
Appendix445

The appendix is organized as follows.446

• In Appendices A and B, we provide all the missing proofs from the main body of the work;447

• In Appendix C, we design a polynomial-time algorithm to compute an EF1 allocation with448

at least 1/(4n2) fraction of the maximum social welfare for n heterogeneous agents;449

• In Appendix D, we present some interesting results connecting EF1 and Nash social welfare;450

• In Appendix E, we show a new algorithm to compute a 2/3-MMS allocation for two agents.451

A Missing Proofs of Section 3452

A.1 Proof of Lemma 3.2453

Proof. Without loss of generality, assume all edges have weight 1. In the greedy partition454

(M1, · · · ,Mn) of M∗, for any i ∈ N ,455

|Mi| ≥ |Mn| = ⌊
|M∗|
n
⌋.

Let (O1, · · · , On) be an optimal max-min allocation. If opt = |On| > |Mn|, then for all i ∈ N ,456

|Oi| ≥ ⌊
|M∗|
n
⌋+ 1.

Thus457 ∑
i∈N

|Oi| ≥ n · ⌊ |M
∗|

n
⌋+ n > |M∗|,

which is a contradiction with M∗ being a maximum matching.458

A.2 Proof of Lemma 3.3459

Proof. Denote by O = (O1, O2, · · · , On) the optimal solution before eliminating any edge, where460

u(O1) ≥ u(O2) ≥ · · · ≥ u(On) and opt(I) = u(On). Under the maximum matching M , consider461

the greedy partition (M1,M2, · · · ,Mn), where u(M1) ≥ u(M2) ≥ · · · ≥ u(Mn). In greedy462

partition procedure, all edges are sorted in descending order of their weights and each time we select463

the edge with the largest weight in the remaining edge set and allocate it to the bundle with the least464

total utility. If |M1| ≥ 2, consider the last edge e added to M1, we have w(Mn) ≥ w(e), since there465

exists at least one edge added to Mn before edge e is added to M1. Since in the greedy procedure,466

edges are added to the bundle with least utility, we have w(Mn) ≥ w(M1/e). Furthermore, we have467

w(Mn) ≥
1

2
(w(e) + w(M1/e)) ≥

1

2
w(M1)

≥ 1

2n

n∑
i=1

w(Mi) ≥
1

2n

n∑
i=1

u(Oi)

≥ 1

2
u(On),

and the lemma holds accordingly.468

A.3 Proof of Lemma 3.4469

Proof. Let I ′′ = (G,N,w′′) be the instance obtained from I by halving all its edge weights. Let470

opt, opt′ and opt′′ be the optimal values of instance I, I ′ and I ′′, respectively. It is easy to see that471

opt′′ =
1

2
· opt.
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Moreover, the weight of all edges in instance I ′ is at least as large as that in instance I ′′, and thus472

opt′ ≥ opt′′ =
1

2
· opt.

Finally, since ui(Xi) ≥ α · opt′ for all i ∈ N , then473

ui(Xi) ≥
α

2
· opt,

and thus the lemma holds.474

A.4 Proof of Claim 3.5475

Proof. We first consider Case 1. For any Oi, if w(e) < w(e1) for all e ∈ E(Oi), then u(Oi) does not476

decrease. If w(e) ≥ w(e1) for some e ∈ E(Oi), u(Oi) ≥ w(e1) ≥ 2 · opt(I) and after decreasing477

the weights to w(e1)/2, u′(Oi) ≥ opt(I), implying the existence of an allocation with the minimum478

utility no smaller than opt(I), which means opt(I ′) = opt(I).479

Second, we consider Case 2 when w(e1) < 2 · opt(I). It is straightforward that 2 · opt(I ′) > opt(I)480

since w(e1) > opt(I) and after decreasing the weights of some edges to w(e1)/2, u′(Oi) ≥481

w(e1)/2 > opt(I)/2 (If e1 ∈ Oi, u′(Oi) ≥ w(e1)/2. Otherwise, u′(Oi) = u(Oi) ≥ opt(I) >482

opt(I)/2 ). Next we show |M ′
1| ≥ 2 which implies w′(M ′

1) ≤ 2 · w′(M ′
n). For the sake of483

contradiction, assume M ′
1 = {e′1}. Note that at this moment, e′1 must be an edge with the largest484

weight in the graph, which means w′(e′1) = w′(M ′
1) ≥ · · · ≥ w′(M ′

n), and thus485

w′(M ′) ≤ n · w′(e′1) < n · w′(O′
n) ≤

∑
i∈N

w′(O′
i).

This is a contradiction with M ′ being a maximum matching in G, which completes the proof.486

A.5 Proof of Theorem 3.6487

Before proving Theorem 3.6, we first show several technical lemmas. In the following, denote by488

Y = (Y1, · · · , Yn) the partial allocation after the for loop in Step 10 of Algorithm 2.489

Lemma A.1. Y is EF1.490

Proof. If Q = ∅, by definition, the allocation is already EF1. In the following, assume Q ̸= ∅. Note491

that only the agents in i ∈ Q has one vertex removed from V (Mi) and for any i /∈ Q, Yi = V (Mi).492

Particularly, Yn = V (Mn).493

Fix any i ∈ N \ {n}. Let (vi1, vi2) be the edge selected in Step 11, i.e., the edge with the smallest494

weight in Mi. By the definition of greedy partition,495

u(V (Mn)) ≥ u(V (Mi) \ {vi1, vi2}). (1)
We have the following claims.496

Claim A.2. Agent n does not envy agent i for more than one item in the partial allocation Y .497

Proof. The claim is straightforward if i /∈ Q since there is no edge between n and i. If i ∈ Q, then498

Yi = V (Mi) \ {vi1} and by Inequality (1),499

u(V (Mn)) ≥ u(V (Mi) \ {vi1, vi2}) = u(Yi \ {vi2}),
implying n does not envy Yi for more than one item.500

Claim A.3. Agent i does not envy agent n in Y .501

Proof. If i /∈ Q, the bundles of agent i and n do not change in the for loop in Step 10. Since Mn has502

the smallest weight in the greedy partition of M∗, we have503

u(Yi) = u(V (Mi)) ≥ u(V (Mn)) = u(Yn).

