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An End-to-End Real-World Camera Imaging Pipeline
Anonymous Authors
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(a) Traditional: Module Separation Design.

(b) Learning-based: Module Separation Design.

ISPNet

(c) Learning-based: Partial Joint Module Design.

Encoder

(d) Ours: Fully End-to-End RealCamNet.

DecoderCIMCCADR

Figure 1: (a)Traditional Design: Implements each step of Image Signal Processing (ISP) separately using conventional algorithms.
(b) Learning-based SeparatedDesign: Employs neural networks to individually address each phase of the ISP process. (c) Learning-
based Partial Joint Design: Develop an ISPNet to unify operations such as demosaicing, and tone mapping. (d) RealCamNet: We
propose an end-to-end camera imaging framework that categorizes ISP operations into coordinate-independent and coordinate-
dependent groups. CIMC and CADR are designed to perform tasks like demosaicing and image feature compression and to
restore coordinate-dependent image distortions (e.g., vignetting, dark shadows), respectively.

ABSTRACT
Recent advances in neural camera imaging pipelines have demon-
strated notable progress. Nevertheless, the real-world imaging
pipeline still faces challenges including the lack of joint optimiza-
tion in system components, computational redundancies, and opti-
cal distortions such as lens shading. In light of this, we propose an
end-to-end camera imaging pipeline (RealCamNet) to enhance real-
world camera imaging performance. Our methodology diverges
from conventional, fragmented multi-stage image signal process-
ing towards end-to-end architecture. This architecture facilitates
joint optimization across the full pipeline and the restoration of
coordinate-biased distortions. RealCamNet is designed for high-
quality conversion from RAW to RGB and compact image compres-
sion. Specifically, we deeply analyze coordinate-dependent optical
distortions, e.g., vignetting and dark shading, and design a novel
Coordinate-Aware Distortion Restoration (CADR) module to re-
store coordinate-biased distortions. Furthermore, we propose a
Coordinate-Independent Mapping Compression (CIMC) module to
implement tone mapping and redundant information compression.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
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Existing datasets suffer from misalignment and overly idealized
conditions, making them inadequate for training real-world imag-
ing pipelines. Therefore, we collected a real-world imaging dataset.
Experiment results show that RealCamNet achieves the best rate-
distortion performance with lower inference latency.

CCS CONCEPTS
• Computing methodologies→ Computational photography;
Computational photography; Image compression.

KEYWORDS
Camera imaging, deep neural network, image compression, image
signal processing

1 INTRODUCTION
Efficient imaging and compression technologies are paramount
to the internet and multimedia industries. With the exponential
increase in digital content, techniques that reduce file sizes while
maintaining image quality have become crucial. These advance-
ments not only enhance the user experience by ensuring fast image
and video loading but also help save storage space and reduce data
transmission costs. Moreover, such technologies are indispensable
for supporting advanced applications like autonomous driving and
remote sensing, driving technological innovation, and meeting the
growing demands for multimedia processing. Therefore, develop-
ing more efficient imaging and compression methods is vital for
propelling industry progress and meeting the needs of modern
technology.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In traditional real-world camera imaging pipelines, complex and
proprietary hardware processes are employed for image signal pro-
cessing (ISP), encompassing steps such as denoising, demosaicing,
tone mapping, and image compression, as shown in Fig.1 (a). The
pipeline’s step-by-step design, where each process is designed sep-
arately, leads to error accumulation and prevents the system from
achieving an optimal state.

Most traditional methods derive solutions at each step of the
ISP pipeline using heuristic approaches[14, 28, 39], thus requiring
the adjustment of numerous parameters. In addition, errors will be
accumulated in the ISP processing flow, affecting imaging quality.

Deep neural networks have developed rapidly in the past decade,
and are used in image classification[33, 35], object detection[26, 44],
image and video enhancement[2, 25, 38, 43, 45], natural language
processing[9, 23, 36] and other fields have played an important role.
Researchers have also proposed a series of image signal processing
methods based on neural networks. In recent years, researchers[15,
22] have attempted to construct camera imaging systems based on
deep neural networks, designingmodels for denoising, demosaicing,
tone mapping, and compression, significantly enhancing overall
system performance. However, constructing separate neural net-
works for each function (e.g., denoising, demosaicing) prevents the
system from being jointly optimized and introduces computational
redundancy, as illustrated in Fig.1 (b).

