵)� 1. Then,

f
�k = f � Fk�1(F

�1
k�1(↵)� 1) (11)

= F (F�1[Fk�1(F
�1
k�1(↵)� 1)]� 1) (12)

= F ((k � 1)F�1
k�1[Fk�1(F

�1
k�1(↵)� 1)]� 1) (13)

= F ((k � 1)(F�1
k�1(↵)� 1)� 1) (14)

= F (F�1(↵)� k) (15)

= Fk(F
�1
k (↵)� 1), (16)

where in (14), we used the fact that Fk�1 is invertible at F�1
k�1(↵)� 1.

We have shown that f�k = Fk(F
�1
k (↵)� 1). Since Fk(F

�1
k (↵)� 1) represents the type II error of

the (potentially suboptimal) test, which rejects when the observed random variable is above a certain
threshold, we have that T (Nk, Nk + 1) = T (N,N + k)  f

�k, where N ⇠ F and Nk ⇠ Fk. To
verify properties 2 and 3 of Definition 2.2, it remains to show that T (Nk, Nk + 1) � f

�k. Note that
T (N,N + (k � 1)) = f

�(k�1), and T (N + (k � 1), N + k) = T (N,N + 1) = f . By Lemma A.1,
we have that T (Nk, Nk + 1) = T (N,N + k) � f

�(k�1) � f = f
�k, which completes the argument

for parts 2 and 3 of Definition 2.2.

For property 1 of Definition 2.2, let m 2 [0, 1]. As before, we use the notation N ⇠ F , Nk ⇠ Fk

and Nk�1 ⇠ Fk�1. We will show that T (Nk, Nk +m) = T (N,N + km) � f
�k. If m  k�1

k , then
m

⇤ = km
k�1 2 [0, 1]. In this case,

T (N,N + km) = T

✓
N,N + (k � 1)

km

k � 1

◆

= T (Nk�1, Nk�1 +m
⇤)

� T (Nk�1, Nk�1 + 1)

= f
�(k�1)

� f
�k
,

where we used the fact that Fk�1 is a CND for f�(k�1) and that f�(k�1) � f
�k. If m � k�1

k , then
m

⇤ = km� (k � 1) 2 [0, 1]. Then
T (N,N + km) = T (N,N + (k � 1) +m

⇤) (17)
� T (N,N + (k � 1)) � T (N,N +m

⇤) (18)

= f
�(k�1) � T (N,N +m

⇤) (19)

� f
�(k�1) � f (20)

= f
�k
, (21)

where for (18) we use Lemma A.1 and the fact that T (N+(k�1), N+(k�1)+m
⇤) = T (N,N+m

⇤),
and for (20), we use the inductive hypothesis that Fk�1 is a CND for f�(k�1).

Example A.6 (Composition and Group Privacy do not Commute). It is an interesting question
whether the following property holds: (f ⌦ g)�k = f

�k ⌦ g
�k. This is true for GDP:

(Gµ1 ⌦Gµ2)
�k = Gkk(µ1

µ2
)k = Gk(kµ1

kµ2
)k = G

�k
µ1

⌦G
�k
µ2
.

However, by studying (0, �)-DP, we see that this property does not hold in general – even for
log-concave tradeoff functions. We compute that

(f0,�1 ⌦ f0,�2)
�k = f

�k
0,1�(1��1)(1��2)

= f0,min{1,k(1�(1��1)(1��2))},

whereas f�k
0,�1

⌦f
�k
0,�2

= f0,min{1,k�1}⌦f0,min{1,k�2} = f0,1�(1�min{1,k�1})(1�min{1,k�2}). plugging
in k = 2 and �1 = �2 = .1, we get that the first expression yields .38, whereas the second gives .36.
Interestingly, it seems that accounting for group privacy first, before applying composition gives the
tighter privacy analysis. This is confirmed by the inequality in Proposition A.7.
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Proposition A.7. Let f and g be tradeoff functions. Then (f ⌦ g)�k  f
�k ⌦ g

�k
.

Proof. We know that , f = T (X,X + 1) and g = T (Y, Y + 1), where X is a CND for f and Y is a
CND for g.

(f ⌦ g)�k =
�
T [X,X + 1]⌦ T [Y, Y + 1]

��k

=
�
T [(X,Y ), (X + 1, Y + 1)]

��k

 T [(X,Y ), (X + k, Y + k)] by Lemma A.1 and Lemma A.5
= T [X,X + k]⌦ T [Y, Y + k]

= T [X/k,X/k + 1]⌦ T [Y/k, Y/k + 1]

= f
�k ⌦ g

�k
,

since X/k and Y/k are CNDs for f�k and g
�k respectively, by Lemma A.5.

A.3 A limit theorem for tradeoff functions

Below, we introduce a limit theorem for tradeoff functions, which can be used to show a mechanism
satisfies f -DP in terms of certain limits.

Theorem A.8. Let Pn
TV! P and Qn

TV! Q be two sequences of distributions, which converge in

total variation. Then T (Pn, Qn) ! T (P,Q) uniformly.

Proof. By Dong et al. [2022, Lemma A.7], it suffices to prove point-wise convergence. First we will
establish T (P,Q) as an asymptotic lower bound on T (Pn, Qn). By Lemma A.1, we have that

T (Pn, Qn) � T (Q,Qn) � T (P,Q) � T (Pn, P ).

Since Pn
TV! P and Qn

TV! Q, we have that T (Pn, P )(↵) � [(↵ � TV (Pn, P ))]10 and
T (Qn, Q)(↵) � [(↵ � TV (Qn, Q))]10, where [x]ba := max{min{x, b}, a} is the clamping func-
tion. Since all tradeoff functions are increasing, the following inequality holds:

T (Pn, Qn) � [(↵� TV(Qn, Q))]10 � T (P,Q) � [(↵� TV(Pn, P ))]10 ! T (P,Q),

and the limit holds since TV(Pn, P ) ! Id, TV(Qn, Q) ! Id, and tradeoff functions are continuous.

Next, we show that T (P,Q) is an asymptotic upper bound for T (Pn, Qn). It suffices to check for
↵ 2 (0, 1), since tradeoff functions are continuous. Let ↵⇤ 2 (0, 1) be given. Let � be an optimal
test for T (P,Q) such that EP� = ↵

⇤ and EQ� = 1� f(1� ↵
⇤). Note that if U ⇠ U(0, 1), we can

write

EP� = EX⇠P,UI(U  �(X)) = EUPX⇠P (U  �(X)|U) = EUP (��1([U, 1])|U),

which will allow us to apply the total variation convergence. Call ↵n = EPn� for all n. Notice that
↵n ! ↵

⇤, since

|↵n � ↵
⇤| = |EPn�� EP�|

=
���EUPn(�

�1([U, 1]) | U)� EUP (��1([U, 1]) | U)
���

 EU

���Pn(�
�1([U, 1]) | U)� P (��1([U, 1]) | U)

���

 EUTV(Pn, P )

! 0,

as Pn
TV! P . Similarly, we have that |EQn� � EQ�| ! 0, implying that EQn� ! 1� f(1� ↵

⇤).
Then,

T (Pn, Qn)(↵n)  1� EQn�

! f(1� ↵
⇤)