If i ∈ Q, since there is an edge from n to i, we have504

u(Yi) ≥ min
v∈V (Mi)

u(V (Mi) \ {v}) > u(V (Mn)),

which means i does not envy n.505
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Combining Claims A.2 and A.3, we have that for any two agents i and j,506

u(Yi) ≥ u(Yn) ≥ u(Yj \ {v}) for some v ∈ Yj ,

which means i does not envy j for more than one item. This completes the proof of Lemma A.1.507

To prove the approximation ratio of Algorithm 2, we need the following lemma.508

Lemma A.4. |Mi| ≥ 3 for all i ∈ Q.509

Proof. If the in-degree of agent i is non-zero, then agent n must envy i for more than one item, and510

u(Yn) < u(V (Mi) \ {v}) for any v ∈ V (Mi). (2)
First, it is easy to see that |Mi| ≠ 1 since the removal of any node v makes the remaining utility be 0511

and thus Equation (2) does not hold.512

Next we show |Mi| ≠ 2. For the sake of contradiction, assume Mi = {e, e′} with e = (v1, v2) and513

e′ = (v′1, v
′
2). Without loss of generality, we further assume w(e) ≥ w(e′). Then it must be that514

w(Mn) ≥ w(e), otherwise e′ cannot be added to Mi. Note that since M∗ is a maximum weighted515

matching in G, {e, e′} must be a maximum weighted matching in G[Mi]. If there exist edges in516

G[Mi] whose weights are greater than w(e), these edges must be adjacent to the same node, denoted517

by v̄; otherwise they can form another matching with weight greater than w(Mi). Thus by removing518

v̄ from G[Mi], the maximum matching in the remaining graph contains at most one edge, and all the519

remaining edges have weight at most w(e), which means the maximum matching in G[V (Mi) \ {v̄}]520

brings utility no larger than w(e). Therefore,521

u(V (Mi) \ {v̄}) ≤ w(e) ≤ w(Mn),

which is a contradiction with Equation (2). Combining the above two cases, we have |Mi| ≥ 3.522

Based on the claims and lemmas presented above, we present the proof of Theorem 3.6 below.523

Proof of Theorem 3.6. Let (X1, · · · , Xn) be the allocation returned by Algorithm 2. If the allocation524

is from Step 6, then it must be EF1. This is because Xn has the smallest value and thus nobody525

envies n and each of Xi with 1 ≤ i ≤ n− 1 contains only two nodes which means the removal of526

one of them brings utility 0 to any agent. It also achieves the optimal social welfare since all edges in527

M∗ are allocated to some agents.528

Next we consider the case when the allocation is obtained from Step 18. By Lemma A.1, after the for529

loop in Step 10, the partial allocation is EF1. To show the final allocation to be EF1, it suffices to530

show that the for loop in Step 14 preserves EF1. This is true as in each round, only the bundle with531

the smallest value can be allocated one more item whose removal makes it smallest again.532

Finally, we consider the social welfare loss. For each agent i ∈ Q, we observe that at most one node533

will be removed from V (Mi) in the for loop in Step 10 and the for loop in Step 14 can only increase534

i’s utility. Since the removed node vi1 is from the edge with the smallest weight in Mi, by Lemma535

A.4, we have536

u(Xi) ≥
2

3
· u(V (Mi)) for all i ∈ N \ {n},

Moreover, for agent n and any i ̸= n,537

u(Xn) ≥ u(Mi \ {(vi1, vi2)}) ≥
2

3
· u(V (Mi)). (3)

Therefore538 ∑
i∈N u(Xi)

sw∗ ≥
∑

i∈N\{n}
2
3 · u(V (Mi)) + u(V (Mn))∑

i∈N u(V (Mi))

=
2

3
+

1

3
· u(V (Mn))∑

i∈N u(V (Mi))

≥ 2

3
+

1

3
· u(V (Mn))

( 32 (n− 1) + 1) · u(V (Mn))

=
2

3
+

2

9n− 3
,

where the second inequality is because of Inequality (3) and we complete the proof of Theorem539

3.6.540

15



Figure 2: A graph contains n connected components where the first n− 1 components are identical as shown by
Mi, i = 1, · · · , n− 1, and the last component is a single edge as shown by Mn.

Tight Example. We show that the analysis in Theorem 3.6 is asymptotically tight. Consider541

the example in Figure 2, where 2− means 2 − ϵ2 and 4+ means 4 + 3(n − 1)ϵ2. Let ϵ > 0 be a542

sufficiently small number, say 1/n2. The maximum matching M∗ contains all the bold edges and543

sw∗ = w(M∗) = 6(n− 1) + 4. By Algorithm 2, the greedy-partition of M∗ is (M1, · · · ,Mn) as544

shown in Figure 2. However, it is not EF1: for 1 ≤ i ≤ n− 1, by removing any vertex from Mi, the545

maximum matching in the remaining graph has weight at least 4 + ϵ > 4 + 3(n− 1)ϵ2 = w(Mn).546

After the for loop in Step 10 in Algorithm 2, for 1 ≤ i ≤ n− 1, one vertex in each Mi is removed547

and is reallocated to Mn in the for loop in Step 14. Thus the remaining social welfare is at most548

2 · (2 + ϵ) · (n− 1) + 4→ 2

3
· sw∗.

