Inverse Rendering for High-Genus Surface Meshes from Multi-View Images

Supplementary Material

a) Topological Primitives (Genus 0-5)

\ J \ ¢) Multi-view Reconstructed Low and High Genus Surfaces (Ours /

Figure 1. (a) Topological primitives that are homeomorphic to the ground truth surfaces, ensuring topological consistency. (b) Recon-
structed 3D surface by minimizing the multi-view rendering loss using SOTA method [? ]. (c) Reconstructed 3D surface using our method.
The topological information of the ground truth is represented with tunnel loops shown in Red and handle loops in Blue for visual compar-
isons of topological features.



Al. Complete Qualitative Comparisons with Nicolet et al.[? ] for Low-Genus Reconstruction
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Figure 1. Qualitative Comparisons with Nicolet et al. [? ]: Multi-View Reconstruction of Low Genus (Genus-0) Surfaces using Rendered

Views and Normal Maps with a Sphere (Genus-0) as the Topological Primitive.
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Figure 2. Qualitative Comparisons with Nicolet et al.
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[? ]: Multi-View Reconstruction of High-Genus (Genus 1-5) Surfaces using

Rendered Views and Normal Maps Using Topologically Consistent Triangulated Primitives (Genus 1, 2, 3, 4 and 5 from top to bottom,

respectively).



B. How to Construct Topological Primitive of Any Genus g ?
Connected Sum: An Algebraic Topology Perspective

Definition (Connected Sum) [? ]. The connected sum S; & S5 is formed by deleting the interior of disks D; and D5 from
the surfaces S and S5, respectively, and attaching the resulting punctured surfaces S; — D1 and S — D5 to each other along
their boundaries via a homeomorphism h : 9D; — 0D5 as shown in Figure 3. Mathematically, this can be expressed as:

S16 Sy = (Sl — Dl) Up (Sg — Dg).

Figure 3. Two surfaces S1 and S are shown with disks D1 and D3 removed. These surfaces are then glued together along the boundary
of the disks, resulting in a surface with a genus equal to the sum of the genera of S; and S2.[? ]

Steps for Constructing a Topological Primitive Using S; and S3: Say S; and S, are surfaces with genus ¢g; and go,
respectively. Applying the definition of the direct sum provided earlier, a new surface S; & S5 of genus ¢; + g2 can be readily
constructed. By the properties of direct sums, the genus of S; @ S5 satisfies:

genus(S; @ Sy) = genus(S7) + genus(S2) = g1 + go.

Hence, we can construct complex topological primitatives of any genus g from the existing ones as illustrated in Figure 4.

@

Figure 4. Topological Primitives (genus 0-5). Left to right: Sphere (So, g=0), Torus (S1, g=1), Double (S2, g=2), Triple (Ss3, g=3),
Quadruple Torus (S4, g=4), and Decocube (S5, g=>5).




C. Adaptive V-Cycle Remeshing
Halfedge Data Structure

The halfedge data structure, illustrated in Figure 5, is an efficient and versatile data structure for triangular meshes ¥ =
(v, h,e), where v, e, and f represent vertices, edges, and faces, respectively. Each edge is split into two directed halfedges
denoted as h and hg,4;, linked to associated vertices, edges, faces, and neighboring halfedges, enabling seamless connectivity.
This structure excels in localized operations, such as iterating around vertices or faces, which are crucial for tasks like
remeshing and curvature computation [? ? ]. Its balance of efficiency, flexibility, and ease of use makes it indispensable for
advanced mesh processing.
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Figure 5. The triangular surface on the left is equipped with a Half-Edge Data Structure, illustrated on the right, to enable efficient local
mesh operations.[? ]

Adaptive (Curvature-Guided) Remeshing

Given a triangular mesh M = (V, E, F'), where V, E, and F represent vertices, edges, and faces, respectively, adaptive
remeshing leverages principal curvatures «; and ko at each vertex v € V to guide the process. Unlike Isotropic remeshing,
which relies on the average edge length £y, = ﬁ > ecr |le]l, adaptive remeshing adjusts edge operations based on curvature,
refining high-curvature regions and coarsening flat areas. Figure 6 contrasts isotropic and adaptive remeshing qualitatively.

A1) Kids (Input) A2) Kids (Isotropic Remeshing)  A3)Kids (Adaptive(Curvature Guided)
Remeshing)

Figure 6. Qualitative comparisons between isotropic remeshing and adaptive(curvature-guided) remeshing, highlighting finer resolutions
in high-curvature regions and coarser resolutions in low curvature regions.



