A Appendix

A.1 PAC Bayesian Bound

In this part, we provide a detailed PAC-Bound based on the continual learning scenario.

Based on the previous works on PAC-Bayes bound [27, 142, [10], let £(-, -) be 0-1 loss, then for the
empirical loss over the training set D ~ 2, we have Lp(w) = I%\ 2 @yen L (fw (@), 9)] €0,1].

Given a "prior" distribution P (a common assumption is zero mean, o2 variance Gaussian distribution)

over the weights of the form w + v, the expected error of f,, 1, can be bounded with probability at
least 1 — § over the draw of n training data:

Ey [Lg(w +v)] < Lp(w) + Ey [Lp(w 4+ v)] — Lp(w) + 4\/71 (KL('w +v||P) +In 2;),

(6)
where w is the weight of the predictor learned from the training set, v is a random variable and is
often chosen as a zero mean spherical Gaussian perturbation with variance o2 in every direction.

We now consider the bound in the continual learning scenario. To simplify our explanation, we
only consider two tasks, which contains the training sets D; and D5 sampled from the distributions
2, and P, respectively. We assume the model f,, is learned from the training set D; (w =
argmin,, Lp, (w), and then continue to learn the training set Ds. Our final goal is to find an optimal
parameter Aw to minimizes the overall risk Lo, ug, (w + Aw) for all tasks as follows:

min Ly, ug, (w + Aw)
Aw

Based on Eq. (0)), the expected error of fy,4 Aw-+v can be bounded with probability at least 1 — 0
over the draw of training set D:

E'U [L91U@2 (’LU +Aw + ’U)] = E'b’ [L@1 (w + Aw + 'U)} + ]E’v [ng (w + Aw + U)]
< Ey[Lg, (w+ Aw + )]+ Lp, (w + Aw) + Ey [Lp, (w + Aw + v)] — Lp, (w + Aw)

stability of old task sensitivity of new task expected sharpness on training set of new task

+ 4\/i (KL(w + Aw +v||P) +1In 2;)
where n is the size of training set D2. As we can see, the PAC-Bayes bound in the continual learning
scenario depends on four quantities, (1) the stability of old task, (2) the sensitivity of new task, (3)
the expected sharpness on training set of new task, and (4) the Kullback Leibler (KL) divergence to
the "prior" P. The bound is valid for any distribution measure P, any perturbation distribution v and
any method of choosing Aw dependent on the training set Ds.

In order to ensure the stability of old task, we constrain Aw in the complementary space V< of the
important space representing the old task 2; following GPM [34]], so that E,, [Lg, (w + Aw + v)]
does not increase too much compared with the previously minimized E,, [Lo, (w + v)]. Letv € V,
we have Eycy [Lp, (w + Aw + v)] < maxyey Lp, (w + Aw + v), then we can rewrite the above
bound as follows:

minE, [Ly,ug,(w+ Aw +v)] < min E, [Ly, (w+ Aw +v)] + Lp,(w + Aw)
Aw AweVc

1 2
+m€a\)}<LDZ(w+Aw+v) — Lp, (w + Aw) +4\/n (KL(w+Aw+v||P) —&-ln;l).

Thus, our FS-DGPM exactly optimizes the worst-case of the flatness of the weight loss landscape to
control the PAC-Bayes bound, which theoretically justifies both lower loss value and flatter landscape
lead to better continual learning performance, and why our proposed FS-DGPM works.
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A.2 Derivation for DGPM

We derive the gradient of the importance value \; by minimizing the worst performance of fu,4+
under the current task batch D; and the batch M sampled from the replay buffer M:

0 0
Va0 +0) =gy Lo (04 v) gy (w04 v)
0 0
:7a(w+v)LﬁtuM(w+’v)'a>\i w+7712/\u3 (V L ( ))

8(wa+v)LD*UM (w +v) - (mm (V Lp, (w )))