Remark. By Theorem 3.6, if n = 2, the approximation ratio is 4/5 and when n → ∞ the549

approximation ratio is 2/3. Unfortunately, we were not able to prove an upper bound where the550

optimal social welfare cannot be achieved by any EF1 allocation. We conjecture that there is always551

an EF1 allocation that achieves the optimal social welfare sw∗.552

B Missing Proofs of Section 4553

B.1 Proof of Theorem 4.1554

Proof. Consider the example as shown in Figure 3. The graph containing four nodes {v1, v2, v3, v4}555

is allocated to two agents whose valuations (i.e., edge weights) are shown in Figure 3(a) and 3(b)556

respectively. It can be verified that MMSi = 1 for both i = 1, 2. However, no matter how we allocate557

the vertices to the agents, one of them receives utility of 0.

(a) Agent 1’s Metric (b) Agent 2’s Metric

Figure 3: A bad example for which no allocation has bounded approximation of MMS fairness.

558

B.2 Proof of Theorem 4.2559

Similar to Theorem 3.6, we want to find an EF1 allocation which also has high social welfare.560

Unfortunately, with heterogeneous agents, the fraction of efficiency loss can be as large as 1− 1/n.561
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Note that the optimal social welfare sw∗ is no longer the maximum matching under a single metric,562

which can be computed by563

sw∗ = max
X∈Πn(V )

∑
i∈N

ui(Xi).

Proof. Now, we give an instance where, for any ϵ > 0, every EF1 allocation has social welfare at564

most (1/n+ ϵ) · sw∗. If ϵ ≥ 1− 1/n, it holds trivially since no allocation can have social welfare565

more than sw∗. In the following, we assume ϵ < 1− 1/n.566

Figure 4: A graph with n disjoint edges is allocated to n agents.

Consider a graph with n disjoint edges, as shown in Figure 4, which is to be allocated to n agents.567

For each edge, agent 1 has value 1, and the other agents have value ϵ. The maximum social welfare568

sw∗ = n is achieved by allocating all edges to agent 1. However, to guarantee EF1, at most one edge569

can be given to agent 1. The maximum welfare of an EF1 allocation is therefore at most 1+(n−1) · ϵ570

(each agent receives exactly one edge). The largest ratio is571

1 + (n− 1) · ϵ
n

<
1

n
+ ϵ,

which completes the proof of the Theorem, since ϵ can be arbitrarily small constant.572

B.3 Proof of Theorem 4.3573

We first prove Theorem 4.3 in Appendix B.3.1 and then show our analysis is tight in Appendix B.3.2.574

B.3.1 The Proof575

Before proving Theorem 4.3, we first give several useful lemmas.576

Lemma B.1. During the execution of Algorithm 3, the partial allocation maintains EF1.577

Proof. During the execution of Algorithm 3, two main cases within the while loop in Step 5 change578

the partial allocation, namely579

• Case 1. Directly Allocate;580

• Case 2. Exchange and Allocate.581

Consider an arbitrary round t ≥ 1. In Case 1, a single edge is allocated to one agent if and only582

if such allocation still guarantees EF1. Now, we consider Case 2. If i ∈ At is the agent who is583

able to pick a subset V ∗ ⊆ P to maintain his own utility, i.e., ui(V
∗) = ui(Xi), we show that any584

other agent does not envy i for more than one item after agent i receives bundle V ∗. Let M∗
i be585

the maximum matching of G[V ∗] for agent i. We first consider agent j∗ ∈ Al, l ∈ [t, τ ]. Note that586

replacing Xi by V ∗ does not change the number of edges in the maximum matching Mi as well as587

the size of i’s bundle Xi. Thus, we have588

uj∗(Xj∗) = |Mj∗ | ≥ |Mi| = |M∗
i | =

|V ∗|
2
≥ uj∗(V

∗),

where the last inequality holds because for binary valuations, the valuation of a bundle for one agent589

is at most half the size of the bundle. Therefore, agent j∗ ∈ Al, l ∈ [t, τ ] does not envy agent i up to590
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more than one item after i replaces its bundle with V ∗. Next, we consider agent j∗ ∈ Al, l ∈ [t− 1].591

For the sake of contradiction, assume uj∗(Xj∗) < uj∗(V
∗), which means that there exists at least592

one edge e such that wj∗(e) = 1 as well as a bundle Vj∗ ⊆ P such that uj∗(Vj∗) = uj∗(Xj∗).593

Therefore, in the lth round of the while loop, a single edge e with weight 1 is added to agent j∗ if it594

does not break EF1. Otherwise, there exists an agent j′ who envies agent j∗ before adding edge e. In595

such case, Algorithm 3 will execute the bundle-exchanging procedure in Step 13-17 in l < tth round596

of the while loop, which is a contradiction with the tth round of the while loop being executed. We597

complete the proof of Lemma B.1.598

For any graph G = (V,E) and n different binary valuations vi(·) on G, we call a matching M social599

welfare maximizing if M is a maximum matching on the graph G′ = (V,E′) where for any e ∈ E if600

and only there exists i such that vi(e) = 1. Let M∗ denote the social welfare maximizing matching601

on the input graph G of Algorithm 3. Let VR be the set of unallocated items after we move out of the602

while loop in Step 25, and MR be the social welfare maximizing matching on the induced subgraph603

of VR. Let VL be the set of allocated items after Step 25 and ML be the welfare maximizing matching604

on VL. Actually, |ML| is the social welfare that Algorithm 3 produces after Step 25. Then we have605

the following.606

Lemma B.2. |ML| ≥ |MR|.607

Proof. We note that when Algorithm 3 moves out of the while loop in Step 5, any agent i values608

the unallocated items no more than its own bundle, i.e., ui(Xi) ≥ ui(VR). Then we have |ML| =609
n∑

i=1

ui(Xi) ≥
n∑

i=1

ui(VR) ≥ |MR|, which completes the proof.610

Based on the claims and lemmas presented above, we are ready to prove Theorem 4.3611