Therefore, some methods[18, 19, 47] have emerged to try to build
a single neural network to complete the functions required by ISP.
This is a good idea, but because the situation considered is too
simple, the designed ISPNet cannot be realistically applied.

To address these issues, we propose the RealCamNet framework,
which integrates the real camera image signal processing and image
compression processes into an end-to-end deep neural network
framework. This unified approach not only reduces computational
redundancy but also enhances both image quality and compression
efficiency through the joint optimization of network parameters, a
feat unattainable by previously isolated design methods.

Our starting point was to construct a neural network-based real-
world camera pipeline that simulates common functions found in
real-world applications, building a reliable and practical end-to-end
imaging system. To this end, we analyzed the principles and flaws
in each step of the imaging and compression process.

Our RealCamNet’s overall framework is shown in Fig.1 (d), where
we designed an end-to-end deep neural network to implement the
RAW->Bitstream->RGB imaging compression process. The past
cascaded framework depicted in Fig.1 (a) and Fig.1 (b) leads to prob-
lems such as error accumulation from each module and potentially
suboptimal global results. Fig.1 (c) constructing a neural network
directly implements operations such as demosaicing and tone map-
ping, but the overall joint optimization is still not achieved.

In our RealCamNet, we designed global and local perception
imaging pipeline modules to simulate processes in the imaging
pipeline, such as global and local tone mapping, denoising, demo-
saicing, and image feature compression.

Our investigation into camera imaging technologies has iden-
tified digital signal distortions stemming from optical system im-
perfections. In optical camera imaging, Coordinate-dependent dis-
tortions significantly impact image quality due to the inherent
characteristics of the optical system and sensor. These include

Image Vignetting Map Dark Shading Map

Figure 2: Coordinate-dependent distortion. The left side is
the captured image, and the right side is the vignetting distri-
bution map. The middle of the picture on the left is brighter.

Coordinate-dependent noise resulting from sensor sensitivity vari-
ations or uneven optical system illumination, and vignetting, a
reduction in edge brightness caused by lens design and light entry
angles. As well as dark shading caused by problems such as uneven
heating of CMOS due to the superposition of components. The
vignetting and dark shading is shown in Fig.2. To mitigate these dis-
tortions and improve image quality, sophisticated image processing
is required. We introduce a streamlined, effective coordinate-aware
distortion correction module designed to identify and rectify var-
ious Coordinate-biased distortions, enhancing visual perception
and imaging quality.

Previous RAW-RGB datasets either have too simple ISP pro-
cesses (only include a few processes such as demosaicing), or have
misalignment issues and cannot be used to train camera imaging
pipelines that can be used in real scenes. To train our RealCamNet,
we construct a new RAW-RGB dataset to directly learn the complex
ISP process of real cameras.

In summary, our contributions are fourfold:

• We constructed a deep neural network imaging system and
demonstrated the performance improvements from end-to-
end joint optimization.

• We deeply analyze coordinate-dependent optical distortions,
e.g., vignetting and dark shading, and design a novel Coordinate-
Aware Distortion Restoration (CADR) module to repair
coordinate-biased distortions.

• We designed a Coordinate-Independent Mapping Compres-
sion (CIMC) module to implement global and local tone
mapping, denoising, demosaicing, and image feature com-
pression functions, thereby reducing computational redun-
dancy.

• We built a new real-world imaging dataset, providing a
benchmark for the unified end-to-end neural imaging pipeline.

2 PRELIMINARY
2.1 Traditional Image Signal Processing
Traditionally, the Image Signal Processing (ISP) is responsible for
reconstructing RGB images from RAW captures. In conventional
camera pipelines, complex and proprietary hardware processes
are employed for image signal processing. This process encom-
passes several steps, including denoising, demosaicing, defect pixel
correction, and tone mapping[6, 11, 13, 27, 28, 40], among others.
Each module requires individual tuning and optimization, with
consideration for the adjustment of cascading errors.
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Figure 3: Ours Framework. The encoder 𝑬 of RealCamNet proposes 𝑪𝑨𝑫𝑹 to restorate coordinate-related distortion and
builds 𝑪𝑰𝑴𝑪 to complete coordinate-independent functions (such as global and local tone mapping, denoising, and feature
compression). The decoder 𝑫 of RealCamNet proposes 𝑪𝑺𝑨 to decode the decoded features and restore the RGB image. 𝑳𝑭𝑻 is
local feature transform, and 𝑮𝑭𝑻 is global feature transform.