= T (P,Q)(↵⇤).
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However, we actually want to show that T (Pn, Qn)(↵⇤) is asymptotically upper bounded by
T (P,Q)(↵). Luckily, T (Pn, Qn)(↵n) and T (Pn, Qn)(↵⇤) are close for large n, since tradeoff
functions are “locally Lipschitz.” We explain as follows: Since ↵n ! ↵

⇤, let N be such that for
all n � N , ↵n 2

⇣
0,↵⇤ + 1�↵⇤

2

⌘
. On the interval (0,↵⇤ + 1�↵⇤

2 ), we claim that T (Pn, Qn) is
2

1�↵⇤ -Lipschitz. This is because the derivative (or subderivative) of a convex function is increasing,
and the tangent lines of a convex function are always a lower bound. In the worst case, using the points
(↵⇤ + (1� ↵

⇤)/2, 0) and (1, 1), the slope at ↵⇤ + (1� ↵
⇤)/2 is at most 1�0

1�(↵⇤+(1�↵⇤)/2 = 2
1�↵⇤ .

Now that we have established that T (Pn, Qn) is 2
1�↵⇤ -Lipschitz on (0,↵⇤ � (1� ↵

⇤)/2), we have
that for all n � 0,

���T (Pn, Qn)(↵n)� T (Pn, Qn)(↵
⇤)
��� 

2

1� ↵⇤ |↵n � ↵| ! 0.

We conclude that T (Pn, Qn)(↵⇤) is asymptotically upper bounded by T (P,Q)(↵⇤) for all ↵⇤ 2
(0, 1). Combining the asymptotic lower and upper bounds, we have that T (Pn, Qn) ! T (P,Q).

Two immediate corollaries of the above theorem are as follows. The first, generally states that if we
establish a lower bound on T (Pn, Qn) for all n, and Pn

TV! P and Qn
TV! Q, then the lower bound

applies to T (P,Q) as well. This could be generalized to a sequence of lower bounds fn ! f as well.

Corollary A.9. Let Pn
TV! P and Qn

TV! Q be two sequences of distributions such that T (Pn, Qn) �
f for all n. Then T (P,Q) � f .

Corollary A.10 shows that the limit of an f -DP mechanism satisfies f -DP (could also replace each
f with fn ! f ). This is similar to the limit result of Kifer et al. [2012], but is phrased in terms of
convergence in total variation rather than almost sure convergence.
Corollary A.10. Let Mn be a sequence of mechanisms satisfying f -DP (i.e., T (Mn(D),Mn(D0)) �
f for all adjacent D and D

0
), and suppose that Mn(D)

TV! M(D) for all D. Then M satisfies f -DP:

T (M(D),M(D0)) � f .

A.4 Proofs and technical lemmas for the main paper

For any measurable set A, let �(A) denote the Lebesgue measure of A.
Lemma A.11. Let A,B ⇢ [�1/2, 1/2] be disjoint sets with positive Lebesgue measure such that

A [ B = [�1/2, 1/2]. Then there exists a shift ! 2 (�1, 1) such that (B + !) \ A has positive

Lebesgue measure.

Proof. Suppose to the contrary that for all ! 2 (�1, 1), �((B + !) \A) = 0. This implies that

0 =

Z 1

�1
�((B + !) \A) d! (22)

=

Z 1

�1

Z 1/2

�1/2
I(x 2 (B + !) \A) dx d! (23)

=

Z 1

�1

Z

A
I(x 2 B + !) dx d! (24)

(Tonelli’s Theorem) =
Z

A

Z 1

�1
I(x 2 B + !) d! dx (25)

=

Z

A
�(x�B) dx (26)

=

Z

A
�(B) dx (27)

= �(A)�(B), (28)

where we used Tonelli’s Theorem in (25) to change the order of integration, in (26) we used the
fact x � B ⇢ [�1, 1] since both x and B lie in [�1/2, 1/2], and in (27) we used the fact that
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Lebesgue measure is translation invariant. We see that either �(A) = 0 or �(B) = 0, giving a
contradiction.

Proposition 3.1. Let ✏ > 0. The distribution Tulap(0, exp(�✏), 0) is the unique CND for f✏,0.

Proof. Let g be the density of an arbitrary CND for f✏,0, and let G denote its cdf function. Since g is
the density of a symmetric random variable centered at zero, g(x) = g(�x) for all x 2 R. By Awan
and Vadhan [2021, Proposition 3.7], we have that G(x+ 1) = 1� f✏,0(1�G(x)), which implies
that g(x + 1) = f

0
✏,0(1 � G(x))g(x). For x > 0, we have that G(x) � 1/2 > c, where c satisfies

f✏,0(1 � c) = c. Recall that f✏,0(↵) = ↵e
�✏ for all ↵  c. Then f

0
✏,0(1 �G(x)) = e

�✏ for x � 0.
We see that we can write g(u+ k) = e

�|k|✏
g(u) for u 2 [�1/2, 1/2] and k 2 Z.

We see that so far, g has the freedom to choose its values in [�1/2, 1/2] and then all other values are
determined by the above recurrence. Note that for the Tulap distribution, its density is the constant
value of exp(✏)�1

exp(✏)+1 on (�1/2, 1/2), since it is the constructed CND by Proposition 2.4 [Awan and
Vadhan, 2021, Corollary 3.10]. Suppose that g(u) is non constant on (�1/2, 1/2). Then it must take
on some values above and below exp(✏)�1

exp(✏)+1 in order to still integrate to 1. To rule out trivial cases,
where g(x) is equivalent to the Tulap density up to a set of measure zero, we assume that the sets

A :=

⇢
u 2 (�1/2, 1/2) | g(u) > exp(�✏)� 1

exp(✏) + 1

�
,

B :=

⇢
u 2 (�1/2, 1/2) | g(u)  exp(�✏)� 1

exp(✏) + 1

�
,

both have positive Lebesgue measure. We denote � as the Lebesgue measure.

By Lemma A.11, we know that there exists ! 2 (�1, 1) such that (B + !) \ A) has positive
Lebesgue measure. By symmetry of g about zero, there exists a positive shift ! 2 (0, 1) such that
�((B+!)\A) > 0. Consider � := 1�! 2 (0, 1). Let v 2 (B+!)\A and u := v�! 2 B\(A�!),
and consider the likelihood ratio:

g(1 + u��)

g(1 + u)
=

g(u+ !)

g(1 + u)
=

g(v)

e�✏g(u)
> e

✏
,

where we use the fact that u 2 B, v 2 A, and �((B + !) \A) > 0. This means that the likelihood
ratio g(x � �)/g(y) is not bounded by exp(✏) almost everywhere, for all � 2 [�1, 1]; by Awan
et al. [2019, Proposition 2.3], this means that the additive mechanism with density g does not satisfy
✏-DP. In other words, for X ⇠ g and � as above, T (X,X +�)(↵) < f✏,0(↵) for some ↵ 2 (0, 1).
We conclude that g is not a CND for f✏,0. The only assumption we made about g was that it was
non-constant on (�1/2, 1/2) on a set of positive probability. Due to the contradiction, we conclude
that g is in fact constant on [�1/2, 1/2] almost everywhere, which means that it is distributed as
Tulap(0, exp(�✏), 0).