Proof of Theorem 4.3. Let Mm be a welfare maximizing matching on the bipartite graph induced612

by VL and VR. i.e., finding as many disjoint edges eij as possible such that vi ∈ VR and vj ∈ VL.613

Observe that the maximum number of vertices within VL equals half the number of the edges in614

the maximum matching ML, i.e., |VL| = 2|ML|. Therefore, the size of Mm is at most 2|ML| (each615

vertex v1 ∈ VL combined with another vertex v2 ∈ VR to form a matching). Therefore, we have616

|M∗| ≤ 2|ML|+ |MR|. Furthermore, we have617

u(ML)

sw∗ =
|ML|
|M∗|

≥ |ML|
2|ML|+ |MR|

≥ |ML|
3|ML|

≥ 1

3
,

where the second inequality holds because |ML| ≥ |MR| proved in Lemma B.2. Since Step 26 can618

only increase the social welfare, we have proved the social welfare guarantee.619

It remains to see the running time of the algorithm. In each iteration of the while loop in Step 5, the620

utility of exact one agent increases by 1. Since the maximum possible welfare is bounded by O(|V |2),621

the while loop will execute for at most O(|V |2) times. The envy-cycle elimination procedure in Step622

26 will execute at most O(|V |) times. Thus, Algorithm 3 runs in O(|V |2 + |V |) = O(|V |2) time.623

The proof of Theorem 4.3 is completed.624

B.3.2 Tight Example625

We show that the analysis in Theorem 4.3 is asymptotically tight. Consider the example as shown626

in Figure 5. Let k > 4 be a constant. Denote by αij , i ∈ [k], j ∈ [2] the edge between node vij and627

node v′ij , βi, i ∈ [k] the edge between node vi1 and vi2, γi, i ∈ [k − 1] the edge between node ai1628

and ai2. Let θi1, θi2, θi3, θi4, i ∈ [k] be the edge between node ai1 and node v11, ai1 and node v12,629

ai1 and node v21, ai1 and node v22, respectively. Obviously, allocating all the nodes to agent 2 and630

allocating nothing to agent 1 result in the optimal social welfare, i.e.,631

sw∗ = u2(V ) =
∑

i∈[k],j∈[2]

w2(αij) +
∑

i∈[k−1]

w2(γi) = 3k − 1. (4)
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(a) Agent 1’s Metric (b) Agent 2’s Metric

Figure 5: The graph is partitioned among two agents with binary valuations.

The corresponding maximum matching M∗ contains 2k edges αij , i ∈ [k], j ∈ [2] and k − 1 edges632

γi, i ∈ [k − 1]. Now, we consider the worst case achieved by Algorithm 3 running on this example,633

which results in a total utility of k + 3. In the first two rounds of the while loop in Step 5, each634

agent picks exactly one of the two edges β1 and β2 (w.l.o.g. agent 1 picks β1 and agent 2 picks635

β2). Following that agent 2 picks all the remaining edges βi, i ∈ [3, k] and arbitrary two edges636

γi, i ∈ [k − 1] (w.l.o.g. γ1 and γ2). We then move out of the while loop since (1) for agent 1,637

u1(P ) = 0; (2) for agent 2, u2(P ) < u2(X2) and allocating any other edge γi, i ∈ [3, k − 1] to it638

will break EF1. Thus, we execute the envy-cycle elimination procedure on the remaining items, i.e.,639

allocating all the remaining vertices in P to agent 1 with the EF1 allocation being completed. For640

agent 2, the maximum matching in G[X2] containing edges βi, i ∈ [2, k], γi, i ∈ [2]. We thus have641

u2(X2) = k − 1 + 2 = k + 1. For agent 1, the maximum matching in G[X1] containing edges a11642

and a12. Therefore, u1(X1) = 2. The total social welfare is u1(X1) + u2(X2) = k+1+2 = k+3.643

Thus644

lim
k→+∞

k + 3

3k − 1
=

1

3
,

which completes the proof of the theorem.645

B.4 Proof of Theorem 4.4646

We first prove Theorem 4.4 in Appendix B.4.1 and then show that the approximation ratio guarantee647

is tight, i.e., no algorithm is better than 1/3-approximate in Appendix B.4.2.648

B.4.1 The Proof649

Proof. Denote (M1,M2) as a social welfare maximizing allocation. Consider the following two650

cases:651

• Case 1: ∃e ∈ E such that wi(e) ≥ 1
3 · sw

∗, i ∈ {1, 2};652

• Case 2: ∀e ∈ E, wi(e) <
1
3 · sw

∗, i ∈ {1, 2}.653

For Case 1, giving edge e to agent i and running the envy-cycle elimination procedure on remaining654

vertices can find an EF1 allocation, which, at the same time, guarantees the total utility no less than655

1/3 of the maximum possible social welfare.656

Next, we consider Case 2. There are two subcases.657

• Subcase 1: ui(Mi) ≥ 1
3 · sw

∗ for all i ∈ {1, 2};658

• Subcase 2: ∃i ∈ {1, 2} such that ui(Mi) <
1
3 · sw

∗.659

For Subcase 1, if such allocation guarantees EF1, the theorem holds. Otherwise, agent 1 envies agent660

2 since we assume u1(M1) ≤ u2(M2). We then reallocate the item v ∈ X2 to agent 1 one by one661
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(a) Agent 1’s weight for the graph (b) Agent 2’s weight for the graph

