Appendix

The appendix is organized as follows.

- In Appendices A and B , we provide all the missing proofs from the main body of the work;
- In Appendix C we design a polynomial-time algorithm to compute an EF1 allocation with at least $1 /\left(4 n^{2}\right)$ fraction of the maximum social welfare for n heterogeneous agents;
- In Appendix D, we present some interesting results connecting EF1 and Nash social welfare;
- In Appendix E, we show a new algorithm to compute a $2 / 3-\mathrm{MMS}$ allocation for two agents.

A Missing Proofs of Section 3

A. 1 Proof of Lemma 3.2

Proof. Without loss of generality, assume all edges have weight 1 . In the greedy partition $\left(M_{1}, \cdots, M_{n}\right)$ of M^{*}, for any $i \in N$,

$$
\left|M_{i}\right| \geq\left|M_{n}\right|=\left\lfloor\frac{\left|M^{*}\right|}{n}\right\rfloor .
$$

Let $\left(O_{1}, \cdots, O_{n}\right)$ be an optimal max-min allocation. If opt $=\left|O_{n}\right|>\left|M_{n}\right|$, then for all $i \in N$,

$$
\left|O_{i}\right| \geq\left\lfloor\frac{\left|M^{*}\right|}{n}\right\rfloor+1
$$

Thus

$$
\sum_{i \in N}\left|O_{i}\right| \geq n \cdot\left\lfloor\frac{\left|M^{*}\right|}{n}\right\rfloor+n>\left|M^{*}\right|
$$

which is a contradiction with M^{*} being a maximum matching.

A. 2 Proof of Lemma 3.3

Proof. Denote by $O=\left(O_{1}, O_{2}, \cdots, O_{n}\right)$ the optimal solution before eliminating any edge, where $u\left(O_{1}\right) \geq u\left(O_{2}\right) \geq \cdots \geq u\left(O_{n}\right)$ and opt $(\mathcal{I})=u\left(O_{n}\right)$. Under the maximum matching M, consider the greedy partition $\left(M_{1}, M_{2}, \cdots, M_{n}\right)$, where $u\left(M_{1}\right) \geq u\left(M_{2}\right) \geq \cdots \geq u\left(M_{n}\right)$. In greedy partition procedure, all edges are sorted in descending order of their weights and each time we select the edge with the largest weight in the remaining edge set and allocate it to the bundle with the least total utility. If $\left|M_{1}\right| \geq 2$, consider the last edge e added to M_{1}, we have $w\left(M_{n}\right) \geq w(e)$, since there exists at least one edge added to M_{n} before edge e is added to M_{1}. Since in the greedy procedure, edges are added to the bundle with least utility, we have $w\left(M_{n}\right) \geq w\left(M_{1} / e\right)$. Furthermore, we have

$$
\begin{aligned}
w\left(M_{n}\right) & \geq \frac{1}{2}\left(w(e)+w\left(M_{1} / e\right)\right) \geq \frac{1}{2} w\left(M_{1}\right) \\
& \geq \frac{1}{2 n} \sum_{i=1}^{n} w\left(M_{i}\right) \geq \frac{1}{2 n} \sum_{i=1}^{n} u\left(O_{i}\right) \\
& \geq \frac{1}{2} u\left(O_{n}\right)
\end{aligned}
$$

and the lemma holds accordingly.

A. 3 Proof of Lemma 3.4

Proof. Let $\mathcal{I}^{\prime \prime}=\left(G, N, w^{\prime \prime}\right)$ be the instance obtained from \mathcal{I} by halving all its edge weights. Let opt, opt ${ }^{\prime}$ and opt" be the optimal values of instance $\mathcal{I}, \mathcal{I}^{\prime}$ and $\mathcal{I}^{\prime \prime}$, respectively. It is easy to see that

$$
\mathrm{opt}^{\prime \prime}=\frac{1}{2} \cdot \mathrm{opt} .
$$

Moreover, the weight of all edges in instance \mathcal{I}^{\prime} is at least as large as that in instance $\mathcal{I}^{\prime \prime}$, and thus

$$
\mathrm{opt}^{\prime} \geq \mathrm{opt}^{\prime \prime}=\frac{1}{2} \cdot \mathrm{opt}
$$

Finally, since $u_{i}\left(X_{i}\right) \geq \alpha \cdot$ opt $^{\prime}$ for all $i \in N$, then

$$
u_{i}\left(X_{i}\right) \geq \frac{\alpha}{2} \cdot \mathrm{opt},
$$

and thus the lemma holds.

A. 4 Proof of Claim 3.5

Proof. We first consider Case 1. For any O_{i}, if $w(e)<w\left(e_{1}\right)$ for all $e \in E\left(O_{i}\right)$, then $u\left(O_{i}\right)$ does not decrease. If $w(e) \geq w\left(e_{1}\right)$ for some $e \in E\left(O_{i}\right), u\left(O_{i}\right) \geq w\left(e_{1}\right) \geq 2 \cdot \operatorname{opt}(\mathcal{I})$ and after decreasing the weights to $w\left(e_{1}\right) / 2, u^{\prime}\left(O_{i}\right) \geq \operatorname{opt}(\mathcal{I})$, implying the existence of an allocation with the minimum utility no smaller than $\operatorname{opt}(\mathcal{I})$, which means $\operatorname{opt}\left(\mathcal{I}^{\prime}\right)=\operatorname{opt}(\mathcal{I})$.

Second, we consider Case 2 when $w\left(e_{1}\right)<2 \cdot \operatorname{opt}(\mathcal{I})$. It is straightforward that $2 \cdot \operatorname{opt}\left(\mathcal{I}^{\prime}\right)>\operatorname{opt}(\mathcal{I})$ since $w\left(e_{1}\right)>\operatorname{opt}(\mathcal{I})$ and after decreasing the weights of some edges to $w\left(e_{1}\right) / 2, u^{\prime}\left(O_{i}\right) \geq$ $w\left(e_{1}\right) / 2>\operatorname{opt}(\mathcal{I}) / 2$ (If $e_{1} \in O_{i}, u^{\prime}\left(O_{i}\right) \geq w\left(e_{1}\right) / 2$. Otherwise, $u^{\prime}\left(O_{i}\right)=u\left(O_{i}\right) \geq \operatorname{opt}(\mathcal{I})>$ $\operatorname{opt}(\mathcal{I}) / 2)$. Next we show $\left|M_{1}^{\prime}\right| \geq 2$ which implies $w^{\prime}\left(M_{1}^{\prime}\right) \leq 2 \cdot w^{\prime}\left(M_{n}^{\prime}\right)$. For the sake of contradiction, assume $M_{1}^{\prime}=\left\{e_{1}^{\prime}\right\}$. Note that at this moment, e_{1}^{\prime} must be an edge with the largest weight in the graph, which means $w^{\prime}\left(e_{1}^{\prime}\right)=w^{\prime}\left(M_{1}^{\prime}\right) \geq \cdots \geq w^{\prime}\left(M_{n}^{\prime}\right)$, and thus

$$
w^{\prime}\left(M^{\prime}\right) \leq n \cdot w^{\prime}\left(e_{1}^{\prime}\right)<n \cdot w^{\prime}\left(O_{n}^{\prime}\right) \leq \sum_{i \in N} w^{\prime}\left(O_{i}^{\prime}\right)
$$

This is a contradiction with M^{\prime} being a maximum matching in G, which completes the proof.

