
Published as a conference paper at ICLR 2024

Appendix

Table of Contents
A Proof 15

A.1 Proof of Theorem 1 . 15

A.2 Proof of Theorem 2 . 17

B Attack Settings 18

C Fast Computation 19

C.1 Fast Computation Sketch . 19

C.2 Complexity Analysis . 21

D G-FairAttack vs Gradient-based Methods 22

E Implementation Details 24

E.1 Datasets . 24

E.2 Baselines . 24

E.3 Experimental Settings . 25

E.4 Required Packages . 26

F Supplementary Experiments 27

F.1 Effectiveness of Attack . 27

F.2 Effectiveness of Surrogate Loss . 27

F.3 Attack Patterns . 28

F.4 Attack Generalization . 29

F.5 Advanced Attack Baselines . 31

G Defense Against Fairness Attacks of GNNs 32

H Broader Impact 34

14

Published as a conference paper at ICLR 2024

A PROOF

A.1 PROOF OF THEOREM 1

Theorem 1. We have ∆dp(Ŷ , S) and W (Ŷ , S) upper bounded by TV (Ŷ , S). Moreover, I(Ŷ , S) is
also upper bounded by TV (Ŷ , S) if ∀z ∈ [0, 1], PŶ (z) ≥ ΠiPr(S = i) holds.

Proof. ∆dp(Ŷ , S), I(Ŷ , S), W (Ŷ , S), and TV (Ŷ , S) are all non-negative. We first prove
that ∆dp(Ŷ , S) is upper bounded by TV (Ŷ , S). Recall that TV (Ŷ , S) =

∫ 1

0
|PŶ |S=0(z) −

PŶ |S=1(z)|dz, we have

∆dp(Ŷ , S) =

∣∣∣∣Pr(Ŷ ≥ 1

2
| S = 0

)
− Pr

(
Ŷ ≥ 1

2
| S = 1

)∣∣∣∣
=

∣∣∣∣∣
∫ 1

1
2

PŶ |S=0(z)− PŶ |S=1(z)dz

∣∣∣∣∣
≤
∫ 1

1
2

∣∣∣PŶ |S=0(z)− PŶ |S=1(z)
∣∣∣ dz

≤
∫ 1

0

∣∣∣PŶ |S=0(z)− PŶ |S=1(z)
∣∣∣ dz

=TV (Ŷ , S).

Next, we prove that W (Ŷ , S) is also upper bounded by TV (Ŷ , S).

W (Ŷ , S) =

∫ 1

0

∣∣∣F−1

Ŷ |S=0
(y)− F−1

Ŷ |S=1
(y)
∣∣∣ dy

=

∫ 1

0

∣∣∣FŶ |S=0(z)− FŶ |S=1(z)
∣∣∣ dz. (6)

This equation holds because we know that FŶ |S=0(0) = FŶ |S=1(0) = 0 and FŶ |S=0(1) =

FŶ |S=1(1) = 1 according to the property of cumulative distribution function and the fact that

Ŷ ∈ [0, 1]. Hence y = FŶ |S=0(z) and y = FŶ |S=1(z) form a closed curve in [0, 1] × [0, 1] in
z-y plane. Consequently, Equation (6) could be seen as computing the area of the closed curve from
the y-axis and z-axis separately. Consequently, we have

W (Ŷ , S) =

∫ 1

0

∣∣∣FŶ |S=0(z)− FŶ |S=1(z)
∣∣∣ dz

=

∫ 1

0

∣∣∣∣∫ x

0

PŶ |S=0(z)dz −
∫ x

0

PŶ |S=1(z)dz

∣∣∣∣ dx
≤
∫ 1

0

∫ x

0

∣∣∣PŶ |S=0(z)dz − PŶ |S=1(z)
∣∣∣ dzdx

=

∫ x′

0

∣∣∣PŶ |S=0(z)dz − PŶ |S=1(z)
∣∣∣ dz, x′ ∈ [0, 1]

≤
∫ 1

0

∣∣∣PŶ |S=0(z)dz − PŶ |S=1(z)
∣∣∣ dz

=TV (Ŷ , S).

Finally, we prove that I(Ŷ , S) is upper bounded by TV (Ŷ , S) if ∀z ∈ [0, 1], PŶ (z) ≥ ΠiPr(S = i).
First, we have

I(Ŷ , S) =

∫ 1

0

∑
i

PŶ ,S(z, i) log
PŶ ,S(z, i)

PŶ (z)Pr(S = i)
dz

15

Published as a conference paper at ICLR 2024

=

∫ 1

0

∑
i

Pr(S = i)PŶ |S=i(z) log
PŶ |S=i(z)

PŶ (z)
dz.