Figure 6: An example where any EF1 allocation guarantees at most (1/3 + 2ϵ) of the maximum social welfare.

until such allocation guarantees EF1. The total utility is u1(X1) + u2(X2) ≥ u1(M1) ≥ (1/3)sw∗.662

Therefore, we complete the proof for this subcase.663

Consider Subcase 2. Without loss of generality, assume u1(M1) < (1/3)sw∗. If allocation (M1,M2)664

guarantees EF1, the theorem is proved. Otherwise, by the assumption that u1(M1) ≤ u2(M2), agent665

1 envies agent 2 more than one item. By u1(M1) < (1/3)sw∗, we have u2(M2) > (2/3)sw∗. Now,666

we consider to remove items from agent 2’s bundle to agent 1’s bundle. First, sorting the edges667

within M2 by decreasing order according to their valuation to agent 2. In each iteration, we pick an668

edge within agent 2’s bundle with largest weight and give one endpoint to agent 1. If the allocation669

still admits EF1, we give another endpoint to agent 1 and pick another edge with largest weight in670

agent 2’s remaining bundle. Repeat above procedure until agent 1 envies agent 2 up to exact one671

item. When Algorithm 4 completed, at most one edge e within M2 is destroyed, i.e., one endpoint672

of e is allocated to agent 1 and another endpoint still remains in X2. If e is the edge with largest673

weight in M2, we have u2(X2) ≥ u2(M2 \{e}) > (1/3)sw∗, where the last inequality holds because674

u2(M2) > (2/3)sw∗ and w2(e) < (1/3)sw∗. We thus complete the proof of the theorem. Otherwise,675

we next show that u2(X2) ≥ (1/3)u2(M2). Denote by X ′
2 be the set of items given to agent 1. We676

have677

w2(e) ≤ u2(X
′
2) ≤ u2(X2), (5)

where the first inequality holds because at least one edge within M2 with larger weight is allocated to678

agent 1 before and the second inequality holds since otherwise agent 2 will envy agent 1. We thus679

derive680

u2(X2) ≥
1

3
(u2(X2) + u2(X

′
2) + w2(e)) ≥

1

3
u2(M2). (6)

Furthermore681

u1(X1) + u2(X2) ≥ u1(M1) +
1

3
u2(M2)

≥ sw∗ − u2(M2) +
1

3
u2(M2)

= sw∗ − 2

3
u2(M2) ≥

1

3
sw∗,

(7)

where the last inequality holds because u2(M2) ≤ sw∗. Since in each iteration, at most one item is682

removed from agent 2 to agent 1, Algorithm 4 runs in poly(|V |) time. We complete the proof of the683

theorem.684

B.4.2 Tight Example685

We next show the approximation of 1/3 is optimal. Consider the example in Fig. 6(a) and Fig. 6(b).686

It is not hard to verify that the maximum social welfare without fairness constraint is sw∗ = 3 by687

allocating all the items to agent 1. However, for any allocation where agent 1 has utility no smaller688

than 2, the allocation is not EF1 to agent 2 since agent 2 always has utility 0 in such allocations.689

Therefore, the maximum social welfare generated by EF1 allocations is no greater than 1 + 2ϵ. Thus690

lim
x→0

1 + 2ϵ

3
=

1

3
, (8)

which means the approximation ratio of 1/3 is optimal.691
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C EF1 Allocation with Bounded Social Welfare Guarantee692

Now we are ready to present an algorithm to find an EF1 allocation with bounded social welfare693

guarantee in polynomial time.694

Theorem C.1. For any instance I = (G,N), Algorithm 5 returns an EF1 allocation with social695

welfare at least 1/(4n2) · sw∗(I) in polynomial time.696

Algorithm 5: Computing EF1 Allocations for n Heterogeneous Agents with Distinct Weights
Input: Instance I = (G,N,w) with G = (V,E).
Output: Allocation X = (X1, · · · , Xn).

1: Initialize Xi ← ∅, i ∈ N . Let Mi be the maximum matching in G[Xi] for agent i. Denote by
G′ = (N, E) the envy-graph on X.

2: Let P = V \ (X1 ∪ · · · ∪Xn) be the set of unallocated items (called pool).
3: Denote H as the set of agents who are not envied by any other agents. Initialize H ← N .
4: Let agent i∗ determine a maximum matching Mi∗ in graph G. Denote by R the set of the

remaining edges within the maximum matching. Initialize R←Mi∗ .
5: Sort the edges e ∈Mi∗ by non-increasing order according to their weight to agent i∗.
6: Let agent i∗ pick one edge with largest weight wi∗(e) (with ties broken arbitrarily).
7: while {R ̸= ∅} do
8: Select one agent i ∈ H .
9: if {Pi = ∅} then

10: Select one edge e ∈ R with largest weight to agent i∗. Give one endpoint v1 of e to agent i
and put another endpoint v2 in the corresponding pool Pi, i.e., R← R \ {e},
Xi ← Xi ∪ {v1}, Pi ← Pi ∪ {v2}, P ← P \ {v1, v2}.

11: Update the envy-graph G′ and set H .
12: else
13: Give the node v ∈ Pi to agent i, i.e., Pi ← ∅, Xi ← Xi ∪ {v}.
14: Update the envy-graph G′ and set H .
15: end if
16: end while
17: Return all the vertices within Pi to the pool P , i.e., P ← P

⋃
i∈N Pi.

18: Execute the envy-cycle elimination procedure running on the remaining items P .
19: Return the allocation (X1, · · · , Xn).