Theorem 3.3. A nontrivial tradeoff function f 2 F is log-concave if and only if it is infinitely

divisible. In particular,

1. If f is log-concave with log-concave CND N ⇠ F , then {ft | t � 0} defined by ft =
F (F�1(↵)� t) satisfies the assumptions of Definition 3.2.

2. Let f be infinitely divisible, with monoid {ft 2 F | t � 0}, as defined in Definition 3.2,

such that f = f1. Let Fs be any CND for fs (such as constructed in Proposition 2.4). Then

the following limit exists F
⇤(t) := lims!0 Fs(

1
s t) and N ⇠ F

⇤
is the unique log-concave

CND for f . Furthermore, F
⇤(st) is the unique log-concave CND for fs, for all s > 0.

Proof. 1) Let f be a log-concave tradeoff function with log-concave CND F . Define fs(↵) =
F (F�1(↵)� s), which is a tradeoff function since F is log-concave. Note that fs � ft = fs+t, ft is
nontrivial except wen t = 0, and ft ! Id as t ! 0.

2) For part 2, we first show that the limit exists for the specific sequence sn = 1/n!, and then we will
show that convergence holds for all sequences that converge to zero. By construction, Fsn(·) is a CND
for fsn . So, Fsn(·) has values determined on (1/2)Z, no matter the choice of CND. Furthermore,
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Fsn(t/sn) is a CND for f1 = f
�n!
sn , by Lemma A.5. Then for any choice of CND for Fsn , the cdf

Fsn(t/sn) has values determined on (sn/2)Z, and Fsn(t/sn) is a continuous cdf (as it is a CND).
Note that the sequence (sn)1n=1 satisfies (sn/2)Z ⇢ (sn+1/2)Z for all n, and as n ! 1, we have
that

S1
n=1((sn/2)Z) = Q, the set of rational numbers. In words, the set of determined values of

Fsn(t/sn) is an increasing sequence of sets, whose limit is the rational numbers. Due to this, the
sequence of CNDs Fsn(t/sn) is “pinned down” at an increasing number of points, and is eventually
determined at every rational number. Since every Fsn(t/sn) is monotone, and Q is dense in R, it
follows that the limit of this sequence, F ⇤, is a unique monotone function.

Next we show that F ⇤ is a continuous cdf. We already mentioned that F ⇤ is non-decreasing,
and it is easy to show that limt!+1 F

⇤(t) = 1 and limt!�1 F
⇤(t) = 0. The challenging part

is to show that F ⇤ is continuous. It suffices to show that the convergence of (Fsn(t/sn))
1
n=1

to F
⇤ is uniform. Before we show this, we establish the following inequality: for all t 2 R,

|Fsn(t/sn)�F
⇤(t)|  supt |t� fsn(t)|. To see this, let t 2 R. Then for each n, there exists kn 2 Z

such that (kn�1)sn
2  t  (kn+1)sn

2 . Since F
⇤ is a non-decreasing function, this implies that

F
⇤
✓
(kn � 1)sn

2

◆
 F

⇤(t)  F
⇤
✓
(kn + 1)sn

2

◆

Fsn

✓
kn � 1

2

◆
 F

⇤(t)  Fsn

✓
kn + 1

2

◆

fsn

✓
Fsn

✓
kn + 1

2

◆◆
 F

⇤(t)  Fsn

✓
kn + 1

2

◆
,

where if Fsn(
kn+1

2 ) < 1 the third line is equivalent to the second line by Lemma 2.3, and if
Fsn(

kn+1
2 ) = 1, then the inequality in the third line is potentially weaker. By similar reasoning, we

have that fsn(Fsn(
kn+1

2 ))  Fsn(t/sn)  Fsn(
kn+1

2 ) as well. Therefore,

|F ⇤(t)� Fsn(t/sn)| 
����Fsn

✓
kn + 1

2

◆
� fsn

✓
Fsn

✓
kn + 1

2

◆◆����  sup
t2[0,1]

|t� fsn(t)|.

We are now ready to prove uniform convergence. Let ✏ > 0 be given. Let N 2 Z+ be such that
supt2[0,1] |t� fsn(t)| < ✏, which is possible since fsn(t) ! t uniformly (Polya’s theorem). Then
for all n � N , we have that |Fsn(t/sn)� F

⇤(t)|  supt |t� fsn(t)| < ✏. Uniform convergence of
continuous functions implies that the limit function is also continuous, so we conclude that F ⇤ is a
continuous cdf.

Next we will show that for all t 2 R+, ft = F
⇤(F ⇤�1(↵) � t). Let (�x, x) := F

⇤�1((0, 1)) be
the support of the distribution F

⇤. Let q 2 Q+ be the “shift,” and let p 2 (�1, x� q) \Q be the
“threshold” in the test. Let n 2 Z+ be such that p = a/n! and q = b/n! for some a 2 Z and b 2 Z+.
As we did earlier, denote sn = 1/n!. Recall that F ⇤(t) and Fsn(t/sn) agree for all t 2 sn

2 Z. In
particular, p 2 sn

2 Z. Then

F
⇤(p) = F

⇤(sna)

= Fsn(a)

= fsn � Fsn(a+ 1)

= f
�b
sn � Fsn(a+ b)

= fq � Fsn(a+ b)

= fq � F ⇤(sn(a+ b))

= fq � F ⇤(p+ q),

where we used the fact that p < x� q to establish that Fsn(a+ b) = F
⇤(p+ q) < 1, which enabled

the recurrence application of Lemma 2.3. Furthermore, since the rational numbers are dense in R,
F

⇤ is continuous, and fq is continuous on [0, 1), we have that F ⇤(t) = fq � F ⇤(t+ q) for all t such
that t < x� q. Now let ↵ 2 [0, 1) and call t↵ = F

⇤�1(↵)� q. Note that F ⇤(q + t↵) = ↵ and that
t↵ < x� q. Then we have that F ⇤(F ⇤�1(↵)� q) = fq(↵) for all ↵ 2 [0, 1). Finally, we extend the
result for arbitrary fr, r 2 R+. Let qn 2 Q+ be a sequence such that qn ! r. Then

fr = fr�qn � fqn = fr�qn � F ⇤(F ⇤�1(↵)� qn) ! Id � F ⇤(F ⇤�1(↵)� r),
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since fr�qn converges to Id uniformly, and F
⇤ is continuous. We have that F ⇤(s·) is a CND for

fs: the symmetry of F ⇤ is obvious, and the fact that F ⇤ satisfies DP follows by the property that
fs = F

⇤(F ⇤�1(↵)� s).

Let s > 0. Let N ⇠ F
⇤. Since N/s ⇠ F

⇤(st) is a CND for fs, we have that T (N,N + s)(↵) =
T (N/s,N/s+1)(↵) = fs(↵) = F

⇤(F ⇤�1(↵)�s). However, T (N,N+s)(↵) = F
⇤(F ⇤�1(↵)�s)

holds for all s > 0 if and only if F ⇤ has a log-concave density [Dong et al., 2022, Lemma A.3].
Therefore F

⇤ is a log-concave distribution, and F
⇤(s·) is a log-concave CND for fs for all s > 0.