Let Pi = Pr(S = i) for i = 0, 1, then we have P0 + P1 = 1 and PŶ (z) = P0PŶ |S=0(z) +

P1PŶ |S=1(z). According to the fact that log x ≤ x − 1 for x ∈ (0, 1], we let x =
PŶ |S=i(z)

PŶ (z) and
have

I(Ŷ , S) =

∫ 1

0

∑
i

PiPŶ |S=i(z) log
PŶ |S=i(z)

PŶ (z)
dz

≤
∫ 1

0

∑
i

Pi

(
PŶ |S=i(z)

)2
PŶ (z)

− PiPŶ |S=i(z)dz

=

∫ 1

0

∑
i

Pi

PŶ |S=i(z)
(
PŶ |S=i(z)− PŶ (z)

)
PŶ (z)

dz

=

∫ 1

0

P0P1PŶ |S=0(z)
(
PŶ |S=0(z)− PŶ |S=1(z)

)
P0PŶ |S=0(z) + P1PŶ |S=1(z)

+
P0P1PŶ |S=1(z)

(
PŶ |S=1(z)− PŶ |S=0(z)

)
P0PŶ |S=0(z) + P1PŶ |S=1(z)

dz

=

∫ 1

0

P0P1

(
PŶ |S=0(z)− PŶ |S=1(z)

)2
P0PŶ |S=0(z) + P1PŶ |S=1(z)

dz.

(7)

Given that PŶ (z) ≥ ΠiPr(S = i) ∀z ∈ [0, 1], we have P0PŶ |S=0(z)+P1PŶ |S=1(z) ≥ P0P1(P0+

P1) = P0P1. Consequently, we have

I(Ŷ , S) ≤
∫ 1

0

(
PŶ |S=0(z)− PŶ |S=1(z)

)2
dz.

Considering that the training of fairness-aware GNNs makes the distributions PŶ |S=0(z) and
PŶ |S=1(z) closer, we assume that |PŶ |S=0(z) − PŶ |S=1(z)| ≤ 1 for z ∈ [0, 1]. To verify this as-
sumption, we conduct numerical experiments on all three adopted datasets. Following our method-
ology, we use the kernel density estimation to estimate the distribution functions PŶ |S=0(z) and
PŶ |S=1(z) and compute the value of |PŶ |S=0(z)−PŶ |S=1(z)| consequently. We record the largest
value of |PŶ |S=0(z) − PŶ |S=1(z)| for z ∈ [0, 1] and obtain the results as 0.1372 ± 0.0425 for
Facebook, 0.0999± 0.0310 for Pokec z, and 0.0356± 0.0074 for Credit (mean value and standard
deviation under 5 random seeds), which are all far less than 1. Then, we come to

I(Ŷ , S) ≤
∫ 1

0

∣∣∣PŶ |S=0(z)− PŶ |S=1(z)
∣∣∣ dz = TV (Ŷ , S). (8)

In conclusion, we have proved that ∆dp(Ŷ , S) and W (Ŷ , S) are upper bounded by TV (Ŷ , S).
Moreover, I(Ŷ , S) is also upper bounded by TV (Ŷ , S) if ∀z ∈ [0, 1], PŶ (z) ≥ ΠiPr(S = i)
holds.

Remarks on Theorem 1. It is worth noting that I(Ŷ , S) ≤ TV (Ŷ , S) stems from the condition
of PŶ (z) ≥ ΠiPr(S = i), ∀z ∈ [0, 1]. Although we are not able to always ensure the correctness of
the condition in practice, we can still obtain from Theorem 1 that (1) the probability of the condition
holds grows larger when the number of sensitive groups increases; (2) even in the binary case, the
condition is highly likely to hold in practice, considering that Pr(S = 0) · Pr(S = 1) ≤ 1

4 (In
a binary case, we have Pr(s = 0) + Pr(s = 1) = 1; hence, Pr(s = 0)Pr(s = 1) = Pr(s =
0)(1− Pr(s = 0)) ≤ 1/4).

16

Published as a conference paper at ICLR 2024

To further improve the soundness of our theoretical analysis, we can slightly loosen
the condition PŶ (z) ≥ ΠiPr(S = i) ∀z ∈ [0, 1] and obtain a new condition∫ 1

0

(
P0P1

P0PŶ |S=0(z)+P1PŶ |S=1(z)

)2
dz ≤ 1. Consider the last step of Equation (7). According to the

Cauchy-Schwartz inequality, we have

I(Ŷ , S) ≤
∫ 1

0

P0P1

(
PŶ |S=0(z)− PŶ |S=1(z)

)2
P0PŶ |S=0(z) + P1PŶ |S=1(z)

dz

≤

∫ 1

0

(
P0P1

P0PŶ |S=0(z) + P1PŶ |S=1(z)

)2

dz ·
∫ 1

0

(
PŶ |S=0(z)− PŶ |S=1(z)

)4
dz

 1
2

≤
(∫ 1

0

(
PŶ |S=0(z)− PŶ |S=1(z)

)4
dz

) 1
2

≤
√
TV (Ŷ , S).

