
SUPPLEMENTARY MATERIALS

We first discuss the limitations, ethcial concerns and broader impact of this work (Section A). We detail
the datasets (Section B), models (Section C), and training setups (Section D) in the supplementary
materials to improve this work’s reproducibility. Besides, Section E includes more experimental
studies to strengthen the main text.

A LIMITATION, ETHICAL CONCERN, AND BROADER IMPACT

Limitation. VideoGLUE covers various unimodal video tasks and could be strengthened by adding
multimodal tasks like video question answering. We chose three representative FM adaptation
methods and used them to provide as uniform experiment protocols for different FMs as possible.
However, some of our observations could be flipped with the evolution of adaptation methods, which
are an active research area. We proposed a scalar score, VideoGLUE score (VGS), to capture the
efficacy and efficiency of an FM on video understanding. However, VGS might be dominated by one
or a few datasets — when it becomes a serious issue, we should probably improve the score and/or
retire the other datasets from future versions of VideoGLUE. Indeed, VGS is not a perfect score that
covers all aspects of FMs in a comprehensive manner. For example, it does not account for an FM’s
memory usage, model size, model architecture, etc. We hope future research will lead to new metrics
to complement VGS and a more comprehensive evaluation of FMs for visual tasks.

Ethical concern. We evaluate FMs on three video tasks, eight datasets in total. We select the tasks
and datasets based on their popularity and representativeness. Although carefully designed, our
benchmark inevitably inherited some ethical concerns from those datasets. For instance, many of the
datasets are curated by crawling videos from the Internet, which do not proportionately represent the
experiences of the global population and can potentially lead to biased evaluations of FMs. Moreover,
the video datasets involve human daily activities, leading to privacy concerns about the human actors
in the videos. How to evaluate FMs for video understanding in a fair and privacy-preserving manner
could be an important direction for future research.

Broader impact. Our research reveals the need and tremendous opportunities to research video-first
FMs by improving pretraining video data and methodologies. Our studies on different adaptation
methods on versatile tasks confirms that both tasks and adaptation methods matter when it comes
to the evaluation of FMs, shedding light on the already vibrant area of FM adaptations. Finally, we
hope our research could inspire research on foundation models development and video understanding
in general, along with their applications in the real world.

B VIDEO UNDERSTANDING DATASETS

B.1 APPEARANCE-FOCUSED ACTION RECOGNITION

Video classification is a task of classifying videos into pre-defined labels, with the major focus on
human actions.

Kinetics400 (Kay et al., 2017) (K400) is a large-scale, high-quality video dataset widely used as a
standard video classification benchmark. It contains more than 250k video clips with annotations
of 400 human daily actions. The actions are human focused and cover a broad range of classes
including human-human interactions and human-object interactions. Although the video clips span
10 seconds on average, many studies (Sevilla-Lara et al., 2021; Wang et al., 2018) have pointed out
the task could be easily solved on the Kinetics datasets by inferring from the static objects appeared or
background environment — motion information is less important than the visual appearance. Hence,
we categorize Kinetics400 as an appearance-focused action classification dataset.

Moments-in-Time (Monfort et al., 2019) (MiT) is a large-scale video event classification dataset,
with one million human annotated short video clips (around 3 seconds each). The temporal span
corresponds to the averaged duration of human working memory and is a temporal envelope holding
meaningful actions between people, objects, and phenomena. Videos in MiT are annotated with 339
most used verbs in the English vocabulary.

1



B.2 MOTION-FOCUSED ACTION RECOGNITION

Videos contain much more commonsense knowledge than still images do, such as an object’s motion
patterns and the causal consequences of an action, just to name a few. However, appearance-based
benchmarks do not evaluate a model’s understanding of such commonsense knowledge, complex
scenes, and situations. In observance of this, some video datasets have been proposed and studied in
recent years with the focus on motions and common-sensing reasoning that are prosperous in video
data.

Something-something v2 (Goyal et al., 2017) (SSv2) is a collection of around 200k videos of human
performing pre-defined, basic actions with everyday objects. There are 174 unique labels in total
depicting atomic hand manipulations, like putting something into something, turning something
upside down or covering something with something. This dataset benchmarks a model’s fine-grained
understanding capability of object motions and scene changes by making the label space atomic-
action-focused and background-invariant.