A. 5 Proof of Theorem 3.6

Before proving Theorem 3.6, we first show several technical lemmas. In the following, denote by $Y=\left(Y_{1}, \cdots, Y_{n}\right)$ the partial allocation after the for loop in Step 10 of Algorithm 2 .
Lemma A.1. Y is $E F 1$.

Proof. If $Q=\emptyset$, by definition, the allocation is already EF1. In the following, assume $Q \neq \emptyset$. Note that only the agents in $i \in Q$ has one vertex removed from $V\left(M_{i}\right)$ and for any $i \notin Q, Y_{i}=V\left(M_{i}\right)$. Particularly, $Y_{n}=V\left(M_{n}\right)$.
Fix any $i \in N \backslash\{n\}$. Let $\left(v_{i 1}, v_{i 2}\right)$ be the edge selected in Step 11, i.e., the edge with the smallest weight in M_{i}. By the definition of greedy partition,

$$
\begin{equation*}
u\left(V\left(M_{n}\right)\right) \geq u\left(V\left(M_{i}\right) \backslash\left\{v_{i 1}, v_{i 2}\right\}\right) \tag{1}
\end{equation*}
$$

We have the following claims.
Claim A.2. Agent n does not envy agent i for more than one item in the partial allocation Y.
Proof. The claim is straightforward if $i \notin Q$ since there is no edge between n and i. If $i \in Q$, then $Y_{i}=V\left(M_{i}\right) \backslash\left\{v_{i 1}\right\}$ and by Inequality (1),

$$
u\left(V\left(M_{n}\right)\right) \geq u\left(V\left(M_{i}\right) \backslash\left\{v_{i 1}, v_{i 2}\right\}\right)=u\left(Y_{i} \backslash\left\{v_{i 2}\right\}\right)
$$

implying n does not envy Y_{i} for more than one item.
Claim A.3. Agent i does not envy agent n in Y.
Proof. If $i \notin Q$, the bundles of agent i and n do not change in the for loop in Step 10 Since M_{n} has the smallest weight in the greedy partition of M^{*}, we have

$$
u\left(Y_{i}\right)=u\left(V\left(M_{i}\right)\right) \geq u\left(V\left(M_{n}\right)\right)=u\left(Y_{n}\right)
$$

If $i \in Q$, since there is an edge from n to i, we have

$$
u\left(Y_{i}\right) \geq \min _{v \in V\left(M_{i}\right)} u\left(V\left(M_{i}\right) \backslash\{v\}\right)>u\left(V\left(M_{n}\right)\right)
$$

which means i does not envy n.

Therefore

$$
\begin{aligned}
\frac{\sum_{i \in N} u\left(X_{i}\right)}{\mathrm{sw}^{*}} & \geq \frac{\sum_{i \in N \backslash\{n\}} \frac{2}{3} \cdot u\left(V\left(M_{i}\right)\right)+u\left(V\left(M_{n}\right)\right)}{\sum_{i \in N} u\left(V\left(M_{i}\right)\right)} \\
& =\frac{2}{3}+\frac{1}{3} \cdot \frac{u\left(V\left(M_{n}\right)\right)}{\sum_{i \in N} u\left(V\left(M_{i}\right)\right)} \\
& \geq \frac{2}{3}+\frac{1}{3} \cdot \frac{u\left(V\left(M_{n}\right)\right)}{\left(\frac{3}{2}(n-1)+1\right) \cdot u\left(V\left(M_{n}\right)\right)} \\
& =\frac{2}{3}+\frac{2}{9 n-3},
\end{aligned}
$$

where the second inequality is because of Inequality (3) and we complete the proof of Theorem 3.6.

Figure 2: A graph contains n connected components where the first $n-1$ components are identical as shown by $M_{i}, i=1, \cdots, n-1$, and the last component is a single edge as shown by M_{n}.

Tight Example. We show that the analysis in Theorem 3.6 is asymptotically tight. Consider the example in Figure 2, where 2^{-}means $2-\epsilon^{2}$ and 4^{+}means $4+3(n-1) \epsilon^{2}$. Let $\epsilon>0$ be a sufficiently small number, say $1 / n^{2}$. The maximum matching M^{*} contains all the bold edges and $\mathrm{sw}^{*}=w\left(M^{*}\right)=6(n-1)+4$. By Algorithm 2, the greedy-partition of M^{*} is $\left(M_{1}, \cdots, M_{n}\right)$ as shown in Figure 2 However, it is not EF1: for $1 \leq i \leq n-1$, by removing any vertex from M_{i}, the maximum matching in the remaining graph has weight at least $4+\epsilon>4+3(n-1) \epsilon^{2}=w\left(M_{n}\right)$. After the for loop in Step 10 in Algorithm 2, for $1 \leq i \leq n-1$, one vertex in each M_{i} is removed and is reallocated to M_{n} in the for loop in Step 14. Thus the remaining social welfare is at most

$$
2 \cdot(2+\epsilon) \cdot(n-1)+4 \rightarrow \frac{2}{3} \cdot \mathrm{sw}^{*}
$$

Remark. By Theorem 3.6, if $n=2$, the approximation ratio is $4 / 5$ and when $n \rightarrow \infty$ the approximation ratio is $2 / 3$. Unfortunately, we were not able to prove an upper bound where the optimal social welfare cannot be achieved by any EF1 allocation. We conjecture that there is always an EF1 allocation that achieves the optimal social welfare sw*.

B Missing Proofs of Section 4

B. 1 Proof of Theorem 4.1

Proof. Consider the example as shown in Figure 3. The graph containing four nodes $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is allocated to two agents whose valuations (i.e., edge weights) are shown in Figure 3(a) and 3(b) respectively. It can be verified that $\mathrm{MMS}_{i}=1$ for both $i=1,2$. However, no matter how we allocate the vertices to the agents, one of them receives utility of 0 .

(a) Agent 1's Metric

(b) Agent 2's Metric

Figure 3: A bad example for which no allocation has bounded approximation of MMS fairness.

B. 2 Proof of Theorem 4.2

Similar to Theorem 3.6, we want to find an EF1 allocation which also has high social welfare. Unfortunately, with heterogeneous agents, the fraction of efficiency loss can be as large as $1-1 / n$.

Note that the optimal social welfare $s w^{*}$ is no longer the maximum matching under a single metric, which can be computed by

$$
\mathrm{sw}^{*}=\max _{X \in \Pi_{n}(V)} \sum_{i \in N} u_{i}\left(X_{i}\right) .
$$

Proof. Now, we give an instance where, for any $\epsilon>0$, every EF1 allocation has social welfare at most $(1 / n+\epsilon) \cdot$ sw* *. If $\epsilon \geq 1-1 / n$, it holds trivially since no allocation can have social welfare more than sw^{*}. In the following, we assume $\epsilon<1-1 / n$.

Figure 4: A graph with n disjoint edges is allocated to n agents.
Consider a graph with n disjoint edges, as shown in Figure 4 , which is to be allocated to n agents. For each edge, agent 1 has value 1, and the other agents have value ϵ. The maximum social welfare $\mathrm{sw}^{*}=n$ is achieved by allocating all edges to agent 1 . However, to guarantee EF1, at most one edge can be given to agent 1 . The maximum welfare of an EF1 allocation is therefore at most $1+(n-1) \cdot \epsilon$ (each agent receives exactly one edge). The largest ratio is

$$
\frac{1+(n-1) \cdot \epsilon}{n}<\frac{1}{n}+\epsilon,
$$

which completes the proof of the Theorem, since ϵ can be arbitrarily small constant.