2.2 Learning-based Image Signal Processing
Advancements in deep learning have led researchers to enhance
ISP pipelines via neural networks. Localized network solutions
segment functions such as tone mapping[34] and denoising[16, 22],
facilitating module decoupling yet complicating the ISP’s holistic
optimization. Comprehensive neural network approaches replace
the entire ISP pipeline, streamlining computations and enabling
system-wide optimization[10, 20, 29, 48].

2.3 Learning-based Image Compression
In learning-based image compression, Ballé et al.[3] pioneered the
use of an encoder-decoder architecture with entropy coding for la-
tent feature representation, enabling model optimization. Progress
by Ballé et al.[4] reduced latent feature redundancy through adap-
tive means and variances. Cheng et al.[7] improved accuracy us-
ing Gaussian Mixture Models (GMM) with hyper-priors for GMM
parameters. Minnen et al.[5, 12, 31, 32] furthered this with auto-
regressive models in entropy coding, decreasing redundancy. How-
ever, the sequential nature of auto-regressive methods limited
parallel processing, prompting developments like grouped Hyper
channel-wise[30] and checkerboard[17] auto-regressive models to
enhance speed without losing compression efficiency.

3 METHODOLOGY
3.1 Problem Formulation
The Camera Imaging Pipeline converts a RAW image into a com-
pressed RGB format through a structured process. This process
involves three primary stages: conversion from RAW to RGB, com-
pression of the RGB image into a bitstream, and decompression of
the bitstream to an RGB image. The aim is to optimize storage and
transmission efficiency while preserving image quality. Formally,

the pipeline is described by the following sequence of operations:

𝒓 = R(𝒙)
𝒃 = C(𝒓)
𝒐 = 𝐷 (𝒃)

(1)

In this formulation, 𝒙 is the input RAW image, R denotes the RAW-
to-RGB conversion,𝑟 represents RGB image, C represents the com-
pression into a bitstream,𝐷 signifies the decompression to RGB, 𝒃 is
bitstream, and 𝒐 is the final RGB output. The end-to-end pipeline en-
capsulates the entirety of the imaging process, from initial capture
to final output, in a single integrated model.

3.2 Architecture of RealCamNet
To enhance the performance of camera imaging pipelines, we pro-
pose RealCamNet, a novel end-to-end pipeline designed for real-
world camera imaging. This pipeline integrates both encoder and
decoder components to facilitate effective image processing. The
operational framework of RealCamNet is formalized as follows:

𝒚 = E(𝒙 ; 𝝓)
�̂� = Q(𝒚)
𝒐 = D(�̂�;𝜽 )

(2)

where 𝒙 denotes the input RAW image, and 𝒐 represents the output
reconstructed RGB image, 𝝓 represents the weights of the encoder
E, while 𝜽 denotes the weights of the decoder D.

The encoder E in our pipeline is tasked with performing RAW
to RGB conversion and RGB compression encoding. It comprises
two principal modules:

(1) The Coordinate-Aware Distortion Restoration (CADR) mod-
ule, is aimed at correcting coordinate-dependent distortions
such as vignetting, noise, and dark shading, which result
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Figure 4: Compared with previous methods that can only
encode the relative coordinates of the cropped image, our
method calculates the absolute coordinates of the cropped
RAW image. Therefore our method can recover fixed
position-type distortion in the image.

from optical and manufacturing defects. The term ’Coor-
dinate’ refers to the pixel coordinates in the original RAW
image.

(2) The Coordinate-Independent Mapping Compression (CIMC)
module, is responsible for executing spatially invariant op-
erations including global and local tone mapping, denoising,
demosaicing, and image feature compression.