Diving48 (Li et al., 2018) (D48) is introduced to evaluate a model’s dynamic reasoning capability.
The video clips in this dataset are obtained by segmenting online videos of major diving competitions.
In total, there are around 18k videos annotated with 48 classes. Because of its standardization, the
diving scenario is purposefully chosen to avoid the scene, object, and person biases.

B.3 MULTI-LABEL DAILY ACTION CLASSIFICATION

Most of current action classification datasets involve video clips with a clean snapshot of a single
action. In contrast, humans perform daily complex activities step-by-step, simultaneously, or in an
interleaving manner. Towards more comprehensive human daily activity reasoning, Charades (Sig-
urdsson et al., 2016) is introduced. Different from web-collected datasets whose contents are more
structured, Charades is collected by crowd-sourcing from hundreds of actors recording their videos
in their own homes, acting out casual everyday activities. Charades brings in more diversity into the
video classification task due to its close-to-daily-life setting. Its videos are 30 seconds long on average
and have multi-label annotations testing models’ understanding of complex daily activities with
multiple steps. Charades provides 110k videos with 157 action classes for training and evaluation.

B.4 TEMPORAL ACTION LOCALIZATION

Natural long videos contain scene changes and semantic shifts, while most of the existing video
benchmarks formulate problems to focus on trimmed video clips. Such a gap introduces evaluation
bias as clip-level benchmarks could not reflect a model’s temporal feature discriminativeness, which
is of key importance to solve long-form video understanding tasks. To comprehend the study on
foundation models’ video capabilities, we include the temporal action localization (TAL) task in our
evaluation. The task of TAL is to predict not only the action labels but also each action instance’s
temporal boundary in untrimmed videos. We adopt ActivityNet v1.3 (Fabian Caba Heilbron &
Niebles, 2015) as the dataset for the TAL task, which contains 10, 002 untrimmed videos in training
and 4, 985 in validation. The video length in this dataset is between 5-10 minutes. In total, there are
200 types of activities annotated.

B.5 SPATIOTEMPORAL ACTION LOCALIZATION

Spatiotemporal Action Localization (STAL) is a person-centric task that asks a system to localize
actors and predict their atomic actions (Barker & Wright, 1955; Gu et al., 2018) in a transitory
duration.

In AVA (Gu et al., 2018), 15 minutes long movie clips are densely annotated at 1Hz. In the key
frames, every person is localized using a bounding box and labels corresponding to actions being
performed by the actor. The label vocabulary consists of 80 different atomic visual actions. There are
430 different movies in total.

AVA-Kinetics (Li et al., 2020) follows the same labeling protocol as AVA, while its data source comes
from the Kinetics700 (Kay et al., 2017) video pool. The dataset contains over 230k clips annotated
with the 80 AVA action classes for each of the humans in key frames.
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Figure 1: (a) Single-layer pooler head and (b) multi-layer attention pooling head for video classifica-
tion and spatiotemporal action localization.
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Figure 2: The adapter used in vision transformer. In the adapter layer, only the down-sample layer,
up-sample layer, and the scaling factor are tunable. Between the down-sample layer and up-sample
layer, an activation function is applied, which in our case is ReLU.

C MODEL DETAILS

C.1 TASK HEAD ARCHITECTURES

In Figure 1, we plot the task heads used in our video classification and spatiotemporal action
localization experiments, namely, the simple pooler head and multi-layer attention pooling head. For
temporal localization, please refer to (Xu et al., 2020) for the task head’s detailed architecture.

Figure 2 illustrates the encoder adapter layer’s architecture. In the the adapter layer, only the
down-sample layer, up-sample layer, and the scaling factor are tunable.

C.2 IMAGE-TO-VIDEO ADAPTATION

Adapting image backbones to video tasks requires us to fuse the image embeddings at some point in
the network and also introduce additional temporal information.

We consider two choices, early-fusion and late-fusion, and ablate them in the frozen feature setting
in Table 1. In both early-fusion and late-fusion, we first apply the projection layer on each frame
independently to embed pixel patches into embedding tokens. We then average-pool the embedding
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Table 1: Early vs. late fusion on image-native FMs. In this experiment, the frozen feature with a
single-layer pooler head is used.

K400 SSv2
Method Early Late Early Late

CoCa 72.7 61.4 41.5 33.3
CLIP 70.5 75.2 38.1 41.0

FLAVA 67.9 71.3 40.4 40.6

Table 2: Ablation study on the temporal positional embedding for image-to-video adaption. We
choose FLAVA (Singh et al., 2022) with the frozen feature setting in this experiment.