B. 3 Proof of Theorem 4.3

We first prove Theorem 4.3 in Appendix B.3.1 and then show our analysis is tight in Appendix B.3.2

B.3.1 The Proof

Before proving Theorem4.3, we first give several useful lemmas.
Lemma B.1. During the execution of Algorithm 3 the partial allocation maintains EF1.
Proof. During the execution of Algorithm3, two main cases within the while loop in Step 5 change the partial allocation, namely

- Case 1. Directly Allocate;
- Case 2. Exchange and Allocate.

Consider an arbitrary round $t \geq 1$. In Case 1 , a single edge is allocated to one agent if and only if such allocation still guarantees EF1. Now, we consider Case 2. If $i \in A_{t}$ is the agent who is able to pick a subset $V^{*} \subseteq P$ to maintain his own utility, i.e., $u_{i}\left(V^{*}\right)=u_{i}\left(X_{i}\right)$, we show that any other agent does not envy i for more than one item after agent i receives bundle V^{*}. Let M_{i}^{*} be the maximum matching of $G\left[V^{*}\right]$ for agent i. We first consider agent $j^{*} \in A_{l}, l \in[t, \tau]$. Note that replacing X_{i} by V^{*} does not change the number of edges in the maximum matching M_{i} as well as the size of i 's bundle X_{i}. Thus, we have

$$
u_{j^{*}}\left(X_{j^{*}}\right)=\left|M_{j^{*}}\right| \geq\left|M_{i}\right|=\left|M_{i}^{*}\right|=\frac{\left|V^{*}\right|}{2} \geq u_{j^{*}}\left(V^{*}\right)
$$

where the last inequality holds because for binary valuations, the valuation of a bundle for one agent is at most half the size of the bundle. Therefore, agent $j^{*} \in A_{l}, l \in[t, \tau]$ does not envy agent i up to
more than one item after i replaces its bundle with V^{*}. Next, we consider agent $j^{*} \in A_{l}, l \in[t-1]$. For the sake of contradiction, assume $u_{j^{*}}\left(X_{j^{*}}\right)<u_{j^{*}}\left(V^{*}\right)$, which means that there exists at least one edge e such that $w_{j^{*}}(e)=1$ as well as a bundle $V_{j^{*}} \subseteq P$ such that $u_{j^{*}}\left(V_{j^{*}}\right)=u_{j^{*}}\left(X_{j^{*}}\right)$. Therefore, in the lth round of the while loop, a single edge e with weight 1 is added to agent j^{*} if it does not break EF1. Otherwise, there exists an agent j^{\prime} who envies agent j^{*} before adding edge e. In such case, Algorithm 3 will execute the bundle-exchanging procedure in Step 1317 in $l<t$ th round of the while loop, which is a contradiction with the t th round of the while loop being executed. We complete the proof of Lemma B. 1 .

For any graph $G=(V, E)$ and n different binary valuations $v_{i}(\cdot)$ on G, we call a matching M social welfare maximizing if M is a maximum matching on the graph $G^{\prime}=\left(V, E^{\prime}\right)$ where for any $e \in E$ if and only there exists i such that $v_{i}(e)=1$. Let M^{*} denote the social welfare maximizing matching on the input graph G of Algorithm 3 Let V_{R} be the set of unallocated items after we move out of the while loop in Step 25, and M_{R} be the social welfare maximizing matching on the induced subgraph of V_{R}. Let V_{L} be the set of allocated items after Step 25 and M_{L} be the welfare maximizing matching on V_{L}. Actually, $\left|M_{L}\right|$ is the social welfare that Algorithm 3 produces after Step 25. Then we have the following.
Lemma B.2. $\left|M_{L}\right| \geq\left|M_{R}\right|$.
Proof. We note that when Algorithm 3 moves out of the while loop in Step 5 , any agent i values the unallocated items no more than its own bundle, i.e., $u_{i}\left(X_{i}\right) \geq u_{i}\left(V_{R}\right)$. Then we have $\left|M_{L}\right|=$ $\sum_{i=1}^{n} u_{i}\left(X_{i}\right) \geq \sum_{i=1}^{n} u_{i}\left(V_{R}\right) \geq\left|M_{R}\right|$, which completes the proof.

Based on the claims and lemmas presented above, we are ready to prove Theorem 4.3
Proof of Theorem 4.3. Let M_{m} be a welfare maximizing matching on the bipartite graph induced by V_{L} and V_{R}. i.e., finding as many disjoint edges $e_{i j}$ as possible such that $v_{i} \in V_{R}$ and $v_{j} \in V_{L}$. Observe that the maximum number of vertices within V_{L} equals half the number of the edges in the maximum matching M_{L}, i.e., $\left|V_{L}\right|=2\left|M_{L}\right|$. Therefore, the size of M_{m} is at most $2\left|M_{L}\right|$ (each vertex $v_{1} \in V_{L}$ combined with another vertex $v_{2} \in V_{R}$ to form a matching). Therefore, we have $\left|M^{*}\right| \leq 2\left|M_{L}\right|+\left|M_{R}\right|$. Furthermore, we have

$$
\begin{aligned}
\frac{u\left(M_{L}\right)}{\mathrm{sw}^{*}} & =\frac{\left|M_{L}\right|}{\left|M^{*}\right|} \geq \frac{\left|M_{L}\right|}{2\left|M_{L}\right|+\left|M_{R}\right|} \\
& \geq \frac{\left|M_{L}\right|}{3\left|M_{L}\right|} \geq \frac{1}{3}
\end{aligned}
$$

where the second inequality holds because $\left|M_{L}\right| \geq\left|M_{R}\right|$ proved in Lemma B.2 Since Step 26 can only increase the social welfare, we have proved the social welfare guarantee.
It remains to see the running time of the algorithm. In each iteration of the while loop in Step 5, the utility of exact one agent increases by 1 . Since the maximum possible welfare is bounded by $O\left(|V|^{2}\right)$, the while loop will execute for at most $O\left(|V|^{2}\right)$ times. The envy-cycle elimination procedure in Step 26 will execute at most $O(|V|)$ times. Thus, Algorithm 3 runs in $O\left(|V|^{2}+|V|\right)=O\left(|V|^{2}\right)$ time.
The proof of Theorem 4.3 is completed.

B.3.2 Tight Example

We show that the analysis in Theorem 4.3 is asymptotically tight. Consider the example as shown in Figure 5 . Let $k>4$ be a constant. Denote by $\alpha_{i j}, i \in[k], j \in[2]$ the edge between node $v_{i j}$ and node $v_{i j}^{\prime}, \beta_{i}, i \in[k]$ the edge between node $v_{i 1}$ and $v_{i 2}, \gamma_{i}, i \in[k-1]$ the edge between node $a_{i 1}$ and $a_{i 2}$. Let $\theta_{i 1}, \theta_{i 2}, \theta_{i 3}, \theta_{i 4}, i \in[k]$ be the edge between node $a_{i 1}$ and node $v_{11}, a_{i 1}$ and node v_{12}, $a_{i 1}$ and node $v_{21}, a_{i 1}$ and node v_{22}, respectively. Obviously, allocating all the nodes to agent 2 and allocating nothing to agent 1 result in the optimal social welfare, i.e.,

$$
\begin{equation*}
\mathrm{sw}^{*}=u_{2}(V)=\sum_{i \in[k], j \in[2]} w_{2}\left(\alpha_{i j}\right)+\sum_{i \in[k-1]} w_{2}\left(\gamma_{i}\right)=3 k-1 \tag{4}
\end{equation*}
$$

Figure 5: The graph is partitioned among two agents with binary valuations.