For the encoding process, the RAW image 𝒙𝒓𝒂𝒘 undergoes Un-
pixelShuffle to achieve channel stacking, converting the spatial
dimension RGGB to the channel dimension RGGB image 𝒙𝒔 . Sub-
sequently, 𝒙𝒔 and the coordinate code 𝒙𝒄 are fed into the CADR
module to perform position-related restoration, thereby addressing
distortions like vignetting and dark shading. A Color Prior Extrac-
tion (CPE) module is then utilized to extract color prior information,
aiding the CIMCmodule in performing the tone mapping and com-
pression processes from RAW to RGB. A series of CIMC modules
are employed for image feature compression and tone mapping,
followed by the encoding of tone-mapped and compressed latent
features into a bitstream via the Entropy Model.

In the decoding phase, the Entropy Model first converts the
bitstream back into latent features. These features are processed
through the concatenated Channel Spatial Attention (CSA) module,
which recovers detailed image information from the compact latent
features. Finally, the UnpixelShuffle module is used to reconstruct
the RGB image from these features.

This full framework is shown in Fig. 3, illustrates the detail
of RealCamNet, which is structured into three main components:
encoder, entropymodel, and decoder, all of which are jointly trained
in an end-to-end manner.

3.3 Coordinate-Aware Distortion Restoration
We present the detailed architecture of the proposed Coordinate-
Aware Distortion Restoration (CADR) module, depicted in Fig. 3
(b). The CADR module achieves effective coordinate awareness
by integrating the current pixel coordinates, thus facilitating the
learning of coordinate-dependent distortion restoration.

Initially, we introduce the previous coordinate calculatemethod[48].
Since it is impractical to train the network using full-size RAW
𝑥𝑠 𝑖𝑛𝑅

𝐻,𝑊 ,4 images, typically exceeding 4000 × 6000 dimensions.
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Figure 5: The detail of the Color Prior Encoder (CPE).

Previous methods pre-crop the RAWs into a small cropped RAW
dataset, represented as 𝑥𝑐𝑟𝑜𝑝 ∈ Rℎ,𝑤,4, which is suitable for train-
ing neural networks. For the cropped image 𝑥𝑐𝑟𝑜𝑝 ∈ Rℎ,𝑤,4, this
method ascertains the pixel relative coordinates for each point and
stores this coordinate map 𝑐𝑟 ∈ Rℎ,𝑤,2. The calculation method is
shown in Eq.3:

𝑐𝑟𝑖, 𝑗 = ( 𝑖
ℎ
,
𝑗

𝑤
) (3)

As illustrated in Fig.4, 𝑐𝑟
𝑖, 𝑗

details are presented. Consider that 𝑥1𝑐𝑟𝑜𝑝
and 𝑥2𝑐𝑟𝑜𝑝 are randomly cropped from the same RAW image. For left-
top coordinate (𝑚1, 𝑛1) in 𝑥1𝑐𝑟𝑜𝑝 and left-top coordinate (𝑚2, 𝑛2) in
𝑥2𝑐𝑟𝑜𝑝 , the relative coordinates are consistently 𝑐

0,0
𝑟 = (0, 0). How-

ever, the absolute coordinates are distinct, with 𝑐
0,0
𝑎 = (𝑚1

𝐻
,
𝑛1
𝑊

)
for the first and 𝑐

0,0
𝑎 = (𝑚2

𝐻
,
𝑛2
𝑊

) for the second. Clearly, 𝑐𝑟 fails
to capture the true coordinates, whereas the 𝑐𝑎 successfully re-
tains the actual positional information. This straightforward design
facilitates effective distortion restoration.

To address this limitation, we propose a simple method of coor-
dinate embedding to capture the genuine global coordinates of the
RAW image. This entails modifying the coordinate computation
approach. We first ascertain the coordinates of the top-left pixel
of 𝑥𝑐𝑟𝑜𝑝 relative to 𝑥𝑠 , denoted as < 𝑚,𝑛 >. Next, calculate the ab-
solute coordinates 𝑐𝑎

𝑖,𝑗
, 𝑐𝑎

𝑖,𝑗
records the coordinate position of each

pixel relative to the original RAW, 𝑐𝑎
𝑖,𝑗𝑆𝑒𝑒𝐸𝑞.4𝑓 𝑜𝑟𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑑𝑒𝑡𝑎𝑖𝑙𝑠𝑜 𝑓 .

This method of coordinate embedding allows our CADR to ac-
curately perceive the pixel’s spatial location, thereby effectively
restoring coordinate-related distortions.

