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1 ANALYSIS OF EXISTING DATASETS
The scarcity of datasets containing pairs of RAW and RGB im-
ages significantly constrains the development and evaluation of
advanced image processing algorithms. At present, the principal
datasets available are as follows:

The FiveK dataset[3], as outlined in Table 1, encompasses a
collection of over 5,000 images sourced from five DSLR cameras.
The shooting conditions of the FiveK data set are very ideal, with
almost no noise. Its main purpose is to learn color correction tasks,
so it is not suitable for training the entire ISPNet.

The SID (See In theDark)[4] and ELD (Extreme Low-light Dataset)
datasets are chiefly employed in research on noise reduction in RAW
images under extremely low-light conditions. These datasets are
limited by the absence of paired RGB images, which constrains
their applicability to broader ISP tasks. Moreover, they exhibit a
limited variety of imaging scenarios, which may introduce biases
in algorithm development and assessment.

A case in point is the Zurich RAW to RGB dataset[5], which
contains approximately 10,000 pairs of images, with RAW captures
from Huawei P20 smartphones and corresponding RGB images
acquired using Canon cameras. Due to the inherent challenges in
aligning images from two distinct devices, this dataset employs
the Scale-Invariant Feature Transform[8] (SIFT) method for image
registration. Despite cropping the images to a standardized size of
448x448 pixels and excluding those with subpar alignment, signifi-
cant discrepancies in image alignment persist. As depicted in Fig.1,
careful examination of the designated areas—specifically within the
red bounding boxes—reveals considerable misalignments between
the paired images. This misalignment predisposes the training of
computational models to pixel displacement artifacts, thereby im-
pairing the sharpness and clarity of the generated images.

Previous RAW image processing methods usually use RawPy[1]
to process RAW information and perform the ISP process. However,
there are a series of problems in the RawPy processing pipeline,
resulting in mediocre practicality. Specifically, images processed
by RawPy exhibit deficiencies in several critical Image Signal Pro-
cessing (ISP) stages. For instance, RawPy lacks capabilities in tonal
mapping, which is pivotal for rendering images with high fidelity.
This includes the absence of Global Tone Mapping (GTM) and Local
Tone Mapping (LTM), as well as Adaptive Dynamic Range Com-
pression (ADRC). These tone-mapping processes are essential for
achieving a balanced exposure and dynamic range in the final image
output, thereby affecting the overall quality and representativeness
of the rendered RGB images. Furthermore, RawPy encounters is-
sues with metadata loading, which can lead to inaccuracies in the
processing pipeline. Metadata in image processing contains crucial
information about the image settings and environment, such as
exposure, color, and camera specifics. Errors in metadata loading
can result in incorrect color rendition, exposure levels, and other
image attributes that significantly impact the quality of the final

RGB output. Consequently, the limitations inherent in RawPy’s
processing capabilities lead to RGB images that are of moderate
quality and lack representativeness, which is a significant concern
for applications requiring high-quality image renditions that closely
mimic real-world ISP outcomes.

In summation, the extant datasets suffer from overly simplified
modeling that fails to encapsulate the intrinsic characteristics of
real-world camera imaging pipelines. This simplification leads to
a practical gap between the dataset’s utility and the exigencies of
real-world applications. Furthermore, the deficiency of extensive,
high-caliber paired RAW and RGB image datasets severely impedes
the training and validation of end-to-end imaging networks that
are geared toward real-world deployment.

2 OUR DATASET DETAILS
To accumulate an extensive dataset to substantiate the research
presented herein, we utilized a camera, the Canon M50. Employing
the camera’s Auto Exposure (AE) professional mode while fixing
the ISO sensitivity at 100, the camera automatically adjusted the
exposure time and aperture to achieve optimal brightness levels
for capturing images. This methodology facilitated the acquisition
of RAW images alongside their corresponding RGB counterparts.
Consequently, we amassed a large-scale, high-quality RAW-RGB
paired dataset, which encompasses a broad spectrum of shooting
scenarios, inclusive of varying lighting conditions and dynamic
ranges. The dataset features a diverse array of scenes including, but
not limited to, animals, landscapes, architecture, and portraiture.