The corresponding maximum matching M^{*} contains $2 k$ edges $\alpha_{i j}, i \in[k], j \in[2]$ and $k-1$ edges $\gamma_{i}, i \in[k-1]$. Now, we consider the worst case achieved by Algorithm 3 running on this example, which results in a total utility of $k+3$. In the first two rounds of the while loop in Step 5, each agent picks exactly one of the two edges β_{1} and β_{2} (w.l.o.g. agent 1 picks β_{1} and agent 2 picks β_{2}). Following that agent 2 picks all the remaining edges $\beta_{i}, i \in[3, k]$ and arbitrary two edges $\gamma_{i}, i \in[k-1]$ (w.l.o.g. γ_{1} and γ_{2}). We then move out of the while loop since (1) for agent 1 , $u_{1}(P)=0$; (2) for agent $2, u_{2}(P)<u_{2}\left(X_{2}\right)$ and allocating any other edge $\gamma_{i}, i \in[3, k-1]$ to it will break EF1. Thus, we execute the envy-cycle elimination procedure on the remaining items, i.e., allocating all the remaining vertices in P to agent 1 with the EF1 allocation being completed. For agent 2, the maximum matching in $G\left[X_{2}\right]$ containing edges $\beta_{i}, i \in[2, k], \gamma_{i}, i \in[2]$. We thus have $u_{2}\left(X_{2}\right)=k-1+2=k+1$. For agent 1 , the maximum matching in $G\left[X_{1}\right]$ containing edges a_{11} and a_{12}. Therefore, $u_{1}\left(X_{1}\right)=2$. The total social welfare is $u_{1}\left(X_{1}\right)+u_{2}\left(X_{2}\right)=k+1+2=k+3$. Thus

$$
\lim _{k \rightarrow+\infty} \frac{k+3}{3 k-1}=\frac{1}{3}
$$

which completes the proof of the theorem.

B. 4 Proof of Theorem 4.4

We first prove Theorem 4.4 in Appendix B.4.1 and then show that the approximation ratio guarantee is tight, i.e., no algorithm is better than 1/3-approximate in Appendix B.4.2

B.4.1 The Proof

Proof. Denote $\left(M_{1}, M_{2}\right)$ as a social welfare maximizing allocation. Consider the following two cases:

- Case 1: $\exists e \in E$ such that $w_{i}(e) \geq \frac{1}{3} \cdot \mathbf{s w}^{*}, i \in\{1,2\}$;
- Case 2: $\forall e \in E, w_{i}(e)<\frac{1}{3} \cdot \mathbf{s w}^{*}, i \in\{1,2\}$.

For Case 1, giving edge e to agent i and running the envy-cycle elimination procedure on remaining vertices can find an EF1 allocation, which, at the same time, guarantees the total utility no less than $1 / 3$ of the maximum possible social welfare.
Next, we consider Case 2. There are two subcases.

- Subcase 1: $u_{i}\left(M_{i}\right) \geq \frac{1}{3} \cdot \mathrm{sw}^{*}$ for all $i \in\{1,2\}$;
- Subcase 2: $\exists i \in\{1,2\}$ such that $u_{i}\left(M_{i}\right)<\frac{1}{3} \cdot \mathrm{sw}^{*}$.

For Subcase 1, if such allocation guarantees EF1, the theorem holds. Otherwise, agent 1 envies agent 2 since we assume $u_{1}\left(M_{1}\right) \leq u_{2}\left(M_{2}\right)$. We then reallocate the item $v \in X_{2}$ to agent 1 one by one

(a) Agent 1's weight for the graph

(b) Agent 2's weight for the graph

Figure 6: An example where any EF1 allocation guarantees at most $(1 / 3+2 \epsilon)$ of the maximum social welfare.
until such allocation guarantees EF1. The total utility is $u_{1}\left(X_{1}\right)+u_{2}\left(X_{2}\right) \geq u_{1}\left(M_{1}\right) \geq(1 / 3) \mathrm{sw}^{*}$. Therefore, we complete the proof for this subcase.
Consider Subcase 2. Without loss of generality, assume $u_{1}\left(M_{1}\right)<(1 / 3) \mathrm{sw}^{*}$. If allocation $\left(M_{1}, M_{2}\right)$ guarantees EF1, the theorem is proved. Otherwise, by the assumption that $u_{1}\left(M_{1}\right) \leq u_{2}\left(M_{2}\right)$, agent 1 envies agent 2 more than one item. By $u_{1}\left(M_{1}\right)<(1 / 3) \mathrm{sw}^{*}$, we have $u_{2}\left(M_{2}\right)>(2 / 3)$ sw* *. Now, we consider to remove items from agent 2's bundle to agent 1's bundle. First, sorting the edges within M_{2} by decreasing order according to their valuation to agent 2 . In each iteration, we pick an edge within agent 2 's bundle with largest weight and give one endpoint to agent 1 . If the allocation still admits EF1, we give another endpoint to agent 1 and pick another edge with largest weight in agent 2's remaining bundle. Repeat above procedure until agent 1 envies agent 2 up to exact one item. When Algorithm 4 completed, at most one edge e within M_{2} is destroyed, i.e., one endpoint of e is allocated to agent 1 and another endpoint still remains in X_{2}. If e is the edge with largest weight in M_{2}, we have $u_{2}\left(X_{2}\right) \geq u_{2}\left(M_{2} \backslash\{e\}\right)>(1 / 3) \mathrm{sw}^{*}$, where the last inequality holds because $u_{2}\left(M_{2}\right)>(2 / 3) \mathrm{sw}^{*}$ and $w_{2}(e)<(1 / 3) \mathrm{sw}^{*}$. We thus complete the proof of the theorem. Otherwise, we next show that $u_{2}\left(X_{2}\right) \geq(1 / 3) u_{2}\left(M_{2}\right)$. Denote by X_{2}^{\prime} be the set of items given to agent 1 . We have

$$
\begin{equation*}
w_{2}(e) \leq u_{2}\left(X_{2}^{\prime}\right) \leq u_{2}\left(X_{2}\right) \tag{5}
\end{equation*}
$$

where the first inequality holds because at least one edge within M_{2} with larger weight is allocated to agent 1 before and the second inequality holds since otherwise agent 2 will envy agent 1 . We thus derive

$$
\begin{equation*}
u_{2}\left(X_{2}\right) \geq \frac{1}{3}\left(u_{2}\left(X_{2}\right)+u_{2}\left(X_{2}^{\prime}\right)+w_{2}(e)\right) \geq \frac{1}{3} u_{2}\left(M_{2}\right) \tag{6}
\end{equation*}
$$

Furthermore

$$
\begin{align*}
u_{1}\left(X_{1}\right)+u_{2}\left(X_{2}\right) & \geq u_{1}\left(M_{1}\right)+\frac{1}{3} u_{2}\left(M_{2}\right) \\
& \geq \mathrm{sw}^{*}-u_{2}\left(M_{2}\right)+\frac{1}{3} u_{2}\left(M_{2}\right) \tag{7}\\
& =\mathrm{sw}^{*}-\frac{2}{3} u_{2}\left(M_{2}\right) \geq \frac{1}{3} \mathrm{sw}^{*}
\end{align*}
$$

where the last inequality holds because $u_{2}\left(M_{2}\right) \leq \mathrm{sw}^{*}$. Since in each iteration, at most one item is removed from agent 2 to agent 1, Algorithm 4 runs in $\operatorname{poly}(|V|)$ time. We complete the proof of the theorem.