𝑐𝑎𝑖,𝑗 = ( 𝑖 +𝑚
𝐻

,
𝑗 + 𝑛
𝑊

) (4)

Upon acquiring the absolute coordinate 𝑐𝑎
𝑖,𝑗
, we integrate the

coordinate data into the encoder to achieve coordinate-aware dis-
tortion restoration. Initially, the stacked RGGB image 𝑥𝑐𝑟𝑜𝑝 is input
into a 3 × 3 convolution layer to extract latent feature 𝑥ℎ . Concur-
rently, the coordinate information 𝑢𝑛

𝑖,𝑗
, 𝑣𝑛
𝑖,𝑗

is processed through
a Convolution-ReLU sequence to derive the potential coordinate
embeddings 𝑥𝑒 . To facilitate coordinate-aware enhancement, the
potential coordinate embedding 𝑥𝑒 is multiplied by 𝑥𝑠 to obtain
enhanced features 𝑥𝑜 . The entire process is encapsulated in Eq.5.

𝑥ℎ = Conv(𝑥𝑠 )
𝑥𝑒 = ReLU(Conv(𝑐𝑎))
𝑥𝑜 = 𝑥ℎ · 𝑥𝑒

(5)
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3.4 Color Prior Encoder
Figure 5 show the two-fold structure of our Color Prior Extraction
(𝐶𝑃𝐸) module: Global prior extraction and Local prior extraction.
The global prior extraction process involves downsampling the
original 4000 × 4000 RAW image to a 256 × 256 representation,
preserving global features while reducing computational load, as
defined by:

𝐺𝑝 = F𝑔 (downsample(𝑥𝑠 )), (6)
where 𝑥𝑠 is the original RAW image, F𝑔 represents the global color
encoder, and 𝐺𝑝 denotes the global color prior.

In parallel, local prior extraction focuses on the details within a
specific cropped region by applying the local color encoder to the
cropped 256 × 256 RGGB image, described by:

𝐿𝑝 = F𝑙 (𝑥𝑐𝑟𝑜𝑝 ), (7)

where 𝑥𝑐𝑟𝑜𝑝 symbolizes the cropped RAW image, F𝑙 is the local
color encoder, and 𝐿𝑝 represents the local color prior. The details
of F𝑙 and F𝑔 are introduced in the appendix.

3.5 Channel-Spatial Attention
The Channel-Spatial Attention (CSA) mechanism forms an inte-
gral part of the Coordinate-independent Mapping Compression
(CIMC) module. Inspired by the principles of intra-frame coding
in traditional video compression, the CSA is designed to identify
and leverage non-local redundancy within feature representations,
promoting more efficient compression. Within the encoder, CSA
utilizes an attention mechanism to aggregate information across
both spatial and channel dimensions, allowing for the reduction of
superfluous data and the distillation of features into compact rep-
resentations that are conducive to improved compression efficacy.
During the decoding phase, CSA plays a crucial role in reconstruct-
ing non-local reference features from the compressed feature set.
This functionality is vital for restoring the quality of the recon-
structed image and ensuring the fidelity of the output relative to
the original input.

3.5.1 Detail of CSA. We delve into the computational intricacies
of the CSA (Channel Spatial Attention) as follows. The initial input
feature 𝑥𝑖𝑛 undergoes a transformation via a convolution layer:

𝑥 ′ = Conv(𝑥𝑖𝑛) (8)

Subsequently, the processed feature 𝑥 ′ is bifurcated into two distinct
components 𝑥1 and 𝑥2:

𝑥1, 𝑥2 = Split(𝑥 ′) (9)

The first component, 𝑥1, is subjected to the Channel-Wise Residual
Attention (CWRA) yielding 𝑥3:

𝑥𝑐𝑎 = CWRA(𝑥1) (10)

Simultaneously, the second component, 𝑥2, traverses through the
Spatial-Wise Attention (SWA) module, producing 𝑥𝑠𝑎 :

𝑥𝑠𝑎 = SWA(𝑥2) (11)

In our spatial-wise attention module, we employ the Swin Trans-
former. The fusion of 𝑥𝑠𝑎 and 𝑥𝑐𝑎 is accomplished via concatenation,
followed by a convolutional layer to get output feature𝑥𝑜 :

𝑥𝑜 = Conv(Concat(𝑥𝑠𝑎, 𝑥𝑐𝑎)) (12)

This approach synergizes channel and spatial attention, enhancing
feature refinement and facilitating the transformation of RAW im-
age features into a compact RGB latent representation. The result
is an improved reconstruction quality with reduced redundancy,
essential for efficient image processing tasks.