S (vabtuM (w))T uzu;‘r (VwLﬁt (w)) ,

where - is the dot product operator. Note that we only consider one gradient update to v in the second
equation for simplicity, but using multiple gradient updates is a straightforward extension. For the
third equation, we get it by assuming that w is constant with respect to A;. The last approximation
is obtained by the first-order Taylor expansion. Setting all first-order gradient terms as constants to
ignore second-order derivatives, we get the approximation as:

Viwto) Lo, (W) = VL, i () (V3 Lo, () 040 ([0]) & Vs Ly 4 (w)

The importance of each basis is constrained to be between 0 and 1, where 0 indicates that the basis is
not important to old tasks and can completely release for learning new tasks. The initial value of all
importance is set to 1, and we use the sigmoid function with a temperature factor of 10 at the end of
gradient update: \; < 1/(1 + exp(—10\;)).

A.3 Pseudo-code for updating GPM

GPM [34] achieves excellent stability by ensuring that gradient updates only occur in directions
orthogonal to the gradient subspaces deemed important for the past tasks. Similar to [34], we calculate
the bases of these subspaces for each layer by analyzing network representations after learning each
task with Singular Value Decomposition (SVD), and then use it to update v and w by layer.

As shown in Algorithm 2| for updating GPM, we firstly sample n, random examples from the replay
buffer M to construct the representation matrix for each layer, R'. Next, we perform SVD on
R =U's! ( Vl) and obtained its k-rank approximation Rﬁc according to the following criteria for
the given threshold, '

|RLIIE > € |1R[1%, (7
where || - || ¢ is the Frobenius norm of the matrix and and €' (0 < ¢! < 1) is the threshold hyperpa-
rameter for layer [.

Algorithm 2 UpdateGPM
Input: Network f,, with L-layer, Replay buffer M, sample size n, threshold e for each layer.

Result: Bases matrix { (M l)zL:1}
if M is not empty then
B, ~ M
R < forward(B,,., fw), where R = {(R")~,}

for/=1,2,---,Ldo
U' « SVD(R)
k + criteria (R', €' ]
M, «— U0 : k]
end for
end if
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For fully connected layer, the representation matrix R’ = [}, 2l :vfl] concatenates 7 inputs

of the [-th layer linear function along the column, which are obtained by forwarding the batch of n
samples {1, - ,x,, } through the network f,,. For convolution (Conv) layers, we first express
the Conv as matrix multiplication by reshaping the input tensor X € R > Xwi and filters W €
RCoxCixkxk intg X € R(Poxwo)x(Cixkxk) and W e R(Cixkxk)xCo respectively, where C;(C,)
denotes the number of input (output) channels of the Conv layer, h;, w; (h,, w,) represents the height
and width of the input (output) feature maps and & is the kernel size of the filters. Then we construct
the representation matrix as R' = [(X})7,(X5)7T, -, (XL)T} € R(Cixkxk)x(hoxwoxns) The
key difference with GPM [34] is that we perform SVD in the entire gradient space and use the
obtained bases to replace the last calculated bases, while [34] obtains the newly added bases by
performing SVD in the subspace orthogonal to the existing bases. In addition, GPM can be regarded
as a special case of our method when 7; and 7, are set to 0.

B Details for Landscape Visualization for Continual Learning

In this section, we first provide the pseudo-code of the visualization of the weight loss landscape in
continual learning, and then provide more empirical results.

B.1 Pseudo-code for Visualization

As shown in Algorithm [3|for the visualization of the weight loss landscape for the continual learning
scenario, we first sample a random direction d from a Gaussian distribution, and then apply the
filter-wise normalization following [21] to eliminate the scaling invariance of DNNs. Next, we
independently calculate the training loss of a series of perturbed weights for each learned task. For a
given task descriptor 7 and perturbed weights w + ad, we obtain the training loss of the perturbed
model fy,+qq on all training samples of task 7. Then, we plot the weight loss landscape for task 7. If
the descriptor for the current training task of the model is ¢, we will plot ¢ curves.