Finally, we will make sure the limit does not depend on the specific sequence sn = 1/n!. We will use
a very similar argument as when we established uniform convergence to show that for any positive
sequence rn which converges to zero, Frn(t/rn) also converges uniformly to F

⇤(t). Let t 2 R. Then
for any n 2 Z+, there exists kn such that (kn�1)rn

2  t  (k+1)rn
2 . Then

F
⇤
✓
(kn � 1)rn

2

◆
 F

⇤(t)  F
⇤
✓
(kn + 1)rn

2

◆
.

Since F
⇤(·rn) and Frn(·) are both CNDs for frn , they agree on all half integer values. So,

Frn

✓
kn � 1

2

◆
 F

⇤(t)  Frn

✓
kn + 1

2

◆

frn

✓
Frn

✓
k + 1

2

◆◆
 F

⇤(t)  Frn

✓
kn + 1

2

◆
.

By similar reasoning, we have that frn
�
Frn

�
k+1
2

��
 Frn(t/rn)  Frn

�
kn+1

2

�
. Then

|F ⇤(t)� Frn(t/rn)| 
����Frn

✓
kn + 1

2

◆
� frn

✓
Frn

✓
kn + 1

2

◆◆����  sup
t2[0,1]

|t� frn(t)|.

Since rn ! 0, we have that frn(t) converges uniformly to t. So, we have that Frn(t/rn) converges
uniformly to F

⇤(t).

Lemma A.12. Let f and g be tradeoff functions.

1. If f and g are piece-wise linear with k and ` break points (respectively), and f satisfies

f(x) = 0 implies x = 0, then f � g is piece-wise linear with at most k+ ` break points, and

at least max{k, `} break points.

2. If f is piece-wise linear with k � 1 break points, and f(x) = 0 implies that x = 0, then

f
�n

has at least k + (n� 1) break points.

3. If f � g is piece-wise linear, then g is piece-wise linear on [0, 1] and f is piece-wise linear

on [0, g(1)]. (note that f can be arbitrary on (g(1), 1] and it does not affect f � g)

Proof. 1. The composition of linear functions is linear. So, it is clear that f � g is piece-wise
linear. Let Bg be the set of break points of g and Bf be the set of break points of f .
Then the break points of f � g are g

�1(Bf )
S
Bg, since f is invertible, which has at most

|Bf |+ |Bg| = k + ` elements, and at least max{k, `} elements.

2. Let Bf be the set of break points of f . Then the set of break points of f�n is Bf[f�1(Bf )[
f
�1(f�1)(Bf ) [ · · · [ (f�1)�(n�1)(Bf ). The number of break points of f�n is then lower

bounded by |Bf [ f(Bf )[ f
�2(Bf )[ · · ·[ f

�(n�1)(Bf )|, by applying f
�(n�1) to each of

the sets (since applying a function to a set cannot increase the cardinality). We know that
|Bf | = k. Because f(x) = 0 implies that x = 0, we have that f is strictly increasing on
(0, 1); so we have that |f(Bf )| = k as well. Furthermore, for each x 2 Bf , f(x) < x as
f is nontrivial (k � 1 implies nontrivial). Let xm be the minimum element in Bf . Then
f(xm) 2 f(Bf ) and f(xm) 62 Bf . So, |Bf [ f(Bf )| � |Bf |+1 = k+1. Continuing this
process, we get that the number of break points of f�n is at least k + n� 1.
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3. Since f � g is piece-wise linear, d2

d↵2 f � g(↵) = 0 except at finitely many values. Then

0 =
d
2

d↵2
f � g(↵)

=
d

d↵
(f 0(g(↵))g0(↵))

= f
00(g(↵))(g0(↵))2 + f

0(g(↵))g00(↵),

except at finitely many values. Note that since f and g are non-decreasing and convex,
the following quantities are non-negative (whenever they are well-defined): f 0, g0, f 00, and
g
00. So, the above equation implies that for all but finitely many ↵, either f 00(g(↵)) = 0 or

g
0(↵) = 0 and either f 0(g(↵)) = 0 or g00(↵) = 0. Note that g is zero on {↵ | g0(↵) = 0}

and f is zero on {g(↵) | f 0(g(↵)) = 0}. Furthermore, g is piece-wise linear on {↵ |
g
00(↵) = 0} and f is piece-wise linear on {g(↵) | f 00(g(↵)) = 0}. We see that on (0, 1),

g is either zero or piece-wise linear, and so it is piece-wise linear on [0, 1]. Similarly on
(g(0), g(1)) = (0, g(1)), f is either zero or piece-wise linear, and so it is piece-wise linear
on [0, g(1)].

Proposition 3.6. 1. Let f be a nontrivial piece-wise linear tradeoff function with k � 1
breakpoints and such that f(x) = 0 implies that x = 0. Then there is no tradeoff function g

such that g
�(k+1) = f .

2. Let ✏ > 0. There does not exist nontrivial symmetric tradeoff functions f1 and f2 such that

f✏,0 = f1 � f2.

3. Let f be the tradeoff function obtained by an arbitrary sequence of mechanism compositions,

functional compositions, or subsampling (without replacement) of f✏,0 (could be different ✏

values for each). Then f is not infinitely divisible and so does not have a log-concave CND.

Proof. 1. By part 3 of Lemma A.12, if f could be written as g�(k+1) = f , then g must also
be piece-wise linear. Since f(x) = 0 implies that x = 0, g also satisfy g(x) = 0 implies
x = 0. If g is a nontrivial piece-wise linear tradeoff function (with j � 1 breakpoints), then
by part 2 of Lemma A.12, g�(k+1) has j + (k + 1)� 1 > k break points. This contradicts
that g�(k+1) = f .

2. Suppose that f✏,0 = g �h, where both g and h are non-trivial. By part 3 of Lemma A.12, we
know that h is piece-wise linear. Since we are assuming that h is non-trivial, it must have at
least one break point. Since f✏,0(x) = 0 implies that x = 0, g must have this property as
well. By Lemma part 1 of A.12, this implies that h must have a single break point. To agree
with f✏,0, the breakpoint of h must be at 1� c, where c = 1/(1 + exp(✏)) is the solution to
f✏,0(1� c) = c, since this is where the unique breakpoint of f✏,0 lies. However, since h is a
symmetric piece-wise linear function with a unique breakpoint at 1� c, the only possibility
is that h = f✏,0.

3. Each application of composition, functional composition, and subsampling without replace-
ment preserves the piece-wise property of the tradeoff function, as well as the property that
f(x) = 0 implies that x = 0. The result follows from part (a).

Proposition 4.2. Suppose that f = f1 ⌦ f2 ⌦ · · · ⌦ fk all be nontrivial and symmetric tradeoff

functions, and let F1, F2, . . . , Fk be CNDs for f1, . . . , fk respectively. Let N = (N1, . . . , Nk) be

the random vector where Ni ⇠ Fi are independent. Then N is a CND for f with respect to k·k1.