B.4.2 Tight Example

We next show the approximation of $1 / 3$ is optimal. Consider the example in Fig. 6(a) and Fig. 6(b) It is not hard to verify that the maximum social welfare without fairness constraint is $s w^{*}=3$ by allocating all the items to agent 1 . However, for any allocation where agent 1 has utility no smaller than 2, the allocation is not EF1 to agent 2 since agent 2 always has utility 0 in such allocations. Therefore, the maximum social welfare generated by EF1 allocations is no greater than $1+2 \epsilon$. Thus

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{1+2 \epsilon}{3}=\frac{1}{3} \tag{8}
\end{equation*}
$$

which means the approximation ratio of $1 / 3$ is optimal.

C EF1 Allocation with Bounded Social Welfare Guarantee

Now we are ready to present an algorithm to find an EF1 allocation with bounded social welfare guarantee in polynomial time.

Theorem C.1. For any instance $\mathcal{I}=(G, N)$, Algorithm 5 returns an EF1 allocation with social welfare at least $1 /\left(4 n^{2}\right) \cdot \mathrm{sw}^{*}(\mathcal{I})$ in polynomial time.

```
Algorithm 5: Computing EF1 Allocations for \(n\) Heterogeneous Agents with Distinct Weights
Input: Instance \(\mathcal{I}=(G, N, w)\) with \(G=(V, E)\).
Output: Allocation \(\mathbf{X}=\left(X_{1}, \cdots, X_{n}\right)\).
    Initialize \(X_{i} \leftarrow \emptyset, i \in N\). Let \(M_{i}\) be the maximum matching in \(G\left[X_{i}\right]\) for agent \(i\). Denote by
    \(\mathcal{G}^{\prime}=(N, \mathcal{E})\) the envy-graph on \(\mathbf{X}\).
    Let \(P=V \backslash\left(X_{1} \cup \cdots \cup X_{n}\right)\) be the set of unallocated items (called pool).
    Denote \(H\) as the set of agents who are not envied by any other agents. Initialize \(H \leftarrow N\).
    Let agent \(i^{*}\) determine a maximum matching \(M_{i^{*}}\) in graph \(G\). Denote by \(R\) the set of the
    remaining edges within the maximum matching. Initialize \(R \leftarrow M_{i^{*}}\).
    Sort the edges \(e \in M_{i^{*}}\) by non-increasing order according to their weight to agent \(i^{*}\).
    Let agent \(i^{*}\) pick one edge with largest weight \(w_{i^{*}}(e)\) (with ties broken arbitrarily).
    while \(\{R \neq \emptyset\}\) do
        Select one agent \(i \in H\).
        if \(\left\{P_{i}=\emptyset\right\}\) then
            Select one edge \(e \in R\) with largest weight to agent \(i^{*}\). Give one endpoint \(v_{1}\) of \(e\) to agent \(i\)
            and put another endpoint \(v_{2}\) in the corresponding pool \(P_{i}\), i.e., \(R \leftarrow R \backslash\{e\}\),
            \(X_{i} \leftarrow X_{i} \cup\left\{v_{1}\right\}, P_{i} \leftarrow P_{i} \cup\left\{v_{2}\right\}, P \leftarrow P \backslash\left\{v_{1}, v_{2}\right\}\).
            Update the envy-graph \(\mathcal{G}^{\prime}\) and set \(H\).
        else
            Give the node \(v \in P_{i}\) to agent \(i\), i.e., \(P_{i} \leftarrow \emptyset, X_{i} \leftarrow X_{i} \cup\{v\}\).
            Update the envy-graph \(\mathcal{G}^{\prime}\) and set \(H\).
        end if
    end while
    Return all the vertices within \(P_{i}\) to the pool \(P\), i.e., \(P \leftarrow P \bigcup_{i \in N} P_{i}\).
    Execute the envy-cycle elimination procedure running on the remaining items \(P\).
    Return the allocation \(\left(X_{1}, \cdots, X_{n}\right)\).
```

Without loss of generality, we assume i^{*} to be the agent who has the maximum value of $u_{i}(V), i \in N$. Denote by $S=\left(S_{1}, \cdots, S_{n}\right)$ the partial allocation when we first move out of the while loop in Step 7 Before presenting the proof of Theorem|C.1, we first present a useful lemma.

Lemma C.2. $\sum_{i \in N} u_{i^{*}}\left(X_{i}\right) \geq \frac{1}{2} u_{i^{*}}(V)$.

Proof. During the execution of Algorithm5, there is at most one node v_{i} in pool $P_{i}, i \in[n]$. Consider P_{i} when we first move out of the while loop in Step7. If $P_{i} \neq \emptyset$, w.l.o.g. suppose $v_{i} \in P_{i}$ is one endpoint of edge $e_{i} \in M_{i^{*}}$. Let N_{1} be the set of agents such that $P_{i} \neq \emptyset$. Since the edges are picked by non-increasing order of their weight to agent i^{*}, we have $u_{i^{*}}\left(S_{i}\right) \geq w_{i^{*}}\left(e_{i}\right), i \in N_{1}$. Furthermore, we have

$$
2 u_{i^{*}}\left(S_{i}\right) \geq u_{i^{*}}\left(S_{i}\right)+w_{i^{*}}\left(e_{i}\right) \geq u_{i^{*}}\left(S_{i} \cup\left\{v_{i}\right\}\right)
$$

Thus, $u_{i^{*}}\left(S_{i}\right) \geq \frac{1}{2} u_{i^{*}}\left(S_{i} \cup\left\{v_{i}\right\}\right), i \in N_{1}$. We have

$$
\begin{aligned}
\sum_{i \in N} u_{i^{*}}\left(X_{i}\right) & \geq \sum_{i \in N} u_{i^{*}}\left(S_{i}\right) \\
& \geq \frac{1}{2} \sum_{i \in N_{1}} u_{i^{*}}\left(S_{i} \cup\left\{v_{i}\right\}\right)+\sum_{i \in N \backslash N_{1}} u_{i^{*}}\left(S_{i}\right) \\
& \geq \frac{1}{2} \sum_{i \in N_{1}} u_{i^{*}}\left(S_{i} \cup\left\{v_{i}\right\}\right)+\frac{1}{2} \sum_{i \in N \backslash N_{1}} u_{i^{*}}\left(S_{i}\right) \\
& =\frac{1}{2} \sum_{i \in N} u_{i^{*}}(V),
\end{aligned}
$$

where the last equality holds because the nodes within the remaining pool P after we move out of the while loop in Step 7 do not have any effect on the maximum matching $M_{i^{*}}$. We complete the proof of Lemma C. 2