3.6 Coordinate-Independent Mapping
Compression

3.6.1 Overview of 𝐶𝐼𝑀𝐶 . The Coordinate-independent Mapping
Compression (𝐶𝐼𝑀𝐶) module is designed to compress RAW image
features into compact RGB latent representations. Employing at-
tention mechanisms and feature transformations, 𝐶𝐼𝑀𝐶 aims to
enhance reconstruction quality and reduce data redundancy.

𝐶𝐼𝑀𝐶 consists of three key components: the Channel-Spatial
Attention (𝐶𝑆𝐴) module, the Local Feature Transformation (𝐿𝐹𝑇 )
module, and the Global Feature Transformation (𝐺𝐹𝑇 ) module. LFT
and GFT can use the color prior extracted by the CPE module
for tone mapping. CSA promotes effective compression of latent
features, as shown in Fig.3 (d).

3.6.2 Details of 𝐶𝐼𝑀𝐶 . Incorporating both 𝐺𝐹𝑇 and 𝐿𝐹𝑇 within
the Encoder, 𝐶𝐼𝑀𝐶 extends 𝐶𝑆𝐴 to perform global and local tone
mapping essential for the camera imaging pipeline. Positioned after
the 𝐶𝑆𝐴 channel attention stage, 𝐿𝐹𝑇 serves to refine features
(Fig. 3):

𝑥𝑐𝑎 = 𝐿𝐹𝑇 (𝑥𝑐𝑎, 𝐿𝑝 ) (13)
Subsequent iterations of 𝐶𝑆𝐴 and 𝐿𝐹𝑇 result in the feature 𝑥𝑐 :

𝑥𝑐 = 𝐿𝐹𝑇 (𝐶𝑆𝐴(𝐿𝐹𝑇 (𝐶𝑆𝐴(𝑥ℎ), 𝐿𝑝 )), 𝐿𝑝 ) (14)

The concluding phase entails the transformation of 𝑥𝑐 by 𝐺𝐹𝑇
to yield the output 𝑥𝑜 , representing the compressed RGB latent
features:

𝑥𝑜 = 𝐺𝐹𝑇 (𝑥𝑐 ,𝐺𝑝 ) (15)
where 𝐺𝑝 , 𝐿𝑝 is the output of the CPE module. The calculation of
GFT and LFT are both 𝑦 = 𝛼𝑥 + 𝛽 . The difference is that 𝛼 and
𝛽 are globally or locally adaptive. This module allows 𝐶𝐼𝑀𝐶 to
enhance color fidelity through integrated local and global feature
transformations.

4 EXPERIMENT
4.1 Implementation Details
To train RealCamNet, we created a comprehensive RAW-RGB dataset.
Our dataset, with 4507 RAW-RGB image pairs at 6000 × 4000 res-
olution, covers diverse scenes including animals, landscapes, and
architecture. For evaluation, we employ 450 pairs, with the remain-
der for training. Further dataset specifics are in the Appendix. For
optimization, we employed the Adam optimizer [24, 42] with an
initial learning rate of 1 × 10−4, implementing a multi-step rate re-
duction strategy. The RD-formula loss, as per [7], was used, testing
𝜆 values within [0.1, 0.025, 0.01, 0.005] to accommodate different
bitrates. The training was conducted on an i9-13900K CPU and an
RTX 4090 GPU, with batch size set at 8.

4.2 Metrics
Evaluation metrics used in our study include PSNR (Peak Signal-to-
Noise Ratio) [37], MS-SSIM (Multi-Scale Structural Similarity Index)
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Figure 6: Quantitative Rate-Distortion curve results.

Table 1: Quantitative results.We comparewith state-of-the-art ISPNet and image compressionmethods, including learning-based
methods: PyNet(CVPR’20)[19], LiteISPNet(ICCV’21)[47], MwISPNet(ECCV’20)[18], MLIC(ACMMM’23)[21], TCM(CVPR’23)[30]
and the most advanced traditional image compression method VTM/H.266. We show BD-Rate, BD-PSNR, BD-MSSSIM, BD-Δ𝐸
and BD-LPPHS for all methods. We use PyNet+VTM as anchor.