Proof. For property 1 of Definition 4.1, let v be such that kvk1  1. Then v = (v1, . . . , vk) is such
that |vi|  1. Then

T (N,N + v) = T ((N1, . . . , Nk), (N1 + v1, . . . , Nk + vk))

= T (N1, N1 + v1)⌦ · · ·⌦ T (Nk, Nk + vk)

� f1 ⌦ · · ·⌦ fk.
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If we set v⇤i = 1 for all i, then repeating the above gives equality in the last step, proving property
2 of Definition 4.1. Call g(x1, . . . , xn) := F

0
1(x1) · · ·F 0

k(xk) the density of N . For property 4 of
Definition 4.1, since F

0
i is symmetric about zero we have that g is also symmetric about zero. For

property 3, let w = (w1, . . . , wk)> be any vector and v
⇤ = (1, 1, . . . , 1)>. Then,

g(w + tv
⇤ � v

⇤)

g(w + tv⇤)
=

F
0
1(w1 + (t� 1)) · · ·F 0

k(wk + (t� 1))

F
0
1(w1 + t) · · ·F 0

k(wk + t)
,

which is increasing in t, since each of the factors is increasing in t, by property 3 of Definition 2.2.

Theorem 4.3. Let f be a nontrivial and symmetric log-concave tradeoff function with log-concave

CND F . Let N = (N1, . . . , Nk) be the random vector where Ni ⇠ F are independent. Then N is a

(log-concave) CND for f with respect to k·k1.

Proof. Since f is a nontrivial log-concave tradeoff function, by Theorem 3.3 there exists a monoid
of log-concave tradeoff functions {ft 2 F | t � 0} satisfying ft � fs = ft+s such that f1 = f and
ft = F (F�1(↵)� t) for all t > 0. Note that for any t 2 R, T (Ni, Ni + t) = f|t|.

For property 1 of Definition 4.1, let x be such that kxk1  1. Note that |xi| < 1 for all i = 1, . . . , k.
Then

T (N,N + x) = f|x1| ⌦ f|x2| ⌦ · · ·⌦ f|xk|

� f|x1| � f|x2| � · · · � f|xk|

= fPk
i=1 |xi|

= fkxik1

� f1,

where in the first line, we use the property that T (Ni, Ni + xi) = f|xi| which uses log-concavity, the
second line uses Lemma A.2, and the third line uses the property that fs � ft within the monoid. Note
that for v = (1, 0, 0, . . . , 0), T (N,N + v) = T (N1, N1 + 1) = f , proving property 2 of Definition
4.1. Since N is constructed by independent 1-d CNDs, the same arguments used in the proof of
Proposition 4.2 can be used to prove properties 3 and 4 of Definition 4.1. Note that N is log-concave,
since it is a product distribution with log-concave components.

Proposition 4.4. Let ⌃ be a d⇥d positive definite matrix. Let v
⇤ 2 argmaxkuk1k⌃�1/2

uk2. Then

N(0,⌃) is a d-dimensional CND for k⌃�1/2
v
⇤k2-GDP with respect to the norm k·k.

Proof. Let N ⇠ N(0,⌃). Note that ⌃�1/2
N ⇠ N(0, Id). Let u be such that kuk  1. Then

T (N,N + u) = T

⇣
⌃�1/2

N,⌃�1/2
N + ⌃�1/2

u

⌘

= T

⇣
N(0, Id), N(0, Id) + ⌃�1/2

u

⌘

= T

⇣
N(0, 1), N(k⌃�1/2

uk2, 1)
⌘

= Gk⌃�1/2uk2

� Gk⌃�1/2v⇤k2
,

where for the third line, we use the rotational invariance of the multivariate Gaussian distribution.
Note that setting u = v

⇤ gives equality. This establishes properties 1 and 2 of Definition 4.1. Property
4 of Definition 4.1 holds since the density of N(0,⌃) is symmetric about zero. For property 3, let
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w 2 Rk be any vector, and call g the density of N(0,⌃). Call a = (w + tv
⇤) and b = �v

⇤. Then,

log
g(w + tv

⇤ � v
⇤)

g(w + tv⇤)
= log

exp(� 1
2 (w + (t� 1)v⇤)>⌃�1(w + (t� 1)v⇤))

exp(� 1
2 (w + tv⇤)>⌃�1(w + tv⇤))

= �1

2

⇥
(w + tv

⇤)� v
⇤)>⌃�1((w + tv

⇤)� v
⇤) + (w + tv

⇤)>⌃�1(w + tv
⇤)
⇤

= �1

2

⇥
(a+ b)>⌃�1(a+ b)� a

>⌃�1
a
⇤

= �1

2

⇥
a
>⌃�1

a+ 2a>⌃�1
b+ b

>⌃�1
b� a

>⌃�1
a
⇤

= �1

2

⇥
2a>⌃�1

b+ b
>⌃�1

b
⇤

= �1

2

⇥
2(w + tv

⇤)>⌃�1(�v
⇤) + (v⇤)>⌃�1

v
⇤⇤

= t(v⇤)>⌃�1
v
⇤ + w

>⌃�1
v
⇤ � 1

2
(v⇤)>⌃�1

v
⇤
,

which is increasing in t, since ⌃ is positive definite, which verifies property 3 of Definition 4.1.

Proposition 4.6. Let 0 < �  1, d � 1, and k·k be a norm on Rd
. Call v

⇤ 2 arg
kvk1

min
Qd

i=1(1�

�|vi|) and A =
Qd

i=1(1 � �|v⇤i |). Then U(�1
2� ,

1
2� )

n
is a CND for f0,1�A under k·k-sensitivity. In

the special case of k·k = k·k1, this simplifies to A = (1� �)d.

Proof. Let X ⇠ U(�1
2� ,

1
2� )

n, and let v be such that kvk  1. We need a lower bound on T (X,X+v).
Since this is the testing of shifted uniforms, T (X,X + v) = f0,TV(X,X+v).

TV(X,X + v) = 1�
Qd

i=1

�
1
� � |vi|

�

��d

= 1�
dY

i=1

(1� �|vi|)

� 1�A,

which establishes property 1 of Definition 4.1. Note that using v
⇤ as defined above, we get that

TV(X,X+ v
⇤) = 1�A, giving property 2 of Definition 4.1. Property 4 of Definition 4.1 is obvious,

since each uniform is centered at zero. For property 3, let w 2 Rd. The likelihood ratio is

g(w + (t� 1)v⇤)

g(w + tv⇤)
=

dY

i=1

I(�1
2�  wi + (t� 1)v⇤i  1

2� )

I(�1
2�  wi + tv

⇤
i  1

2� )
,

and we see that each of these factors can take the possible values:
8
>><

>>:

undefined when wi + (t� 1)v⇤i 62 [�1
2� ,

1
2� ] and wi + tv

⇤
i 62 [�1

2� ,
1
2� ]

0 when wi + (t� 1)v⇤i 62 [�1
2� ,

1
2� ] and wi + tv

⇤
i 2 [�1

2� ,
1
2� ]

1 when wi + (t� 1)v⇤i 2 [�1
2� ,

1
2� ] and wi + tv

⇤
i 2 [�1

2� ,
1
2� ]

+1 when wi + (t� 1)v⇤i 2 [�1
2� ,

1
2� ] and wi + tv

⇤
i 62 [�1

2� ,
1
2� ]

If wi + tv
⇤
i 2 [�1

2� ,
1
2� ] for some t, then we have that as t progresses from �1 to 1, the value of

each factor goes from undefined to 0 to 1 to +1 to undefined, which is a non-decreasing sequence. If
wi + tv

⇤
i 62 [�1

2� ,
1
2� ] for every t, then the likelihood ratio is always undefined, which is also trivially

non-decreasing. We see that property 3 of Definition 4.1 holds.