The dataset comprises a total of 4507 images with a resolution of
6000×4000 pixels (width × height). Out of these, 4057 images have
been allocated to the training set, with the remaining 450 designated
for the test set to evaluate the performance of the proposed frame-
work. Selected samples from the dataset are exemplified in Fig.2,
while comparisons between the collected RAW images and the cor-
responding RGB images—directly output by the Canon camera’s
ISP—are provided in Fig.3.In addition, we show the comparison
results of RGB rendered by Canon and RGB rendered by RawPy in
Fig.4. Canon RGB can obtain higher-quality results.

Upon the completion of the image collection, a preprocessing
routine was applied to the data. Utilizing the open-source RAW
image processing library DCRAW, we extracted the raw data from
the Canon CR3 format RAW images. Automatic White Balance
(AWB) is a well-established direction in image processing research,
and to obviate the influence of this module, we preadjusted the color
channel balance of the RAW data according to the white balance
coefficients found in the Canon RAW image metadata. The RAW
images were ultimately stored in 16-bit PNG format, while the RGB
images retained the high-quality output directly from the Canon’s
default ISP.
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Table 1: Existing RAW-RGB Datasets

Dataset MIT-Adobe FiveK SID Zurich RAW to RGB

Num 5000 5094 48000
Resolution 2000×3008 - 4368×3912 1616×1080 - 5472×3648 448×448

Characteristics Indoor and outdoor scenes Monotonous scenes,
focused on indoor and low-light

Severe misalignment
in paired data

Source of RGB Images Lacks paired RGB Lacks paired RGB RGB images from Canon cameras

RAW RGB

Figure 1: Illustration of Misalignment in the ZRR Dataset. The branches in the red box are misaligned.

3 IMPLEMENTATION DETAILS
To validate the effectiveness of the proposed method, training was
conducted on the training split of our RAW-RGB dataset, followed
by both quantitative and qualitative evaluations on the test split.
During training, data augmentation techniques, such as random
cropping and flipping, were applied, with the images being further
processed into 256 × 256 patches.

The optimization strategy is detailed below:
We employed the Rate-Distortion (R-D) loss function, extensively

used in deep learning-based image compression, allowing for the
training of models at different bitrates by setting specific distortion
weight parameters 𝜆, with values [0.1, 0.025, 0.01, 0.0035] for this
study. The Adam optimizer was used with beta parameters 𝛽1 = 0.9
and 𝛽2 = 0.999. Training started with an initial learning rate of
0.0001, and a multi-step learning rate adjustment strategy was
implemented, reducing the learning rate by a factor of 10 at the
1,000,000th and 1,500,000th iterations, with a batch size set at 8.

4 ADVANTAGES OF AN END-TO-END
METHOD

To prove that the superiority of our method lies not only in the
designed module’s ability to simulate the real imaging pipeline but
also in the end-to-end holistic design. We add the CADR module
based on LiteISPNet to learn coordinate-related distortion repair
and coordinate-independent mapping compression module CiMC
to obtain RRISPNet. We connect RRISPNet in series with the most
advanced image compression methods VTM, TCM and MLIC to
obtain a new cascade imaging framework. Compared with these
three new cascade imaging frameworks, our RealCamNet still has
significant advantages, with a BD-PSNR improvement of 0.75db,
which can prove that the advantages of the proposed method are
not limited to designing new modules to implement new functions,
but also include end-to-end overall framework advantages. We
demonstrate the advantages of the overall framework in Table 3.
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Figure 2: Sample images of the Our Dataset.

（a）14bit RAW （b）8bit RGB

Figure 3: Canon RAW image and rendered RGB image.

5 DISADVANTAGES OF CASCADING SCHEME
The traditional cascaded framework of image processing is beset
with several inefficiencies:
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Figure 4: Canon rendered RGB 𝑣𝑠 RawPy rendered RGB image.

Table 2: Optimization Strategy Parameter Settings

Optimization Strategy Parameter Settings

Loss Function Rate-Distortion (R-D) Loss
Optimizer Adam
Betas [0.9, 0.999]

Learning Rate 0.0001
Iterations 2,000,000

Learning Rate Schedule Reduce by 10x at 1,000,000 and 1,500,000 iterations
Batch Size 8

(1) Independent demosaicing introduces redundant infor-
mation through interpolation: Initially, demosaicing in-
terpolates the raw image data to synthesize high-resolution
RGB images, which is followed by image compression. This
interpolation introduces additional redundant information,
detrimental to the efficiency of subsequent compression al-
gorithms. Mathematically, the demosaic(upsampling) can be
represented as a function 𝑓interp that increases the resolution,

inadvertently adding noise and spurious data:

𝐼RGB = 𝑓demosaic (𝐼raw)

where 𝐼raw and 𝐼RGB represent the raw and the demosaic
RGB images, respectively.