Method Params
(M)↓

FLOPs
(G)↓

Enc Time
(s)↓

Dec Time
(s)↓

BD -
Rate↓

BD-
PSNR(db)↑

BD-
MSSSIM(db)↑

BD-
LPIPS↓

BD-ΔE↓

PyNet+VTM[1, 19] - - 196.94 0.1433 0.0000 0.0000 0.0000 0.0000 0.0000
PyNet+TCM[19, 30] 92.51 2354 0.1582 0.1405 -12.1248 -0.0286 0.3270 0.0031 0.0079
PyNet+MLIC[19, 21] 164.03 3108 0.1695 0.2155 -20.2375 0.0776 0.5603 -0.0025 -0.0314
MwISP+VTM[1, 18] - - 196.93 0.1433 -10.2986 0.2262 0.2868 -0.0012 -0.1071
MwISP+TCM[18, 30] 74.18 1026 0.1615 0.1405 -20.7415 0.3292 0.6163 0.0022 -0.1658
MwISP+MLIC[18, 21] 145.7 1780 0.1727 0.2155 -28.7059 0.4408 0.8593 -0.0032 -0.2076
LiteISP+VTM[1, 47] - - 196.93 0.1433 -12.5324 0.5880 0.3900 -0.0052 -0.2022
LiteISP+TCM[30, 47] 53.98 940 0.1522 0.1405 -22.0966 0.5911 0.7029 -0.0010 -0.2094
LiteISP+MLIC[21, 47] 125.5 1694 0.1635 0.2155 -29.5519 0.7079 0.9223 -0.0057 -0.2513

Ours 49.01 357 0.0703 0.0592 -39.0842 2.9603 1.6392 -0.0162 -1.1709

[41], Δ𝐸 (a measure of color difference) [8], and LPIPS (Learned
Perceptual Image Patch Similarity) [46]. PSNR measures image
reconstruction quality, MS-SSIM evaluates image fidelity across
multiple scales, Δ𝐸 assesses color accuracy, and LPIPS quantifies
perceptual similarity using deep learning models. For clarity, MS-
SSIM was converted to −10 log10 (1 −MS-SSIM). The performance

across metrics was gauged using Bjøntegaard Delta (BD) metrics,
encompassing BD-PSNR, BD-MSSSIM, BD-Δ𝐸, and BD-LPIPS.

4.3 Rate-Distortion Performance
To assess the efficacy of our newly proposed RealCamNet, we jux-
tapose its performance with the leading multi-stage separation
schemes. The comparative analysis encompasses two principal
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Figure 8: Results of performance and inference time.

pipelines: (1) a learning-based ISPNet combined with the Universal
Video Coding (VVC) framework, and (2) ISPNet integrated with a
learning-based image compression approach. Fig.6 delineates the
rate-distortion outcomes across our test dataset. A thorough evalua-
tion is conducted employing a suite of metrics—peak signal-to-noise
ratio (PSNR), multi-scale structural similarity index (MS-SSIM),

color fidelity (Δ𝐸), and learning-based perceptual image patch sim-
ilarity (LPIPS)—to gauge both the objective and perceptual quality,
thus offering a holistic assessment of the varied pipelines.

With PyNet+VTM set as the anchor, we delve into the perfor-
mance nuances of each pipeline using diverse metrics, calculat-
ing the Bjøntegaard Delta (BD) metrics across the metrics-BPP
curve, inclusive of BD-PSNR, BD-MSSSIM, BD-Δ𝐸, and BD-LPIPS.
The empirical data reveal that our RealCamNet, at an equivalent
bitrate, transcends the conventional SOTA multi-stage, learning-
based pipelines, marking improvements of 2.26dB in PSNR, 0.71dB
in MS-SSIM, 0.01 in LPIPS, and 0.9187 in Δ𝐸. Additionally, when
pitted against the learning-based ISPNet in conjunction with the
Cascaded Universal Video Coding (VVC) framework, our method
consistently exhibits superior performance in metrics like PSNR at
comparable bitrates, underscoring the robustness and stability of
our proposed approach.