The privacy loss random variable is a concept that appears in all major definitions of differential
privacy. In fact, Zhu et al. [2022] showed that the privacy loss random variables can be losslessly
converted back and forth to the corresponding tradeoff function. For part of the proof of Proposition
4.7, it will be easier to work with the privacy loss random variables than directly with the tradeoff
functions. First, we give a formal definition and a few basic properties of privacy loss random
variables. While similar results appeared in Zhu et al. [2022], we include them here for completeness.
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Definition A.13 (Privacy Loss Random Variable). Let X and Y be two random variables on Rd,
with densities p and q, respectively. The privacy loss random variable is PLRV(X|Y ) := log p(X)

q(X) ,
where X ⇠ p.
Lemma A.14 (Privacy Loss RV is Sufficient). Let X ⇠ p and Y ⇠ q be two random variables on

Rd
with densities p and q, respectively. Define L(x) : X ! R by L(x) = log[q(x)/p(x)]. Note

that L(X)
d
= �PLRV(X|Y ) and L(Y )

d
= PLRV(Y |X). Then T (X,Y ) = T (L(X), L(Y )) =

T (�PLRV(X|Y ),PLRV(Y |X)).

Proof. First, by postprocessing, we have that T (X,Y )  T (L(X), L(Y )) [Dong et al., 2022,
Lemma 2.9]. For the other direction, note that by the Neyman Pearson Lemma, the optimal test for
H0 : X versus H1 : Y at size ↵ is of the form

�(x) =

8
<

:

1 L(x) > t

c L(x) = t

0 L(x) < t,

where L is defined in the Lemma statement, and the values of t and c are uniquely chosen such that
EX⇠p�(X) = ↵.

For a specified t and c, the type I error is

type I = EX⇠p� = EX⇠p[I(L(X) > t) + cI(L(X) = t)]

= PX⇠p(L(X) > t) + cPX⇠p(L(X) = t),

which we see only depends on the statistic L(X). On the other hand,

type II = 1� EY⇠q�(Q) = 1� EY⇠q[I(L(Y ) > t) + cI(L(Y ) = t)]

= PY⇠q(L(Y )  t)� cPY⇠q(L(Y ) = t),

which we see only depends on the statistic L(Y ).

So, when testing H0 : L(X) versus H1 : L(Y ), using the particular test  (L) = I(L > t)+ cI(L =
t), where the values of c and t are chosen as above, we recover the type I and type II errors of
T (X,Y ). We conclude that T (L(X), L(Y ))  T (X,Y ). Combining the inequalities, we have that
T (X,Y ) = T (L(X), L(Y )). The fact that L(X) = �PLRV(X|Y ) and L(Y ) = PLRV(Y |X)
follows from the definition of privacy loss random variables.

Lemma A.15. Let X 2 Rd
be a continuous random vector with density g, which is symmetric about

zero. Then for any v 2 Rd
, PLRV(X|X + v) = PLRV(X + v|X). It follows that

1. T (X,X + v) = T (PLRV(X|X+ v),�PLRV(X|X + v)), and

2. Let Y 2 Rp
be another continuous random vector symmetric about zero, and let w 2 Rp

.

Then if PLRV(X|X + v)
d
= PLRV(Y |Y + w) then T (X,X + v) = T (Y, Y + w).

Proof. First note that PLRV(X|X + v) = log g(X)
g(X�v) , where X ⇠ g. Setting Z = v �X , we can

write

PLRV(X + v|X) = log
g(X � v)

g(X)
, where (X � v) ⇠ g

= log
g(�Z)

g(�Z + v)
, where � Z ⇠ g

= log
g(Z)

g(Z � v)
, where Z ⇠ g (by symmetry of g)

d
= PLRV(X|X + v).

Combining the above work with Lemma A.14, we get T (�PLRV(X|X + v),PLRV(X|X + v)),
which is equivalent to statement 1, since the tradeoff function is symmetric. For part two, if
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PLRV(X|X + v)
d
= PLRV(Y |Y + w), then clearly T (PLRV(X|X + v),�PLRV(X|X + v)) =

T (PLRV(Y |Y + w),�PLRV(Y |Y + w)), which is equivalent to the statement in part 2, by part
1.

Proposition 4.7. Let ✏ > 0, and d � 1. Let X be a d-dimensional random vector with density

g(x) = exp(�✏kxk1)
d!(2/✏)d . Then X is a CND for the tradeoff function L✏ with respect to k·k1.

Proof. Note that for any vector s 2 {�1, 1}d, sX d
= X (entry-wise multiplication). Because of this,

it suffices to consider T (X,X + v) for v � 0 (all entries non-negative).

First we will show that T (X,X + 1) = T (L,L + 1), where X is the `1-mech, and L ⇠
Laplace(0, 1/✏) which has density ✏

2 exp(�✏|x|). We will do this using privacy loss random vari-
ables, applying part 2 of Lemma A.15. Note that since X and L are both symmetric random variables,
it suffices to equate the privacy loss random variables PLRV(X|X+1) and PLRV(L|L+1). We can
easily derive that PLRV(L|L+ 1) = �✏|L|+ ✏|L� 1| = ✏[1� 2L]1�1, where L ⇠ Laplace(0, 1/✏)

and [x]ba := min{max{x, a}, b} is the clamping function. Note that PLRV(L|L+1)
d
= ✏[1�L2]1�1,

where L2 ⇠ Laplace(2/✏).

Now for T (X,X + 1), the privacy loss random variable is PLRV(X|X + 1) = �✏kXk1 +
✏kX � 1k1, where X ⇠ g(x). We can simplify this expression as follows, using the notation
max(X) = max1id Xi and min(X) = min1id Xi:

PLRV(X|X + 1)

= �✏kXk1 + ✏kX � 1k1

=

8
<

:

�✏max(X) + ✏(1�min(X)) if max(X) � �min(X) & 1�min(X) � max(X)� 1
�✏max(X) + ✏(max(X)� 1) if max(X)� 1 > 1�min(X)
�✏(�min(X)) + ✏(1�min(X)) if �min(X) > max(X)

=

8
<

:

�✏max(X) + ✏(1�min(X)) if � 1  [1� (max(X) + min(X))]  1
�✏ if [1� (max(X) + min(X))] < �1
✏ if [1� (max(X) + min(X))] > 1

= ✏[1� (max(X) + min(X))]1�1.

Comparing this expression with PLRV(L|L+1), we see that it suffices to show max(X)+min(X)
d
=

Laplace(2/✏). Recall that X d
= RU , where R ⇠ Gamma(d+ 1, ✏), using the shape, rate parameter-

ization, and Ui
iid⇠ U(�1, 1) for i = 1, . . . , d [Hardt and Talwar, 2010, Remark 4.2]. By factoring out

R, we get

max(X) + min(X)
d
= R(max(U) + min(U)).