Algorithm 3 Visualization of the Weight Loss Landscape

Input: Network f,, with L-layer (F} filters in the [-th layer), current task descriptor ¢, training
dataset D, = {x; r,Yi,r };oq for 7 =1, ..., ¢, the scalar parameter & € [Qmin, Cmaz)-
Sample a random direction d ~ A(0,1)
fori=1,2,--- ,Ldo
forj=1,2,---  F;do
dij — s llwil

F
end for
end for
forr=1,2,--- tdo
for o = Umin, " s Omax do
Lp (wtad) =Y 0 p £(furad(@),y)
end for
Plot(a, Lp_ (w + ad)), V& € [@mins @maa)
end for

B.2 More Results for Section[3.2; Connection of Weight Loss Landscape and Continual
Learning

To investigate the relationship between the weight loss landscape and stability-sensitivity in the
continual learning scenario, we use the previously proposed GPM [34], La-MAML [13]], and ER [3]]
to train an MLP network with two hidden layers on the Permuted MNIST (PMNIST) [20] dataset
that contains 10 tasks. For each task, we use 60, 000 training samples instead of 1, 000 used in the
experimental environment. The replay buffer size is set to 1,000. We also use Oracle and Finetune,
which respectively represent retraining the network on the entire dataset contain all passed tasks, and
training the network on the data stream without any regularization or episodic memory. Considering
the direction d for visualization is randomly selected, we repeat the visualization 10 times with
different d. Figure and[T4]show the weight loss landscape for each task when a new
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task is trained using Oracle, Finetune, GPM, La-MAML, and ER, respectively. The ¢-th row of each
figure represents changes in the weight loss landscape of the i-th task during the model evolution,
and each j-th column indicates that the current model has learned j tasks.

C Details for FS-ER

In this section, we first provide the pseudo-code of Flattening Sharpness for Vanilla ER, and then
provide more empirical results.

C.1 Pseudo-code for FS-ER

Comparing the pseudo-code of Vanilla ER, FS-ER only adds the adversarial weight perturbation v.

Algorithm 4 FS-ER

Input: Network weight w, loss function ¢, learning rate 73, FS step size 71, FS steps K, batch
size b.

Initializing M «+ {}

fort=1,2,--- T do

forep=1,2, -+, numepochs do
for batch ﬁt b D, do
ME2 M

fork=1,--- ,Kdo
V= U+ NV (o) Lp, (W + 0)
end for
W w =3V Lp [ (w+v)
Push D, to M with reservior sampling
end for
end for
end for

C.2  More Results for Section[3.3; A Case Study of Flattening Sharpness for Vanilla ER

Figure|14|and|15|show the weight loss landscape for each task when a new task is trained using ER
and FS-ER, respectively.

D Experimental Details

D.1 Datasets

Table ] summarizes the statistics of four datasets used in our experiments.

Table 4: Dataset Statistics.

PMNIST CIFAR-100 Split CIFAR-100 Superclass TinyImageNet

Input size 1x28x28 3x32x%x32 3x32x32 3x64x64
# tasks 20 10 20 40

# Classes/task 10 10 5 5

# Training/task 1,000 4,750 2,375 2,250

# Validation/task - 250 125 250

# Test/task 10,000 1,000 500 250
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D.2 Architecture

AlexNet-like architecture: For 10-Split CIFAR-100, similar to GPM [34], we use a AlexNet-like
architecture with three convolutional (Conv) layers and two fully connected layers. The three Conv
layers have 64, 128, and 256 filters with 4 x4, 3x3, and 2x2 kernel sizes, respectively. Both fully
connected layers have 2048 units in each layer. Max-pooling layer with filters of size 2x2 is used
after the Conv layer. Dropout of 0.2 is used for the first two layers, and 0.5 is used for the remaining
layers. Batch normalization is only used in the second layer.