C2. Pseudo Code for Adaptive V-Cycle Remeshing

Algorithm 1: Gradient Descent with Adaptive V-Cycle Remeshing and Topological Initialization

Input: Mesh M = (V| E, F'), learning rate 7), remeshing frequency f, maximum iterations 7'
Qutput: Optimized vertex positions z*
Compute the Euler characteristic X (M) = |V| — |E| + |F|;
Determine the genus of the mesh using g = (2 — X(M))/2;
Select a triangulated topological primitive with genus ¢ (e.g., ranging from 0 to 5) as the initial mesh M = (V, E, F);
Initialize vertex positions x( from M
Set isCoarse + True;
fort =0toT —1do
if ¢ mod f == 0 then
Compute mean curvature /' and Gaussian curvature K at each vertex of M;
Compute principal curvatures x1, ko at each vertex using H and K
if isCoarse then
x + Perform Adaptive V-Cycle Remeshing on M with Coarse Resolution using (%1, k2);
L Set isCoarse <+ False;

else
x + Perform Adaptive V-Cycle Remeshing on M with Fine Resolution using (k1, k2);
Set isCoarse <+ True;

Compute the loss function L(®(x));
Compute gradient V, L(®(x));
| Update vertex positions: = <z — 0V, L(®(z));

return x*;

Implementation Details. Our implementation leverages an adaptive curvature-guided remeshing algorithm developed in
C++ using the Half-Edge data structure, building upon the foundational isotropic remeshing algorithm presented by Botsch
et al. [? ] with modifications that enhance adaptability and performance across diverse scenarios. We use principal curvature
to guide the remeshing process, enabling accurate capture of geometric details in complex surfaces. In many applications,
adaptive remeshing can utilize other metrics for guidance, such as Von Mises stress in elasticity, energy release rates in
fracture mechanics, and high-pressure regions in fluid dynamics. This flexibility allows our approach to be tailored to specific
engineering needs, ensuring improved simulation accuracy and computational efficiency across various domains.



D. Quantitative Comparison Results for Low and High Genus Surfaces

D1. Quantitative Comparison Results with Nicolet et al.[? ] for Low Genus Surfaces

Table 1. Quantitative comparison with Nicolet et al. [? ] for multi-view reconstructed low-genus (genus 0) surfaces: Lower Chamfer
Distance values mean better results, while higher Volume IoU values mean better results. The Euler characteristic x(S) = |V|+|F|—|E|
and the genus g are used to evaluate topological consistency, where g represents the number of holes or tunnel loops in the reconstructed
surface. Consistent genus g numbers indicate that the reconstructed surfaces match the topology of the target surfaces.

Chamfer Dist |, Volume IoU 1 \4 |E| |F| XS)=|V|+|F|-|E| g
Nicolet et al. [? |
Armadillo 0.0018 0.8968 112,543 337,623 225,082 2 0
Bunny 0.0021 0.8263 140,607 421,815 281,210 2 0
Nefertiti 0.0018 0.8768 138,695 416,079 277,386 2 0
Planck 0.0019 0.9369 146,027 438,075 292,050 2 0
Mario 0.0024 0.8683 155,211 465,627 310,418 2 0
Lion 0.0019 0.6685 186,481 559,437 372,958 2 0
Ours (Hybrid)

Armadillo 0.0015 0.9283 137,394 412,176 274,784 2 0
Bunny 0.0020 0.8296 152,642 457,920 305,280 2 0
Nefertiti 0.0017 0.9158 329,304 987,906 658,604 2 0
Planck 0.0018 0.9261 436,224 1,308,666 872,444 2 0
Mario 0.0024 0.9003 79,032 237,090 158,060 2 0
Lion 0.0018 0.6835 17,594 52,776 35,184 2 0

D2. Quantitative Comparison Results with Nicolet et al.[? ] for High Genus Surfaces

Table 2. Quantitative comparison with Nicolet et al. [? ] for multi-view reconstructed high-genus surfaces: Lower Chamfer Distance
values mean better results, while higher Volume IoU values mean better results. The Euler characteristic x (S) = |V |+ |F|—|E| and the
genus g are used to evaluate topological consistency, where g represents the number of holes or tunnel loops in the reconstructed surface.
Consistent genus g numbers indicate that the reconstructed surfaces match the topology of the target surfaces.

Chamfer Dist |  Volume IoU 1 V] |E| |F| XS)=|V|+|F|-E] g
Nicolet et al. [? ]
Kitten 0.0039 0.6298 134,761 404,283 269,522 0 1
Amphora 0.0054 0.4581 91,014 273,048 182,032 2 2
Pretzel 0.0040 0.6518 73,059 219,189 146,126 4 3
Birthay 0.0020 0.4914 28,442 85,344 56,896 6 4
Sorter 0.0672 0.2901 84,189 252,591 168,394 8 5
Ours (Hybrid)

Kitten 0.0025 0.7126 15,638 46,914 31,276 0 1
Amphora 0.0033 0.7924 15,554 46,668 31,112 2 2
Pretzel 0.0025 0.8639 150,735 452,217 301,478 4 3
Birthay 0.0006 0.8849 10,197 30,609 20,406 6 4
Sorter 0.0040 0.7504 298,083 894,273 596,182 8 5




D.3 Quantitative Comparison Results with Nicolet et al.[? ] for Challenging High Genus Surfaces
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Table 3. Quantitative comparison with Nicolet et al. [? ] for multi-view reconstructed Challenging high-genus surfaces: Lower Chamfer
Distance values mean better results, while higher Volume IoU values mean better results.

Model Chamfer Dist | Volume IoU 1
[?2] Ours [?2] Ours
Elephant 0.0035 0.0008 0.5297 0.7606
Amphora 0.0062 0.0031 0.4271 0.7443
Botijo 0.0053 0.0032 0.4541 0.8192
Filigree 0.0019 0.0018 0.7365 0.8204
Heptoroid 0.0074 0.0029 0.5642 0.8297
Mother 0.0060 0.0046 0.4766 0.5025