Without loss of generality, we assume i∗ to be the agent who has the maximum value of ui(V ), i ∈ N .697

Denote by S = (S1, · · · , Sn) the partial allocation when we first move out of the while loop in Step698

7. Before presenting the proof of Theorem C.1, we first present a useful lemma.699

Lemma C.2.
∑
i∈N

ui∗(Xi) ≥ 1
2ui∗(V ).700

Proof. During the execution of Algorithm 5, there is at most one node vi in pool Pi, i ∈ [n]. Consider701

Pi when we first move out of the while loop in Step 7. If Pi ̸= ∅, w.l.o.g. suppose vi ∈ Pi is one702

endpoint of edge ei ∈Mi∗ . Let N1 be the set of agents such that Pi ̸= ∅. Since the edges are picked703

by non-increasing order of their weight to agent i∗, we have ui∗(Si) ≥ wi∗(ei), i ∈ N1. Furthermore,704

we have705

2ui∗(Si) ≥ ui∗(Si) + wi∗(ei) ≥ ui∗(Si ∪ {vi}).
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Thus, ui∗(Si) ≥ 1
2ui∗(Si ∪ {vi}), i ∈ N1. We have706 ∑

i∈N

ui∗(Xi) ≥
∑
i∈N

ui∗(Si)

≥ 1

2

∑
i∈N1

ui∗(Si ∪ {vi}) +
∑

i∈N\N1

ui∗(Si)

≥ 1

2

∑
i∈N1

ui∗(Si ∪ {vi}) +
1

2

∑
i∈N\N1

ui∗(Si)

=
1

2

∑
i∈N

ui∗(V ),

where the last equality holds because the nodes within the remaining pool P after we move out of the707

while loop in Step 7 do not have any effect on the maximum matching Mi∗ . We complete the proof708

of Lemma C.2.709

Now we are ready to prove Theorem C.1.710

Proof of Theorem C.1. Let Ne be the set of agents that agent i∗ envies. Since Algorithm 5 admits711

EF1, there exists one node v ∈ Xi, i ∈ Ne such that ui∗(Xi∗) ≥ ui∗(Xi \ {v}), i ∈ Ne. For712

any agent i ∈ Ne, w.l.o.g. assume v1 is the node such that ui∗(Xi∗) ≥ ui∗(Xi \ {v1}) and713

v1, v2 ∈ Si are two endpoints of the edge e ∈ Mi∗ . Since agent i∗ first picks the edge with the714

largest weight to itself, we have ui∗(Xi∗) ≥ wi∗(e) = ui∗({v1, v2}). By the definition of EF1,715

ui∗(Xi∗) ≥ ui∗(Xi \ {v1}) ≥ ui∗(Xi \ {v1, v2}) holds. Thus, we have ui∗(Xi∗) ≥ 1
2 (ui∗(Xi \716

{v1, v2}) + ui∗({v1, v2})) = 1
2ui∗(Xi). Let (X∗

1 , · · · , X∗
n) be the welfare maximization allocation,717

where X∗
i , i ∈ N is the set of vertices allocated to agent i. Therefore718

n · ui∗(Xi∗) ≥
1

2

∑
i∈N

ui∗(Xi) ≥
1

2
· 1
2
ui∗(V )

≥ 1

4
· 1
n

∑
i∈N

ui(V ) ≥ 1

4n

∑
i∈N

ui(X
∗
i )

=
1

4n
sw∗(I),

where the second inequality follows by Lemma C.2 and the third inequality holds because of the719

assumption that i∗ is the agent with the largest value of ui(V ), i ∈ N . Since in each iteration one720

node is allocated to an agent, the time complexity of Algorithm 5 is at most O(|V |2), completing the721

proof of Theorem C.1.722

D Nash Social Welfare and EF1 Allocations723

Before introducing Nash social welfare, We first generalize the definition of EF1 to envy-free up to k724

items and its approximations. For α ≥ 0, allocation (X1, · · · , Xn) is α-approximate envy-free up to725

k items (α-EFk) if for any i and j, there exists S = {g1, · · · , gk} ⊆ Xj such that726

ui(Xi) ≥ α · ui(Xj \ S).

Now, we are ready to give several results concerning nash social welfare, which is (informally) the727

product of all agents’ utilities. It is proved in [Caragiannis et al., 2019] that under additive valuations,728

EF1 and Pareto Optimality (PO) are compatible and an allocation that maximizes Nash social welfare729

is always simultaneously EF1 and PO. Here, an allocation is PO if there is no alternative allocation730

that makes an agent better off without making anyone worse off. Recently, Wu et al. [2021] showed731

that with subadditive valuations, a Nash social welfare maximizer is still PO but only 1/4-EF1. In732

our results, we observe that when the valuations are measured by maximum matchings, Nash social733

welfare maximizer is PO and EF2 for any matching valuations. However, the Nash social welfare734

maximizer does not have any bounded approximation guarantee on EF1.735
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Proposition D.1. An allocation that maximizes Nash social welfare does not have bounded approxi-736

mation ratio on EF1.737

Proof. Consider the example shown in Figure 7, where the two agents have different metrics as738

shown in Figure 7(a) and Figure 7(b) respectively. Let M be a sufficiently large number. The unique739

allocation that maximizes the Nash social welfare is to assign X1 = {v3, v4, v5, v6} to agent 1 and740

X2 = {v1, v2} to agent 2. However, for any v ∈ X1,741

u2(X1 \ {v}) = M ≫ 1 = u2(X2).

When M goes to infinity, the allocation does not have any bounded approximation ratio.742

(a) Agent 1’s Metric (b) Agent 2’s Metric

Figure 7: The graph containing a single edge and a square is allocated to two agents.