Modified Lenet-5 architecture: For 20-Spilt CIFAR-100 Superclass, similar to GPM [34], we
use a modified LeNet-5 architecture with 20-50-800-500 neurons, of which the first two are Conv
layers with 5 x5 kernel sizes, and the last two are fully connected layers. Batch normalization and
max-pooling layer with filters of size 3x3 with a stride of 2 are used in the Conv layers. Batch
normalization parameters are learned for the first task and shared with all the other tasks.

Architecture for TinyImageNet: For 40-Spilt TinyImageNet, similar to La-MAML [13], we use
a CNN having 4 Conv layers with 160 3 x3 filters. The output from the final Conv layer is flattened
and is passed through 2 fully connected layers having 320 and 640 units, respectively.

All networks use ReLU in the hidden units, and finally have a multi-head output layer to perform
classification for every task. No bias units are used following [34].

D.3 Baselines
We compare our method against multiple methods described below.

« EWC [17]: Elastic Weight Consolidation is a regularization-based method that uses the
diagonal of Fisher information to identify important weights.

* ICARL [30]: ICARL is a memory-based method that uses knowledge distillation and
episodic memory to reduce forgetting.

* GEM [24]]: Gradient Episodic Memory uses the gradient of episodic memory to constrain
optimization to make sure that the gradients of the new task do not change the previous
knowledge.

* ER [31}5]]: Experience Replay uses a small replay buffer to store old data using reservoir
sampling. Then, the stored data is replayed again with the new data samples.

e La-MAML [13]]: Look-ahead MAML is inspired by optimization-based meta-learning that
leverages replay to avoid forgetting and favor positive backward transfer by asynchronously
learning the weights and LRs.

* GPM [34]: Gradient Projection Memory minimizes forgetting by taking gradient steps
orthogonal to the gradient subspace deemed important for the past tasks when learning a
new task.

* Multitask: Multitask is an oracle baseline that all tasks are learned jointly using the entire
dataset at once in a single network. Multitask is not a continual learning strategy but serves
as an upper bound on average test accuracy on all tasks.

GEM [24], ICARL [30], and La-MAML [13]] are implemented from the official implementation
provided by [[13]]. EWC [[17] is implemented from the official implementation provided by [24]]. GPM
[34] is implemented from its official implementation. ER [311 5] is implemented by adapting the
code provided by [31].

D.4 GPU Device
We measured the average training time per task calculated on the NVIDIA GeForce RTX 2080 Ti

GPU. Figure[5(b) shows the training time per task on the 20-Split CIFAR-100 Superclass experiment
using the baselines and our method.
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D.5 Threshold Hyperparameter

Following [34]], we use a different value of the threshold hyperparameter, e, for different architectures
and different datasets. For PMNIST experiment, we use € = 0.99 for all the layers and increasing the
value of € by 0.0005 for each new task. For CIFAR-100 Split and CIFAR-100 Superclass experiment,
we use the values reported by [34]. For CIFAR-100 Split, the initial value of € is 0.97 for all the
layers and increasing by 0.003 for each new task. For CIFAR-100 Superclass experiment, we use € =
0.98 for all the layers and increasing by 0.001 for each new task. For TinyImageNet experiment, we
use € = 0.9 for all the layers and increasing by 0.0025 for each new task.

D.6 List of Hyperparameters

We report in Table[3]the hyper-parameters selected by grid-search for all baselines and our method.
For PMNIST, we use a hyper-parameter called glances for all compared approaches and set it to 5
following [13]]. This hyper-parameters indicates the number of meta-updates made on each incoming
sample of data. In addition, for each task in PMNIST, we use 5 epochs to train the network for
Multitask instead of 1 epoch in other methods.

Table 5: List of hyperparameters for the baselines and our approach. "LR" denotes the (initial)
learning rate. Superclass is the abbr. of CIFAR-100 Superclass.