To elucidate the performance of RealCamNet, we computed the
BD-Rate based on the rate-distortion curve, revealing a signifi-
cant enhancement over the best-existing pipeline, with a BD-Rate
improvement of 9.53%. These findings, presented in Table 1, under-
score the comprehensive performance superiority of our approach
on the test set.
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Figure 9: Ablation in Rate-Distortion curve.

4.4 Ablation Studies of CIMC
In Fig.9, we assess the efficacy of the CIMC module, which com-
prises CSA, LFT, andGFT components. TheCIMCmodule enhances
tone mapping through novel LFT and GFT while optimizing feature
compression with CSA. Quantitative analysis of the CIMC and its
individual CSA, LFT, and GFT components is presented in Table 2.

4.5 Ablation Studies of CADR
To demonstrate the effectiveness of our proposed Coordinate-Aware
Distortion Restoration module CADR, we compared the model
without the CADR module with the model adding the CADR
module. The results are shown in Fig.9. The addition of our CADR
module brought huge improvements. We show the quantitative
gain on BD-PSNR in Table 2.

4.6 Complexity and Qualitative Results.
We compare the computational complexity of different methods.
As shown in Table6 and Figure8, our method can decode images
with a resolution of 1024 × 1024 at an inference speed of 16.8fps.
Our approach not only achieves superior performance but also
demonstrates lower computational complexity and faster inference
speed. This dual advantage underscores the method’s efficiency,
marrying high-quality results with expeditious processing.

Table 2: Quantitative ablation results. Results are presented
with ’Base’ serving as the benchmark anchor.

Base CADR CSA GFT LFT Params
(M)

FLOPs
(G)

BD-
PSNR(db)

✓ 48.511 79.810 0.0000
✓ ✓ 48.561 83.048 0.4946
✓ ✓ ✓ 46.071 71.059 0.7475
✓ ✓ ✓ ✓ 47.290 77.438 2.6545
✓ ✓ ✓ ✓ ✓ 49.010 89.176 3.1716

4.7 Visual Results
Fig. 7 presents a visual comparison of the reconstructed images
using our method against Pipeline-1 (ISPNet coupled with the clas-
sic VVC standard, VTM 12.1) and Pipeline-2 (ISPNet integrated
with a learning-based compression network). Our method exhibits
superior performance in preserving intricate textures, as evidenced
by clearer feather outlines, and achieves enhanced color fidelity.

4.8 Receptive Field Analysis
We analyze the effectiveness of each module by calculating the
effective receptive field. The analysis of receptive fields for different
inputs indicates that the model’s output for Global downsamples
RAW encompasses a global receptive field(Fig.10 (b)), thus facil-
itating the extraction of a global color before the entire image.
Furthermore, the output for Cropped RAW exhibits a non-local
receptive field(Fig.10 (c)), demonstrating that CSA (Channel Spatial
Attention) is capable of harnessing non-local information to en-
hance the compactness of latent. In contrast, coordinate embedding
is local to the input receptive field(Fig.10 (d)) because perceiving the
coordinate information of the current position enables high-quality
position-dependent distortion restoration.

（a）RGB Image
(b) Global Resize RAW 

Receptive Field

(c) Main Branch 

Receptive Field

(d) Coordinate Embedding 

Receptive Field 

Figure 10: Receptive field analysis. Our global branch can
effectively extract global information to assist in more accu-
rate color restoration, while coordinate awareness requires
only a local receptive field to achieve recovery of coordinate-
related distortion types.

5 CONCLUSION
This study unveils an innovative end-to-end real-world camera
imaging pipeline, surpassing existing methods in both performance
and efficiency and pioneering a new benchmark for imaging pipeline
design. Through a detailed analysis of the ISP and compression
workflows, we introduced a coordinate-independent mapping com-
pression module aimed at optimizing feature compression and tone
mapping, alongside a coordinate-aware restore module dedicated
to restoring coordinate-specific distortions. The bespoke dataset,
crafted for camera imaging pipeline evaluation, sets a robust bench-
mark, catalyzing future research. Our exhaustive evaluation not
only confirms the pipeline’s efficacy but also underscores its poten-
tial to revolutionize future digital imaging technologies.
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