Now we are ready to prove Theorem C. 1 .
Proof of Theorem C.1. Let N_{e} be the set of agents that agent i^{*} envies. Since Algorithm 5 admits EF1, there exists one node $v \in X_{i}, i \in N_{e}$ such that $u_{i^{*}}\left(X_{i^{*}}\right) \geq u_{i^{*}}\left(X_{i} \backslash\{v\}\right), i \in N_{e}$. For any agent $i \in N_{e}$, w.l.o.g. assume v_{1} is the node such that $u_{i^{*}}\left(X_{i^{*}}\right) \geq u_{i^{*}}\left(X_{i} \backslash\left\{v_{1}\right\}\right)$ and $v_{1}, v_{2} \in S_{i}$ are two endpoints of the edge $e \in M_{i^{*}}$. Since agent i^{*} first picks the edge with the largest weight to itself, we have $u_{i^{*}}\left(X_{i^{*}}\right) \geq w_{i^{*}}(e)=u_{i^{*}}\left(\left\{v_{1}, v_{2}\right\}\right)$. By the definition of EF1, $u_{i^{*}}\left(X_{i^{*}}\right) \geq u_{i^{*}}\left(X_{i} \backslash\left\{v_{1}\right\}\right) \geq u_{i^{*}}\left(X_{i} \backslash\left\{v_{1}, v_{2}\right\}\right)$ holds. Thus, we have $u_{i^{*}}\left(X_{i^{*}}\right) \geq \frac{1}{2}\left(u_{i^{*}}\left(X_{i} \backslash\right.\right.$ $\left.\left.\left\{v_{1}, v_{2}\right\}\right)+u_{i^{*}}\left(\left\{v_{1}, v_{2}\right\}\right)\right)=\frac{1}{2} u_{i^{*}}\left(X_{i}\right)$. Let $\left(X_{1}^{*}, \cdots, X_{n}^{*}\right)$ be the welfare maximization allocation, where $X_{i}^{*}, i \in N$ is the set of vertices allocated to agent i. Therefore

$$
\begin{aligned}
n \cdot u_{i^{*}}\left(X_{i^{*}}\right) & \geq \frac{1}{2} \sum_{i \in N} u_{i^{*}}\left(X_{i}\right) \geq \frac{1}{2} \cdot \frac{1}{2} u_{i^{*}}(V) \\
& \geq \frac{1}{4} \cdot \frac{1}{n} \sum_{i \in N} u_{i}(V) \geq \frac{1}{4 n} \sum_{i \in N} u_{i}\left(X_{i}^{*}\right) \\
& =\frac{1}{4 n} \mathrm{sw}^{*}(\mathcal{I})
\end{aligned}
$$

where the second inequality follows by Lemma C. 2 and the third inequality holds because of the assumption that i^{*} is the agent with the largest value of $u_{i}(V), i \in N$. Since in each iteration one node is allocated to an agent, the time complexity of Algorithm 5 is at most $O\left(|V|^{2}\right)$, completing the proof of Theorem C. 1

D Nash Social Welfare and EF1 Allocations

Before introducing Nash social welfare, We first generalize the definition of EF1 to envy-free up to k items and its approximations. For $\alpha \geq 0$, allocation $\left(X_{1}, \cdots, X_{n}\right)$ is α-approximate envy-free up to k items (α-EFk) if for any i and j, there exists $S=\left\{g_{1}, \cdots, g_{k}\right\} \subseteq X_{j}$ such that

$$
u_{i}\left(X_{i}\right) \geq \alpha \cdot u_{i}\left(X_{j} \backslash S\right)
$$

Now, we are ready to give several results concerning nash social welfare, which is (informally) the product of all agents' utilities. It is proved in |Caragiannis et al. 2019] that under additive valuations, EF1 and Pareto Optimality (PO) are compatible and an allocation that maximizes Nash social welfare is always simultaneously EF1 and PO. Here, an allocation is PO if there is no alternative allocation that makes an agent better off without making anyone worse off. Recently, Wu et al. [2021] showed that with subadditive valuations, a Nash social welfare maximizer is still PO but only 1/4-EF1. In our results, we observe that when the valuations are measured by maximum matchings, Nash social welfare maximizer is PO and EF2 for any matching valuations. However, the Nash social welfare maximizer does not have any bounded approximation guarantee on EF1.

Proposition D.1. An allocation that maximizes Nash social welfare does not have bounded approximation ratio on EF1.

Proof. Consider the example shown in Figure 7, where the two agents have different metrics as shown in Figure 7(a) and Figure 7(b) respectively. Let M be a sufficiently large number. The unique allocation that maximizes the Nash social welfare is to assign $X_{1}=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ to agent 1 and $X_{2}=\left\{v_{1}, v_{2}\right\}$ to agent 2. However, for any $v \in X_{1}$,

$$
u_{2}\left(X_{1} \backslash\{v\}\right)=M \gg 1=u_{2}\left(X_{2}\right)
$$

When M goes to infinity, the allocation does not have any bounded approximation ratio.

Figure 7: The graph containing a single edge and a square is allocated to two agents.
Note that even with identical valuations, the Nash social welfare maximizing allocation does not guarantee EF1. Consider the example shown in Figure 8, where ϵ is arbitrarily small. To maximize the Nash social welfare, one possible allocation is that $X_{1}=\left\{v_{1}, v_{2}\right\}$ and $X_{2}=\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$. However, this allocation does not guarantee EF1 for agent 1 since the removal of any vertex in X_{2} still admits a matching with weight at least 8.5 , which is greater than $u_{1}\left(X_{1}\right)=8+\epsilon$.

Figure 8: The graph is allocated to two agents with identical valuations. The allocation maximizing Nash social welfare fails to guarantee EF1.

Although Proposition D.1 is disappointing in general, an allocation that maximizes Nash social welfare is PO and EF2, and when the valuations are identical, it ensures $2 / 3-\mathrm{EF} 1$.
Proposition D.2. A Nash social welfare maximizing allocation is PO and EF2 for any matchinginduced valuations, and is 2/3-EF1 if the valuations are identical.

Proof. We only prove for the case of two agents, and the proof for arbitrary number of agents is the same. Given any graph $G=(V, E)$, suppose $\left(V_{1}, V_{2}\right)$ is an allocation that maximizes the Nash social welfare. Denote by $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ the induced subgraphs by V_{1} and V_{2} respectively. Denote by M_{1} and M_{2} the maximum matchings in G_{1} and G_{2}. To show $\left(V_{1}, V_{2}\right)$ is EF2, we can regard the edges in M_{1} and M_{2} as items and by the result from Caragiannis et al.