Temporal Positional VC (A) VC (M) VC (ML)
Embedding K400 MiT D48 SSv2 Charades

7 71.3 29.7 41.6 30.3 10.7
3 71.3 29.7 45.9 40.6 12.6

tokens from nearby frames to reduce the sequence length to n×h×w. In the early-fusion setting, we
pass all tokens together to the image backbone to extract video features. In late-fusion, we pass each
set of h×w tokens independently to the image backbone. Empirically, we find that the FLAVA (Singh
et al., 2022) and CLIP (Radford et al., 2021) models do better with late-fusion while CoCa (Yu et al.,
2022) does better with early-fusion.

Furthermore, we ablate the importance of temporal information using the frozen-features from
FLAVA (Singh et al., 2022). In Table 2, we find that adding temporal positional embedding to the
input is essential for D48 (Li et al., 2018), SSv2 (Goyal et al., 2017), and Charades (Sigurdsson et al.,
2016) while not necessary for K400 (Kay et al., 2017) and MiT (Monfort et al., 2019). This supports
our grouping that K400 and MiT are appearance-focused datasets.

Based on these findings, we use late-fusion for FLAVA (Singh et al., 2022) and CLIP (Radford et al.,
2021) and early-fusion for CoCa (Yu et al., 2022). We add learnable temporal positional embeddings
for all the image-native FMs.

D TASK-SPECIFIC HYPERPARAMETERS

In the following, we provide experiment settings and hyperparamters we used in this study. In
Table 3, we list the hyperparameters we applied in the video classification task. In Table 4, we
present the hyperparameters we used on spatiotemporal action localization. In Table 5, we present
the hyperparameters we used on temporal action localization task.

We performed a greedy search on the learning rate and weight decay in all our experiments while
keeping most other hyperparameters (e.g., data augmentation magnitude, dropout rate, drop path rate,
etc.) consistent across different models and datasets. Specifically, we start with learning rate 1e-4 and
weight decay 1e-5 and uniformly sample learning rates and weight decay factors with a rate of 5 and
10, respectively, centered around the starting points. After the first round, we pick the best-identified
learning rate and weight decay factor as the new starting point and conduct another round of sampling
with a rate of 2. We repeat another two to three rounds of hyperparameter search (with a rate of 2)
until the model’s performance converges. This process is a trade-off between computation costs and
thoroughly examining an FM’s performance under each experiment setup. The search ranges for the
learning rate and weight decay are [4e-5, 2.5e-3] and [1e-6, 1e-4], respectively. We found that the
learning rate is the most crucial factor when adapting an FM to downstream video understanding
tasks.
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Table 3: Experimental configurations for video classification tasks. We let learning rate and weight
decay to be tunable per model to allow some flexibility for task adaptations.

Config Kinetics400 Sth-sth v2 MiT Diving48 Charades
batch size 256 256 256 256 256
training epochs 150 50 50 100 50
ViT sequence length 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14
optimization
optimizer AdamW AdamW AdamW AdamW AdamW
optimizer momentum 0.9 0.9 0.9 0.9 0.9
learning rate schedule cosine decay cosine decay cosine decay cosine decay cosine decay
warmup ratio 5% 5% 5% 5% 5%
data augmentations
random horizontal flip true false true true false
aspect ratio (0.5, 2.0) (0.5, 2.0) (0.5, 2.0) (0.5, 2.0) (0.5, 2.0)
area ratio (0.3, 1.0) (0.3, 1.0) (0.3, 1.0) (0.3, 1.0) (0.3, 1.0)
RandAug (9, 0.5) (9, 0.5) - - -
MixUp 0.8 0.8 - - -
CutMix 1.0 1.0 - - -
evaluation
multi-clips 4 1 4 4 4
multi-views 3 3 3 3 3
segment-based sample false true false false false

Table 4: Experimental configurations for spatiotemporal action localization.
Config AVA v2.2 AVA-Kinetics
batch size 256 256
training epochs 50 50
ViT sequence length 8 × 16 × 16 8 × 16 × 16
optimization
optimizer AdamW AdamW
optimizer momentum 0.9 0.9
layer decay 0.75 0.75
learning rate schedule cosine decay cosine decay
warmup ratio 5% 5%
data augmentations
random horizontal flip true true
random scale (0.5, 2.0) (0.5, 2.0)
random color augmentation true true

Table 5: Experimental configurations for temporal action localization.
Config ActivityNet v1.3
batch size 32
training epochs 10
feature extraction
fps 15
per-clip length 16
clip stride 16
optimization
optimizer AdamW
optimizer momentum 0.9
learning rate schedule cosine decay
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Table 6: Evaluating large-scale FMs when using (a) frozen feature with a one-layer pooler head, and
(b) low-rank adapter with frozen features. We report the Top-1 accuracy on K400, MiT, D48, SSv2
and MAP on Charades.