So, we will determine the distribution of max(U) + min(U) first. We can easily compute the joint
distribution of max(U) and min(U), as these are the minimum and maximum order statistics:

fmin(U),max(U)(x, y) =
d(d� 1)

4

✓
y � x

2

◆d�2

I(�1  x  y  1).

Now consider the change of variables m = x and w = x+ y. Applying change of variables, we have

fmin(U),max(U)+min(U)(m,w) =
d(d� 1)

4

✓
(w �m)�m

2

◆d�2

I(�1  m  w �m  1)

=
d(d� 1)

2d
(w � 2m)d�2

I(�1  m,m  w/2, w � 1  m).
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To get the distribution of W = max(U) + min(U), we marginalize out M = min(U):

fmax(U)+min(U)(w) =

Z w/2

max{�1,w�1}

d(d� 1)

2d
(w � 2m)d�2

dm

=
d(d� 1)

2d+1

�(w � 2m)d�1

d� 1

���
w/2

max{�1,w�1}

=
d

2d+1

h
(w � 2max{�1, w � 1})d�1 �((((((((

(w � 2(w/2))d�1
i

=
d

2d+1

⇢
(w + 2)d�1 �2  w  0
(2� w)d�1 0  w  2

=
d

2d+1
(2� |w|)d�1

I(�2  w  2).

Since the distribution of W = max(U) + min(U) is symmetric about zero, W d
= (�1)B |W | where

B ⇠ Bern(1/2). So, our goal is to show (�1)BRW
d
= (�1)BExp(✏/2), since the left side is equal

in distribution to max(X) +min(X) and the right side is equal in distribution to Laplace(2/✏). The

pdf of Y
d
:= |W | is f(y) = d

2d (2 � y)d�1
I(0  y  2). It suffices to show that RY

d
= Exp(✏/2).

Let �R be the characteristic function of R and �RY be the characteristic function of RY . Then,

�RY (t) = EY �R(tY )

= EY

✓
1� ity

✏

◆�(d+1)

=
d

2d

Z 2

0

✓
1� ity

✏

◆�(d+1)

(2� y)d�1
dy

=
✏

✏� 2it

=
✏/2

✏/2� it
,

which we identify as the characteristic function of Exp(✏/2), establishing that RY
d
= Exp(✏/2).

By part 2 of Lemma A.15, this completes the proof that T (X,X + 1) = T (L,L+ 1), establishing
property 2 of Definition 4.1. Note that property 4 of Definition 4.1 is obvious, and property 3 holds
since the likelihood ratio g(x� 1)/g(x) is an increasing function in max(x) + min(x), which itself
is an increasing function of t when x = w + t for every vector w 2 Rd. It remains to verify property
1 of Definition 4.1.

Next we will show that for v 2 (0, 1]d, T (X,X + 1)  T (X,X + v) (this proof strategy is based
on the proof of Lemma 3.5 in Dong et al. [2021]). We will separately address the cases that some of
vi = 0 at the end of the proof. Call f1 = T (X,X +1) and fv = T (X,X + v) = T (X/v,X/v+1).
Define the two linear maps r : x 7! x/v and r

�1 : x 7! vx (entry-wise multiplication and division),
which are inverse maps. Note that r(X) = X/v has density proportional to exp(�✏kvtk1). Let
↵ 2 [0, 1] be given. Let A be the optimal rejection region for T (X/v,X/v + 1) at type I error ↵. By
our earlier work, we know that

A = {x | ✏(max(vx) + min(vx)) � t},

for some t 2 R, and it satisfies P (r(X) 2 A) = ↵ and P (r(X)+ 1 62 A) = fv(1�↵). We can now
consider r�1(A) as a possible rejection region for testing T (X,X + 1), which is at best suboptimal.
We compute the type I error as

P (X 2 r
�1(Av)) = P (r(X) 2 A) = ↵.
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Suboptimality of the rejection region implies that

f1(1� ↵)  P (X + 1 62 r
�1(A))

= P (r(X) + r(1) 62 A)

= P (r(X) + 1/v 62 A)

= P (r(X) 62 A� 1/v)

 P (r(X) 62 A� 1)

= fv(1� ↵),

where we used the fact that r is a linear map, and r(1) = 1/v; the key step is the final inequality,
which we justify as follows: it suffices to show that (A � 1/v)c ⇢ (A � 1)c or equivalently
A� (1/v � 1) � A. We verify this by inspecting the definition of A:

A = {x | max(vx) + min(vx) � t}
⇢ {x | max(vx+ (1/v � 1)) + min(vx+ (1/v � 1)) � t}
= {x� (1/v � 1) | max(vx) + min(vx) � t}
= A� (1/v � 1),

where in the inclusion step, we used the fact that (1/v� 1) � 0 implies that max(vx+(1/v� 1)) �
max(vx) and min(vx+ (1/v � 1)) � min(vx). This completes the argument that for v 2 (0, 1]d,
f1 = T (X,X + 1)  T (X,X + v) = fv .

Finally, let v 2 [0, 1]d, where the entries may possibly be zero. Let vn 2 (0, 1]d be a sequence of
vectors converging to v. Notice that X + vn

TV! X + v, since X has a continuous density. Since
T (X,X + vn) � T (X,X + 1) by our above work, by Corollary A.9 we have T (X,X + v) �
T (X,X + 1) as well.

Theorem 4.8. Let d � 2 and let k·k be any norm on Rd
. Then for any ✏ > 0, there is no random

vector satisfying properties 1 and 2 of Definition 4.1 for f✏,0 with respect to the norm k·k. In particular,

there is no multivariate CND for f✏,0.

The proof strategy of Theorem 4.8 is as follows: 1) observe that property of Definition 4.1 enforces
constraints on the likelihood ratio log g(x�v)

g(x) , 2) establish that the measure induced by g is equivalent
to Lebesgue measure, which simplifies some measure theory details, 3) show that we can construct a
vector w such that kwk < 1, kw + vk < 1, and w 62 Span(v), 4) based on the properties of w and v,
show that by taking integral combinations of w and v, we can find an arbitrarily long sequence of
points each sufficiently far from each other such that the value of g is bounded below by a common
constant, and 5) show that point 4 implies that g is not integrable. Because densities are only well
defined up to sets of Lebesgue measure zero, the details of the proof are more complicated to ensure
that we are careful about the measure theoretical details.

Proof. Suppose to the contrary that there exists a CND for f✏,0 with respect to k·k, which has density
g. We will denote µg as the measure induced by g: µg(S) =

R
S g(x) dx, and use � to denote

Lebesgue measure.

By property 2 of Definition 4.1, there exists v 2 Rd such that kvk  1 and T (N, v + N) = f✏,0,
where N ⇠ g. This implies that log g(x�v)

g(x) = ±✏ almost everywhere (µg) for all x 2 Rd (if P and
Q are two distributions satisfying T (P,Q) = f✏,0, then the privacy loss random variable is a binary
random variable, taking values in {�✏, ✏}). Furthermore, by property 1, for any other vector w 2 Rd

such that kwk  1, we have that log g(x�w)
g(x) 2 [�✏, ✏] for almost every x 2 Rd (µg).