2019], the allocation must be envy-free up to one edge, which guarantees EF2, since deleting one edge can be achieved by deleting two nodes.
Next we show the allocation is $2 / 3-\mathrm{EF} 1$ for identical valuations. For the sake of contradiction, suppose that for any $v \in V_{2}$,

$$
u\left(V_{1}\right)=w\left(M_{1}\right)<\frac{2}{3} \cdot u\left(V_{2} \backslash\{v\}\right) \leq \frac{2}{3} \cdot w\left(M_{2}\right)
$$

By Lemma A.4 $\left|M_{2}\right| \geq 3$ and thus the smallest edge in M_{2} denoted by e has weight at most $1 / 3 \cdot w\left(M_{2}\right)$. Thus

$$
\begin{equation*}
w\left(M_{1}\right)+w(e)<\frac{2}{3} \cdot w\left(M_{2}\right)+\frac{2}{3} \cdot w\left(M_{2}\right)=w\left(M_{2}\right) \tag{9}
\end{equation*}
$$

Consider a new allocation by assigning edge e to agent 1 . The resulting maximum matchings in each subgraph becomes $M_{1} \cup\{e\}$ and $M_{2} \backslash\{e\}$. The Nash social welfare of the new allocation is

$$
\begin{aligned}
& w\left(M_{1} \cup\{e\}\right) \cdot w\left(M_{2} \backslash\{e\}\right) \\
& =\left(w\left(M_{1}\right)+w(e)\right) \cdot\left(w\left(M_{2}\right)-w(e)\right) \\
& =w\left(M_{1}\right) \cdot w\left(M_{2}\right)+\left(w\left(M_{2}\right)-w\left(M_{1}\right)-w(e)\right) \cdot w(e) \\
& >w\left(M_{1}\right) \cdot w\left(M_{2}\right)
\end{aligned}
$$

where the inequality is by 9 . However, this is a contradiction with the fact that $\left(V_{1}, V_{2}\right)$ maximizes the Nash social welfare.

E An Improved MMS Allocation Algorithm for Two Homogeneous Agents

When there are only two agents, Algorithm 1 can be refined as shown in Algorithm 6, and the approximation ratio can be improved to $2 / 3$. Algorithm 6 is similar with Algorithm 1 , we first compute a maximum matching M^{*} and a max-min partition $\left(M_{1}, M_{2}\right)$ with $w\left(M_{1}\right) \geq w\left(M_{2}\right)$. If $\left|M_{1}\right| \geq 2$, we output the corresponding allocation. Otherwise, in graph G, we directly delete the edge that M_{1} contains. We repeat the above procedure until all edges are removed.

```
Algorithm 6: Max-Min Allocation for 2 Agents
```

Algorithm 6: Max-Min Allocation for 2 Agents
Input: Instance $\mathcal{I}=(G, N, u)$ with $G=(V, E ; w)$.
Input: Instance $\mathcal{I}=(G, N, u)$ with $G=(V, E ; w)$.
Output: Allocation $\mathbf{X}=\left(X_{1}, X_{2}\right)$.
Output: Allocation $\mathbf{X}=\left(X_{1}, X_{2}\right)$.
Find a maximum matching M^{*} in G. Denote by V^{\prime} the set of unmatched vertices by M^{*}.
Find a maximum matching M^{*} in G. Denote by V^{\prime} the set of unmatched vertices by M^{*}.
Find the greedy partition $\left(M_{1}, M_{2}\right)$ of edges in M^{*} such that $w\left(M_{1}\right) \geq w\left(M_{2}\right)$.
Find the greedy partition $\left(M_{1}, M_{2}\right)$ of edges in M^{*} such that $w\left(M_{1}\right) \geq w\left(M_{2}\right)$.
Let $\operatorname{Max}=w\left(M_{2}\right)$.
Let $\operatorname{Max}=w\left(M_{2}\right)$.
Set $X_{1}=V\left(M_{1}\right)$.
Set $X_{1}=V\left(M_{1}\right)$.
Set $X_{2}=V\left(M_{2}\right) \cup V^{\prime}$.
Set $X_{2}=V\left(M_{2}\right) \cup V^{\prime}$.
while $w\left(M_{1}\right)>2 w\left(M_{2}\right)$ do
while $w\left(M_{1}\right)>2 w\left(M_{2}\right)$ do
By Lemma 3.3. M_{1} must contain only one edge. Suppose $M_{1}=\left\{e^{*}\right\}$.
By Lemma 3.3. M_{1} must contain only one edge. Suppose $M_{1}=\left\{e^{*}\right\}$.
Delete edge e^{*}.
Delete edge e^{*}.
Re-compute a maximum matching M^{*}.
Re-compute a maximum matching M^{*}.
Re-set V^{\prime} to be unmatched vertices by M^{*}.
Re-set V^{\prime} to be unmatched vertices by M^{*}.
Re-compute the greedy partition $\left(M_{1}, M_{2}\right)$ of M^{*} such that $w\left(M_{1}\right) \geq w\left(M_{2}\right)$.
Re-compute the greedy partition $\left(M_{1}, M_{2}\right)$ of M^{*} such that $w\left(M_{1}\right) \geq w\left(M_{2}\right)$.
if $\operatorname{Max}<w\left(M_{2}\right)$ then
if $\operatorname{Max}<w\left(M_{2}\right)$ then
$M a x=w\left(M_{2}\right)$.
$M a x=w\left(M_{2}\right)$.
Set $X_{1}=V\left(M_{1}\right)$.
Set $X_{1}=V\left(M_{1}\right)$.
Set $X_{2}=V\left(M_{2}\right) \cup V^{\prime}$.
Set $X_{2}=V\left(M_{2}\right) \cup V^{\prime}$.
end if
end if
end while
end while
Output allocation $\left(X_{1}, X_{2}\right)$.

```
    Output allocation \(\left(X_{1}, X_{2}\right)\).
```


Theorem E.1. Algorithm 6 outputs an allocation that is $2 / 3$-approximate max-min fair in polynomial

 time.Proof. Given an Instance $\mathcal{I}=(G, N, u)$ with $G=(V, E ; w)$. Denote by $O=\left(O_{1}, O_{2}\right)$ the optimal solution, where $u\left(O_{1}\right) \geq u\left(O_{2}\right)$ and $\operatorname{opt}(\mathcal{I})=u\left(O_{2}\right)$. The first time when we reach the while loop, if $w\left(M_{1}\right) \leq 2 \cdot w\left(M_{2}\right)$, allocation $\left(X_{1}, X_{2}\right)=\left(V\left(M_{1}\right), V\left(M_{2}\right) \cup V^{\prime}\right)$ has been output. By Algorithm 6, we have

$$
w\left(M_{1}\right) \geq u\left(O_{1}\right) \geq u\left(O_{2}\right) \geq w\left(M_{2}\right)
$$

Moreover,

$$
\begin{aligned}
w\left(M_{2}\right) & \geq \frac{1}{3} \cdot\left(w\left(M_{1}\right)+w\left(M_{2}\right)\right) \\
& \geq \frac{1}{3} \cdot\left(u\left(O_{1}\right)+u\left(O_{2}\right)\right) \\
& \geq \frac{1}{3} \cdot 2 \cdot u\left(O_{2}\right)=\frac{2}{3} \cdot u\left(O_{2}\right) .
\end{aligned}
$$

We move into the while loop if $w\left(M_{1}\right)>2 \cdot w\left(M_{2}\right)$. In such case, M_{1} contains only one edge, i.e., $\left|M_{1}\right|=1$. Suppose $M_{1}=\left\{e^{*}\right\}$. There are two subcases:

- Case 1: $e^{*} \in O_{1} \cup O_{2}$
- Case 2: $e^{*} \notin O_{1} \cup O_{2}$

First. consider $\left|M_{1}\right|=1$ and $e^{*} \in O_{1} \cup O_{2}$. We have: $e^{*} \in O_{1}$ and $w\left(M_{2}\right)=u\left(O_{2}\right)=\operatorname{opt}(\mathcal{I})$. The optimal solution has been found and recorded. Therefore, the approximation ratio of the max-min partition is 1 . Then the while loop is executed for the next round. When $e^{*} \notin O_{1} \cup O_{2}$, edge e^{*} is deleted. Let $\left(M_{1}^{\prime}, M_{2}^{\prime}\right)$ be the greedy partition after deleting edge e^{*}. Then there are two subcases:

- Subcase 1: $\left|M_{1}^{\prime}\right| \geq 2$
- Subcase 2: $\left|M_{1}^{\prime}\right|=1$

For Subcase 1, we will get out of the while loop and a $2 / 3$-approximate max-min allocation has been determined. For Subcase 2, the while loop is executed for the next round. Since we are not sure whether $e^{*} \in O_{1} \cup O_{2}$, the while loop is executed for at most $O\left(m^{2}\right)$ rounds (m is the number of nodes in graph $G(V, E)$). The output (X_{1}, X_{2}) is at least $2 / 3$-approximate max-min fair allocation. Thus, the theorem holds.