Note that even with identical valuations, the Nash social welfare maximizing allocation does not743

guarantee EF1. Consider the example shown in Figure 8, where ϵ is arbitrarily small. To maximize the744

Nash social welfare, one possible allocation is that X1 = {v1, v2} and X2 = {v3, v4, v5, v6, v7, v8}.745

However, this allocation does not guarantee EF1 for agent 1 since the removal of any vertex in X2746

still admits a matching with weight at least 8.5, which is greater than u1(X1) = 8 + ϵ.747

Figure 8: The graph is allocated to two agents with identical valuations. The allocation maximizing Nash social
welfare fails to guarantee EF1.

Although Proposition D.1 is disappointing in general, an allocation that maximizes Nash social748

welfare is PO and EF2, and when the valuations are identical, it ensures 2/3-EF1.749

Proposition D.2. A Nash social welfare maximizing allocation is PO and EF2 for any matching-750

induced valuations, and is 2/3-EF1 if the valuations are identical.751

Proof. We only prove for the case of two agents, and the proof for arbitrary number of agents is752

the same. Given any graph G = (V,E), suppose (V1, V2) is an allocation that maximizes the Nash753

social welfare. Denote by G1 = (V1, E1) and G2 = (V2, E2) the induced subgraphs by V1 and V2754

respectively. Denote by M1 and M2 the maximum matchings in G1 and G2. To show (V1, V2) is755

EF2, we can regard the edges in M1 and M2 as items and by the result from [Caragiannis et al.,756
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2019], the allocation must be envy-free up to one edge, which guarantees EF2, since deleting one757

edge can be achieved by deleting two nodes.758

Next we show the allocation is 2/3-EF1 for identical valuations. For the sake of contradiction, suppose759

that for any v ∈ V2,760

u(V1) = w(M1) <
2

3
· u(V2 \ {v}) ≤

2

3
· w(M2).

By Lemma A.4, |M2| ≥ 3 and thus the smallest edge in M2 denoted by e has weight at most761

1/3 · w(M2). Thus762

w(M1) + w(e) <
2

3
· w(M2) +

2

3
· w(M2) = w(M2). (9)

Consider a new allocation by assigning edge e to agent 1. The resulting maximum matchings in each763

subgraph becomes M1 ∪ {e} and M2 \ {e}. The Nash social welfare of the new allocation is764

w(M1 ∪ {e}) · w(M2 \ {e})
= (w(M1) + w(e)) · (w(M2)− w(e))

= w(M1) · w(M2) + (w(M2)− w(M1)− w(e)) · w(e)
> w(M1) · w(M2),

where the inequality is by (9). However, this is a contradiction with the fact that (V1, V2) maximizes765

the Nash social welfare.766

E An Improved MMS Allocation Algorithm for Two Homogeneous Agents767

When there are only two agents, Algorithm 1 can be refined as shown in Algorithm 6, and the768

approximation ratio can be improved to 2/3. Algorithm 6 is similar with Algorithm 1; we first769

compute a maximum matching M∗ and a max-min partition (M1,M2) with w(M1) ≥ w(M2). If770

|M1| ≥ 2, we output the corresponding allocation. Otherwise, in graph G, we directly delete the771

edge that M1 contains. We repeat the above procedure until all edges are removed.

Algorithm 6: Max-Min Allocation for 2 Agents
Input: Instance I = (G,N, u) with G = (V,E;w).
Output: Allocation X = (X1, X2).

1: Find a maximum matching M∗ in G. Denote by V ′ the set of unmatched vertices by M∗.
2: Find the greedy partition (M1,M2) of edges in M∗ such that w(M1) ≥ w(M2).
3: Let Max = w(M2).
4: Set X1 = V (M1) .
5: Set X2 = V (M2) ∪ V ′.
6: while w(M1) > 2w(M2) do
7: By Lemma 3.3. M1 must contain only one edge. Suppose M1 = {e∗}.
8: Delete edge e∗.
9: Re-compute a maximum matching M∗.

10: Re-set V ′ to be unmatched vertices by M∗.
11: Re-compute the greedy partition (M1,M2) of M∗ such that w(M1) ≥ w(M2).
12: if Max < w(M2) then
13: Max = w(M2).
14: Set X1 = V (M1).
15: Set X2 = V (M2) ∪ V ′.
16: end if
17: end while
18: Output allocation (X1, X2).

772

Theorem E.1. Algorithm 6 outputs an allocation that is 2/3-approximate max-min fair in polynomial773

time .774
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Proof. Given an Instance I = (G,N, u) with G = (V,E;w). Denote by O = (O1, O2) the optimal775

solution, where u(O1) ≥ u(O2) and opt(I) = u(O2). The first time when we reach the while776

loop, if w(M1) ≤ 2 · w(M2), allocation (X1, X2) = (V (M1), V (M2) ∪ V ′) has been output. By777

Algorithm 6, we have778

w(M1) ≥ u(O1) ≥ u(O2) ≥ w(M2).

Moreover,779

w(M2) ≥
1

3
· (w(M1) + w(M2))

≥ 1

3
· (u(O1) + u(O2))

≥ 1

3
· 2 · u(O2) =

2

3
· u(O2).