(2) Cumulative Error Propagation:Modules in the cascade
operate independently, precluding joint optimization. Each
module, designed to perform a specific function, introduces
errors, denoted by 𝑒𝑖 , where 𝑖 represents the stage in the
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Table 3: Supplement rate-distortion results. We added the module proposed in this article based on LiteISP and cascaded it with
the image compression method to form a new cascade framework. The RealCamNet still has significant advantages.

Method BD-Rate↓ BD-PSNR↑ BD-
MSSSIM↑

BD-LPIPS↓ BD-
DeltaE↓

RR-ISP(Ours)+VTM(H.266) -22.099 2.1416 0.7971 -0.0093 -0.8042
RR-ISP(Ours)+TCM(CVPR’23) -30.4073 2.2157 1.126 -0.005 -0.8113

RR-Codec(Ours) -39.0842 2.9603 1.6392 -0.0162 -1.1709

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Bit Per Pixel(BPP)
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32

33
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NR

W Jeong
Ours

Figure 5: Comparison with the method proposed byW Jeong.

processing pipeline. These errors accumulate, impacting the
final image quality:

𝐼final = (
∏
𝑖

𝑓𝑖 + 𝑒𝑖 ) (𝐼RGB)

where 𝐼final is the final processed image and 𝑓𝑖 the operation
of the 𝑖-th module.

(3) Computational Redundancy: Each module typically con-
sists of a neural network performing a task in three stages:
encoding, operating in latent space, and decoding. This is
represented as a combination of encoding 𝐸𝑖 , Enhance oper-
ation 𝑂𝑖 , and decoding 𝐷𝑖 functions:

𝐼processed = 𝐸1 (𝐷1 (𝐸2 (𝐷2 (. . . 𝐸𝑛 (𝐷𝑛 (𝐼RGB)) . . .)))

The multiple encodings and decodings to and from the latent
space lead to computational redundancy, negatively impact-
ing the efficiency of the pipeline.

These limitations highlight the need for an integrated approach
that optimizes the image processing workflow as a unified task,
thus mitigating noise amplification and computational overhead
while enhancing image quality.

6 DETAIL OF COLOR PRIOR ENCODER CPE
We show the specific structures of the global color encoder and local
color encoder in the CPE module in Figure6. These two modules
extract global color priors and local color priors respectively.

7 DETAIL OF CHANNEL-SPATIAL ATTENTION
MODULE CSA

We show the detailed structure of the SWA module and CWRA
module in Figure7. These two modules perform channel attention
and spatial attention enhancement respectively.

8 ANALYSIS OF RAWTOBIT
The RAWtoBit[6] method is designed to compress the RAW data
into a bitstream, which is subsequently decoded and processed
through the introduced RCAG[9] to perform the ISP process. The
RAWtoBit framework intends to transport the RAW data to the
decoder before executing the RAW-to-RGB conversion process.
Comparedwith RGB images, RAW images have higher bit depth and
wider color range, so it is not necessary to retain all the information
in RAW.

Furthermore, the RAWtoBit scheme does not account for the
complexity of the real-world imaging pipeline, manifesting a lack
of modeling for various essential processes such as spatially variant
distortions, tone mapping, and other device-specific characteristics.

In conclusion, our proposed method addresses these deficits by
embodying a more comprehensive and accurate representation
of the real-world end-to-end imaging pipeline. By integrating the
necessary modeling of spatial distortions and tone mapping, we
substantially enhance the fidelity of the processed images. We re-
port experimental results of our method with previous RAWtobit
on real-world imaging tasks in Fig.5, which further demonstrates
the superior performance of the proposed end-to-end scheme.

9 SUBJECTIVE QUALITY COMPARISON
To verify the subjective quality of the proposed method, we use
MUSIQ[7] and CLIPIQA[2] to evaluate the results obtained by dif-
ferent methods and compare the performance of different methods
through the Rate-Distortion curve. Detailed results are shown in
Fig.8.

10 MORE QUALITATIVE RESULTS
We show more subjective results in Fig.9 and Fig.10.
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Figure 8: Subjective Quality Rate-Distortion Curve.
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Figure 9: Qualitative Results (1).
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Figure 10: Qualitative Results (2).
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