Before we begin our main argument, we will show that (if such a g exists,) µg must be equivalent to
Lebesgue measure. We know that Lebesgue measure dominates µg, so we only need to show that
µg = 0 implies � = 0. Suppose to the contrary that there exists S ⇢ Rd such that �(S) > 0 but
µg(S) = 0 (which implies that g(x) = 0 a.e. on S). We claim that there exists such an S such that
for some ktk  1, µg(S + t) > 0. We prove this as follows: begin with any S such that �(S) > 0
but µg(S) = 0. If µg(S + t) = 0 for all ktk  1, then set S0 =

S
ktk1(S + t), which is strictly

larger than S. If S0 still does not have the desired property, repeat the process iteratively. Note that
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in the limit, this process results in Rd, but µg(Rd) = 1. So, the process must terminate, giving us
the desired set with the properties �(S) > 0, µg(S) = 0 and there exists some ktk  1 such that
µg(S + t) > 0. Then there exists P ⇢ S + t such that g(x) > 0 on P a.e., and note that P � t ⇢ S

and g(x) = 0 on P � t a.e.. However, this implies that log g(x�t)
g(x) = 1 62 [�✏, ✏] on the set P , which

has positive probability µg(P ) > 0. This contradicts property 1 of Definition 4.1, as discussed above.
We conclude that µg and � are equivalent measures. So, we will interchangeably use statements
about Lebesgue measure and µg measure.

Let r > 0 be the largest value such that kxk2  r implies that kxk  1 (possible by the equivalence
of norms on Rd). Consider three sets

A = {w | kProjv?wk2 < r/4 & kwk < 1},
B = {w | kProjv?wk2  r/8 & kwk < 1},
C = {w | kw + vk < 1}.

Note that (A \B) \ C is an open set; we will demonstrate that it is non-empty, which implies that it
has non-zero Lebesgue measure. First note that A \ B 6= ;, since d � 2 implies that ; ( B ( A.
We will construct a vector w 2 (A \ B) \ C as follows: let y 2 A \ B, and call z = Projv?y.
Then r/8 < kzk2 < r/4. We set w = z � v/2. First we will check that w 2 A \ B: since
z = Projv?w = Projv?y, we have that r/8 < kProjv?wk < r/4. We also need to check that

kwk = kz � v/2k  kzk+ 1

2
kvk  1

4
+

1

2
< 1,

since kzk2  r/4 implies that kzk  1/4. Next, we will check that w 2 C:

kw + vk = kz � v/2 + vk = kz + v/2k  kzk+ 1

2
kvk  1

4
+

1

2
< 1,

using again the fact that kzk2  r/4 implies that kzk  1/4. We conclude that (A \ B) \ C is a
non-empty open set, which implies that it has non-zero Lebesgue measure.

Let c := esssup g. Note that c < 1, as otherwise, this would violate the log-likelihood ratio property
discussed earlier. Then g(x)  c holds with probability one. So, since (A \ B) \ C has positive
probability, we can find a vector w 2 (A \B) \ C which satisfies g(w)  c.

Let ⌘ 2 (0, c) be given. Then the set {x | c� ⌘  g(x)  c} has positive measure. For v as defined
above, and an arbitrary vector u 2 Rd, consider two more sets:

Gv =

⇢
x

����log
g(x+ v)

g(x)
2 {�✏, ✏}

�
,

Fu =

⇢
u

����log
g(x+ u)

g(x)
2 [�✏, ✏]

�
,

which both hold with probability one whenever kuk  1.

Let K be a positive integer such that K >

⇣
e
�✏(c� ⌘) ⇡d/2

�(1+d/2) (r/8)
d
⌘

. Then there exists ⇠ 2 Rd

such that for every 0  j  k  K,

⇠ 2 Gv � (kw + jv),

⇠ 2 Fw � (kw + jv),

⇠ 2 Fw+v � (kw + jv),

c� ⌘  g(⇠)  c,

k⇠k2  b := esssup
c�⌘g(x)c

kxk2,

since the first three lines hold with probability one, the fourth holds with positive probability as
discussed earlier, and the last holds with probability one. Note that b < 1 as otherwise, we would
have an unbounded region with positive probability such that g � c� ⌘ > 0, which would imply that
g is not integrable.

Since ⇠ 2 Fw, we have that g(⇠ + w) 2 [e�✏
g(⇠), c] ⇢ [e�✏(c � ⌘), c], since kwk  1. Similarly,

as ⇠ 2 Fw+v, we have that g(⇠ + w + v) 2 [e�✏(c � ⌘), c], since kw + vk  1. However, since
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⇠ 2 Gv � w, we have that g(⇠+w+v)
g(⇠+w) = e

±✏. The only possibility to satisfy all of these constraints is
for either g(⇠ + w) � c� ⌘ or for g(⇠ + w + v) � c� ⌘. Repeating the previous argument, starting
with g(⇠+w) � c� ⌘ gives either g(⇠+2w) � c� ⌘ or g(⇠+2w+ v) � c� ⌘. If instead, we start
with g(⇠+w+v) � c�⌘, then either g(⇠+2w+v) � c�⌘ or g(⇠+2w+2v) � c�⌘. We see that
after k steps of this procedure, we have that g(⇠ + kw + jv) � c� ⌘ for some j 2 {0, 1, 2, . . . , k}.
We denote by j(k) the value of j obtained by this procedure at the k

th step.

For each 0  k  K, define

Ak = {x | kx� (⇠ + kw + j(k)v)k2 < r/8}.

Note that since w 2 A \ B from above, we know that kProjv?wk2 � r/8. This implies that each
Ak is disjoint from the others, since the Ak are of radius r/8, and the distance between each set is at
least r/8. Furthermore, notice that on each Ak, g � e

�✏(c� ⌘).

Finally, consider the integral of g, which we lower bound:

Z

Rd

g(x) dx �
KX

k=0

Z

Ak

g(x) dx

�
KX

k=0

Z

Ak

e
�✏(c� ⌘) dx

=
KX

k=0

e
�✏(c� ⌘)Vol(Ak)

= (K + 1)e�✏(c� ⌘)
⇡
d/2

�(1 + d/2)
(r/8)d

> 1,

where we used the formula for a d-dimensional sphere of radius r/8 to evaluate Vol(Ak), and in the
last line, we used the fact that K >

⇣
e
�✏(c� ⌘) ⇡d/2

�(1+d/2) (r/8)
d
⌘

. We see that g cannot integrate to
one, which contradicts our assumption that it is a multivariate CND. In fact, g is not even integrable,
as K could have been chosen arbitrarily high.

Corollary 4.9. Let ✏ > 0 be given. There does not exist nontrivial symmetric tradeoff functions f1

and f2 such that f✏,0 = f1 ⌦ f2.

Proof. Suppose to the contrary that there did exist a nontrivial decomposition f✏,0 = f1 ⌦ f2. Then
Proposition 4.2 gives a construction for a 2-dimensional CND of f✏,0. However, we know from
Proposition 4.8 that there is no 2-dimensional CND for f✏,0.
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