VC (A) VC (M) VC (ML)
Model Method K400 MiT D48 SSv2 Charades

InternVideo-L frozen 78.6 33.7 69.6 67.4 20.9
InternVideo-L adapter 81.5 40.3 85.8 70.9 54.2

VideoMAE-v2-B/DL frozen 86.7 38.9 61.4 57.7 33.2
VideoMAE-v2-B/DL adapter 86.0 41.8 82.3 66.6 53.8

VideoMAE-v2-g frozen 59.7 20.7 42.5 44.2 12.7
VideoMAE-v2-g adapter 80.8 35.9 85.3 68.2 55.5

VideoMAE-v2-g/FT frozen 82.1 35.0 60.5 56.1 22.4
VideoMAE-v2-g/FT adapter 85.2 42.5 84.6 70.6 58.6

Table 7: Benchmark FMs adaptation on video understanding tasks under sample-efficient transfer
learning. This table shows Top-1 classification accuracy and the relative accuracy (shown in the
bracket). Results are achieved by using frozen features with pooler head.

K400 SSv2
Method 1% 10% 100% 1% 10% 100%

CoCa 27.1(37.8%) 48.9(67.0%) 73.1 5.6(13.4%) 20.9(50.4%) 41.5
CLIP 36.9(46.2%) 66.8(83.6%) 79.0 8.7(19.3%) 25.1(55.5%) 45.3

FLAVA 14.4(20.2%) 35.8(50.3%) 71.3 7.2(17.7%) 14.3(35.3%) 40.6

VideoMAE 15.5(23.9%) 32.0(49.2%) 65.0 13.7(25.4%) 30.3(56.2%) 53.9
InternVideo 20.4(29.5%) 50.2(72.4%) 69.3 19.5(33.6%) 41.1(70.7%) 58.2

VATT 34.1(45.4%) 63.7(84.8%) 75.1 12.9(22.4%) 37.6(65.0%) 57.8

E MORE STUDIES

E.1 LARGE MODEL ADAPTATIONS

For the completeness of this report and reader’s reference, in Table 6 we report experimental results
under our settings with large FMs under two adaptation scenarios, namely, the frozen backbone with
pooler head and the low-rank adapter. VideoMAE-v2-B/DL (Wang et al., 2023) denotes the ViT-B
model distilled from ViT-g on the Kinetics710 datasets1. VideoMAE-v2-g (Wang et al., 2023) is the
model that pretrained on UnlabeledHybrid dataset, while VideoMAE-v2-g/FT (Wang et al., 2023)
conducts further finetuning using supervised training on Kinetics710.

E.2 SAMPLE-EFFICIENT TRANSFER LEARNING

A strong FM should be able to adapt to downstream tasks with a few training samples. In this section,
we test the adaption ability of FMs in a sample-efficient transfer learning setting. Particularly, we
freeze backbones and train a pooler head to adapt the FMs on K400 and SSv2. For either dataset,
we sample 1% and 10% data from the training set uniformly for training and evaluate on the full
evaluation dataset.

We show our experimental results in Table 7. To better understand the data efficiency, we also show
the relative Top-1 accuracy for each model (shown in the bracket), which is defined as the ratio
between accuracy with fewer training examples and the accuracy achieved using all the training data.
A higher relative Top-1 accuracy means the performance of the model is closer to its “full” capacity
under the sample-efficient setting. We notice that the best performed model on each dataset in fully
fine-tuned model also performs best in the few-shot setting. Especially, CLIP (Radford et al., 2021)
achieves 46.2% and 83.6% relative Top-1 accuracy on K400 using only 1% and 10% of the training
data, respectively. On SSv2, InternVideo (Wang et al., 2022) achieves 33.6% and 70.6% relative
Top-1 accuracy with only 1% and 10% of the training data.

1https://github.com/OpenGVLab/VideoMAEv2/blob/master/docs/MODEL_ZOO.md
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