Method Parameter PMNIST CIFAR-100 Split Superclass TinyImageNet
EWC LR 0.01 0.005 0.03 -
memory strength, ~y 100 5000 1000 -
ICARL LR - 0.03 0.01 -
memory strength, ~y - 0.1 0.5 -
memory size - 1000 1000 -
GEM LR 0.01 0.01 0.03 -
memory strength, 7y 0.0 0.5 0.5 -
memory size 200 1000 1000 -
ER LR 0.005 0.03 0.01 -
memory size 200 1000 1000 -
La-MAML LRs, ag 0.15 0.1 0.1 -
LR for LRs, n 0.3 0.5 0.5 -
memory size 200 1000 1000 -
GPM LR 0.01 0.01 0.01 0.005
Ng 300 125 125 200
Multitask LR 0.01 0.01 - -
FS-DGPM LR, 13 0.01 0.01 0.01 0.01
LR for sharpness, 11 0.05 0.001 0.01 0.001
LR for DGPM, 7 0.01 0.01 0.01 0.01
memory size 200 1000 1000 400
N 200 125 125 200

E Additional Experimental Results

We provide the results of different step numbers K in solving weight perturbation v. We evaluation
FS-DGPM with K € {1,2,3} in the CIFAR-100 Split experiment. As shown in Figure[7] two steps
have been well improved, and the extra steps only bring few improvements but with much more time.

We also compare ER and our method on CIFAR-100 Superclass when the memory size is 100, 500,
and 1000. As shown in Figure [8] we see that both ER and FS-DGPM benefits from increases in
memory size, but the outperformance of FS-DGPM is more visible under the low-resource regime.
We think the advantageous performance of FS-DGPM can be attributed to the effective utilization of
episodic memory converted into bases through SVD.
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Figure 7: Results of different step numbers K for weight perturbation v on CIFAR-100 Split in 50
epochs. Each experiment is run with 5 seeds.
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Figure 8: Average test accuracy of different memory size on CIFAR-100 SuperClass. Each experiment
is run with 5 seeds.
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Figure 10: The weight loss landscape of the ten tasks of PMNIST using Oracle for training. The ¢-th
row represents changes in the weight loss landscape of the ¢-th task during the model evolution, and
the j-th column indicates that the model has learned j tasks. The y-axis is the loss value, and the
x-axis is the scalar value for visualization random direction. (Task % is the abbr. of ¢ + 1-th task.)
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Figure 11: The weight loss landscape of the ten tasks of PMNIST using Finetune for training. The
i-th row represents changes in the weight loss landscape of the i-th task during the model evolution,
and the j-th column indicates that the model has learned j tasks. The y-axis is the loss value, and the
x-axis is the scalar value for visualization random direction. (Task % is the abbr. of ¢ + 1-th task.)
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Figure 12: The weight loss landscape of the ten tasks of PMNIST using GPM for training. The ¢-th
row represents changes in the weight loss landscape of the ¢-th task during the model evolution, and
the j-th column indicates that the model has learned j tasks. The y-axis is the loss value, and the
x-axis is the scalar value for visualization random direction. (Task % is the abbr. of ¢ + 1-th task.)
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Figure 13: The weight loss landscape of the ten tasks of PMNIST using La-MAML for training. The
i-th row represents changes in the weight loss landscape of the i-th task during the model evolution,
and the j-th column indicates that the model has learned j tasks. The y-axis is the loss value, and the
x-axis is the scalar value for visualization random direction. (Task % is the abbr. of ¢ + 1-th task.)
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Figure 14: The weight loss landscape of the ten tasks of PMNIST using ER for training. The i-th row
represents changes in the weight loss landscape of the ¢-th task during the model evolution, and the
j-th column indicates that the model has learned j tasks. The y-axis is the loss value, and the x-axis
is the scalar value for visualization random direction. (Task ¢ is the abbr. of ¢ 4 1-th task.)
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Figure 15: The weight loss landscape of the ten tasks of PMNIST using FS-ER for training. The ¢-th
row represents changes in the weight loss landscape of the ¢-th task during the model evolution, and
the j-th column indicates that the model has learned j tasks. The y-axis is the loss value, and the
x-axis is the scalar value for visualization random direction. (Task % is the abbr. of ¢ + 1-th task.)
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