We move into the while loop if w(M1) > 2 · w(M2). In such case, M1 contains only one edge, i.e.,780

|M1| = 1. Suppose M1 = {e∗}. There are two subcases:781

• Case 1: e∗ ∈ O1 ∪O2782

• Case 2: e∗ /∈ O1 ∪O2783

First. consider |M1| = 1 and e∗ ∈ O1∪O2. We have: e∗ ∈ O1 and w(M2) = u(O2) = opt(I). The784

optimal solution has been found and recorded. Therefore, the approximation ratio of the max-min785

partition is 1. Then the while loop is executed for the next round. When e∗ /∈ O1 ∪O2, edge e∗ is786

deleted. Let (M ′
1,M

′
2) be the greedy partition after deleting edge e∗. Then there are two subcases:787

• Subcase 1: |M ′
1| ≥ 2788

• Subcase 2: |M ′
1| = 1789

For Subcase 1, we will get out of the while loop and a 2/3-approximate max-min allocation has been790

determined. For Subcase 2, the while loop is executed for the next round. Since we are not sure791

whether e∗ ∈ O1 ∪ O2, the while loop is executed for at most O(m2) rounds (m is the number of792

nodes in graph G(V,E)). The output (X1, X2) is at least 2/3-approximate max-min fair allocation.793

Thus, the theorem holds.794

Lemma E.2. Algorithm 6 outputs an allocation that is 1/2-approximate max-min fair by eliminating795

at most two edges.796

Proof. Given an Instance I = (G,N, u) with G = (V,E;w). Denote by O = (O1, O2) the optimal797

solution before eliminating any edge, where u(O1) ≥ u(O2) and opt(I) = u(O2). Initially, under the798

maximum matching M ′, we find the greedy max-min partition (M1,M2) such that w(M1) ≥ w(M2).799

If |M1| ≥ 2, by Lemma 3.3, (M1,M2) is a 1/2-approximation max-min partition. Next, consider800

that M1 contains only one edge. Suppose M1 = {e1} and e1 /∈ O1 ∪ O2 (otherwise, by Case 1 in801

Theorem E.1, w(M2) = u(O2) = opt(I). The optimal solution has been found). If we eliminate802

edge e1, under the re-computed maximum matching, we find the greedy max-min partition (M
′

1,M
′

2).803

Let O′ = (O′
1, O

′
2) denote the optimal solution after eliminating edge e1, where u(O′

1) ≥ u(O′
2) and804

opt′(I ′) = u(O′
2). M

′

1 = {e′

1} and e
′

1 /∈ O′
1 ∪O′

2. We first show that the two edges e1 and e
′

1 have805

one common endpoint. By Algorithm 6,806

w(e1) > u(O1) ≥ u(O2) > w(M2),

and807

w(e
′

1) > u(O′
1) ≥ u(O′

2) > w(M
′

2).

Hence, w(e
′

1) > w(M2). Furthermore,808

w(e1) + w(e
′

1) > w(e1) + w(M2).

Therefore, edges e1 and e
′

1 make a maximum matching, which implies that there exists an allocation809

to improve the max-min value from u(O2) to w(e′1). It results in a contradiction. Hence, the two810

edges e1 and e
′

1 have one common endpoint. Furthermore, e1 /∈ O1 ∪ O2 (otherwise, suppose811
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Figure 9: The graph is allocated to two agents with identical valuations. Two large edges e1 and e′1 have one
common endpoint and their other endpoints connect two distinct edges.

Figure 10: The graph is allocated to two agents with identical valuations. Two large edges e1 and e′1 have one
common endpoint and their other endpoints are the two endpoints of another same edge.

e1 ∈ O1. Then O1 can be replaced by edge e1 to get larger welfare, which makes a contradiction).812

Therefore, there are two cases. First, we consider Case 1 (as shown in Figure 9): suppose a1 and a2813

are two edges in O2, and w(a1) ≥ w(a2). Denote O∗
2 = O2/{a1, a2}. Thus814

max(w(a1), w(a2)) ≥
1

2
(w(a1) + w(a2)),

and then815

w(a1) + u(O∗
2) ≥

1

2
u(O2).

Accordingly, either816

w(M2) ≥ w(a1) + u(O∗
2)

or817

w(M
′

2) ≥ w(a1) + u(O∗
2)

holds; otherwise, replacing M2 or M
′

2 with a1 ∪ O∗
2 can make a matching with larger welfare.818

Therefore, w(M2) ≥ 1/2 · u(O2) or W (M
′

2) ≥ 1/2 · u(O2). Next, we consider Case 2 (as shown819

in Figure 10). Suppose after the two edges e1 and e
′

1 have been deleted, under the new maximum820

matching M ′′, we find the greedy partition (M
′′

1 ,M
′′

2 ). If |M ′′

1 | ≥ 2, by Theorem E.1, the 2/3-821

approximate max-min partition can be found. If |M ′′

1 | = 1, then822

w(M
′′

2 ) ≥ w(a1) +O(B
′
) ≥ 1

2
u(B2).

Thus a 1/2-approximate max-min partition has been found, and the lemma holds.823
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F Examples824

F.1 An Example where Envy-cycle Elimination Algorithm does not Work825

Consider a path of four nodes v1 → v2 → v3 → v4, and two agents have the same weight 1 on all826

three edges (v1, v2), v2, v3 and v3, v4. By ency-cycle elimination algorithm, we may first allocate827

the items in the following order: v1 to agent 1, then v2 to agent 2, then v3 to agent 1 and finally v4828

to agent 2. Note that u1({v1, v3}) = v2({v2, v4}) = 0, however, the optimal social welfare is 2 by829

allocating {v1, v2} to agent 1 and {v3, v4} to agent 2. Thus the approximation ratio of the social830

welfare is unbounded.831

F.2 e1 May not Have the Largest Weight832

In the execution of Algorithm 1, the edge e1, which is the only edge in M1, may not have the largest833

weight. Consider an instance with two agents and the graph is shown in Figure 11. By Algorithm 1,834

in the first round of the while loop, we find a maximum matching, say, M∗ = {e12, e34, e56, e78}.835

The greedy partition of M∗ is M1 = {e34}, M2 = {e56}, M3 = {e12, e78}. Since w(M3) = 4 <836

1/2 · w(M1) = 32, H = {e34, e45, e56}, which contains all the edges with at least w(e34) = 32.837

Noe that in this case, e1 does not have the highest 64.838

Figure 11: The graph is allocated to three agents with identical valuations.
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