Lemma E.2. Algorithm 6 outputs an allocation that is $1 / 2$-approximate max-min fair by eliminating at most two edges.

Proof. Given an Instance $\mathcal{I}=(G, N, u)$ with $G=(V, E ; w)$. Denote by $O=\left(O_{1}, O_{2}\right)$ the optimal solution before eliminating any edge, where $u\left(O_{1}\right) \geq u\left(O_{2}\right)$ and opt $(\mathcal{I})=u\left(O_{2}\right)$. Initially, under the maximum matching M^{\prime}, we find the greedy max-min partition $\left(M_{1}, M_{2}\right)$ such that $w\left(M_{1}\right) \geq w\left(M_{2}\right)$. If $\left|M_{1}\right| \geq 2$, by Lemma 3.3, $\left(M_{1}, M_{2}\right)$ is a $1 / 2$-approximation max-min partition. Next, consider that M_{1} contains only one edge. Suppose $M_{1}=\left\{e_{1}\right\}$ and $e_{1} \notin O_{1} \cup O_{2}$ (otherwise, by Case 1 in Theorem E. 1 $w\left(M_{2}\right)=u\left(O_{2}\right)=\operatorname{opt}(\mathcal{I})$. The optimal solution has been found). If we eliminate edge e_{1}, under the re-computed maximum matching, we find the greedy max-min partition $\left(M_{1}^{\prime}, M_{2}^{\prime}\right)$. Let $O^{\prime}=\left(O_{1}^{\prime}, O_{2}^{\prime}\right)$ denote the optimal solution after eliminating edge e_{1}, where $u\left(O_{1}^{\prime}\right) \geq u\left(O_{2}^{\prime}\right)$ and opt $^{\prime}\left(\mathcal{I}^{\prime}\right)=u\left(O_{2}^{\prime}\right) . M_{1}^{\prime}=\left\{e_{1}^{\prime}\right\}$ and $e_{1}^{\prime} \notin O_{1}^{\prime} \cup O_{2}^{\prime}$. We first show that the two edges e_{1} and e_{1}^{\prime} have one common endpoint. By Algorithm 6 .

$$
w\left(e_{1}\right)>u\left(O_{1}\right) \geq u\left(O_{2}\right)>w\left(M_{2}\right)
$$

and

$$
w\left(e_{1}^{\prime}\right)>u\left(O_{1}^{\prime}\right) \geq u\left(O_{2}^{\prime}\right)>w\left(M_{2}^{\prime}\right)
$$

Hence, $w\left(e_{1}^{\prime}\right)>w\left(M_{2}\right)$. Furthermore,

$$
w\left(e_{1}\right)+w\left(e_{1}^{\prime}\right)>w\left(e_{1}\right)+w\left(M_{2}\right)
$$

Therefore, edges e_{1} and e_{1}^{\prime} make a maximum matching, which implies that there exists an allocation to improve the max-min value from $u\left(O_{2}\right)$ to $w\left(e_{1}^{\prime}\right)$. It results in a contradiction. Hence, the two edges e_{1} and e_{1}^{\prime} have one common endpoint. Furthermore, $e_{1} \notin O_{1} \cup O_{2}$ (otherwise, suppose

Figure 9: The graph is allocated to two agents with identical valuations. Two large edges e_{1} and e_{1}^{\prime} have one common endpoint and their other endpoints connect two distinct edges.

Figure 10: The graph is allocated to two agents with identical valuations. Two large edges e_{1} and e_{1}^{\prime} have one common endpoint and their other endpoints are the two endpoints of another same edge.
holds; otherwise, replacing M_{2} or M_{2}^{\prime} with $a_{1} \cup O_{2}^{*}$ can make a matching with larger welfare. Therefore, $w\left(M_{2}\right) \geq 1 / 2 \cdot u\left(O_{2}\right)$ or $W\left(M_{2}^{\prime}\right) \geq 1 / 2 \cdot u\left(O_{2}\right)$. Next, we consider Case 2 (as shown in Figure 10. Suppose after the two edges e_{1} and e_{1}^{\prime} have been deleted, under the new maximum matching $M^{\prime \prime}$, we find the greedy partition $\left(M_{1}^{\prime \prime}, M_{2}^{\prime \prime}\right)$. If $\left|M_{1}^{\prime \prime}\right| \geq 2$, by Theorem E.1 , the $2 / 3$ approximate max-min partition can be found. If $\left|M_{1}^{\prime \prime}\right|=1$, then

$$
w\left(M_{2}^{\prime \prime}\right) \geq w\left(a_{1}\right)+O\left(B^{\prime}\right) \geq \frac{1}{2} u\left(B_{2}\right)
$$

F Examples

F. 1 An Example where Envy-cycle Elimination Algorithm does not Work

Consider a path of four nodes $v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{4}$, and two agents have the same weight 1 on all three edges $\left(v_{1}, v_{2}\right), v_{2}, v_{3}$ and v_{3}, v_{4}. By ency-cycle elimination algorithm, we may first allocate the items in the following order: v_{1} to agent 1 , then v_{2} to agent 2 , then v_{3} to agent 1 and finally v_{4} to agent 2 . Note that $u_{1}\left(\left\{v_{1}, v_{3}\right\}\right)=v_{2}\left(\left\{v_{2}, v_{4}\right\}\right)=0$, however, the optimal social welfare is 2 by allocating $\left\{v_{1}, v_{2}\right\}$ to agent 1 and $\left\{v_{3}, v_{4}\right\}$ to agent 2 . Thus the approximation ratio of the social welfare is unbounded.

F. $2 e_{1}$ May not Have the Largest Weight

In the execution of Algorithm 1 , the edge e_{1}, which is the only edge in M_{1}, may not have the largest weight. Consider an instance with two agents and the graph is shown in Figure 11. By Algorithm 1 . in the first round of the while loop, we find a maximum matching, say, $M^{*}=\left\{e_{12}, e_{34}, e_{56}, e_{78}\right\}$. The greedy partition of M^{*} is $M_{1}=\left\{e_{34}\right\}, M_{2}=\left\{e_{56}\right\}, M_{3}=\left\{e_{12}, e_{78}\right\}$. Since $w\left(M_{3}\right)=4<$ $1 / 2 \cdot w\left(M_{1}\right)=32, H=\left\{e_{34}, e_{45}, e_{56}\right\}$, which contains all the edges with at least $w\left(e_{34}\right)=32$. Noe that in this case, e_{1} does not have the highest 64.

Figure 11: The graph is allocated to three agents with identical valuations.