Consequently, we obtain a variant of Theorem 1 as follows.

Theorem A 1. I(Ŷ , S) is upper bounded by
√

TV (Ŷ , S), if
∫ 1

0

(
P0P1

P0PŶ |S=0(z)+P1PŶ |S=1(z)

)2
dz ≤

1 holds.

According to Theorem A 1, we find a looser upper bound for I(Ŷ , S) (still dependent on TV (Ŷ , S))
based on a weaker condition. In addition, Theorem A 1 is able to support our total variation loss as
well, since we still have I(Ŷ , S) approaches 0 when TV (Ŷ , S) approaches 0 after training. Similar
as the assumption |PŶ |S=0(z) − PŶ |S=1(z)| ≤ 1, we conduct numerical experiments with kernel
density estimation for estimating PŶ |S=0(z) and PŶ |S=1(z) and numerical integral for computing

the value of
∫ 1

0

(
P0P1

P0PŶ |S=0(z)+P1PŶ |S=1(z)

)2
dz. We obtain the results of the integral as 0.8621 ±

0.1110 for Facebook, 0.4568 ± 0.0666 for Pokec z, and 0.5934 ± 0.0763 for Credit (mean value
and standard deviation under 5 random seeds). Experimental results verify the feasibility of the
condition in Theorem A 1.

A.2 PROOF OF THEOREM 2

Theorem 2. The optimal poisoned adjacency matrix At+1 in the t + 1-th iteration given by PGD,
i.e., the solution of At+1 = argmin|L(At)−L(A′)|≤ϵt∥A

′ − (At + η∇Lf (A
t))∥2F is

At+1 =

At + η∇ALf (A

t), if η|∇AL(At)T∇ALf (A
t)| ≤ ϵt,

At + η∇ALf (A
t) +

etϵt − η∇AL(At)T∇ALf (A
t)

∥∇AL(At)∥2F
∇AL(At), otherwise,

(9)

where et = sign
(
∇AL(At)T∇ALf (A

t)
)
.

Proof. First, we know that A′ = At is a feasible solution because L(At) − L(At) = 0 ≤ ϵt.
Hence we assume that A′ is close to At. Consequently, we use the first-order Taylor expansion to
substitute the constraint |L(A′)− L(At)| ≤ ϵt as

∣∣∇L(At)T (A′ −At)
∣∣ ≤ ϵt. For simplicity, we

vectorize the adjacency matrices At and A′ here such that At,A′ ∈ Rn2

.

Next, we let A′ = At + η∇Lf (A
t) + ξ, and convert the optimization problem as follows.

At+1 = argmin
|∇L(At)T (η∇Lf (At)+ξ)|≤ϵt

∥ξ∥22. (10)

Then we discuss the new constraint in Equation (10) |η∇L(At)T∇Lf (A
t) +∇L(At)T ξ| ≤ ϵt in

different conditions.

(1). When |η∇L(At)T∇Lf (A
t)| ≤ ϵt, we can easily obtain the optimal solution as ξ = 0.

17

Published as a conference paper at ICLR 2024

(2). When η∇L(At)T∇Lf (A
t) ≥ ϵt, then we have

−ϵt − η∇L(At)T∇Lf (A
t) ≤ ∇L(At)T ξ ≤ ϵt − η∇L(At)T∇Lf (A

t).

Because ∇L(At)T ξ = ∥∇L(At)∥2 · ∥ξ∥2 · cos θ, where θ is the angle of ∇L(At) and ξ. To
minimize ∥ξ∥2, we minimize cos θ as cos θ = −1, i.e., ξ = −∥ξ∥2 · ∇L(At)/∥∇L(At)∥2, and
then have

−ϵt + η∇L(At)T∇Lf (A
t)

∥∇L(At)∥2
≤ ∥ξ∥2 ≤

ϵt + η∇L(At)T∇Lf (A
t)

∥∇L(At)∥2
.

Therefore, the solution of Equation (10) is

ξ =
ϵt − η∇L(At)T∇Lf (A

t)

∥∇L(At)∥22
∇L(At).

(3). When η∇L(At)T∇Lf (A
t) ≤ −ϵt, we also have

−ϵt − η∇L(At)T∇Lf (A
t) ≤ ∇L(At)T ξ ≤ ϵt − η∇L(At)T∇Lf (A

t).

Different from condition (2), the left-hand side and right-hand side here are both positive. Similarly,
we let cos θ = 1 and obtain the solution of Equation (10) as

ξ =
−ϵt − η∇L(At)T∇Lf (A

t)

∥∇L(At)∥22
∇L(At).

Combine the aforementioned three conditions into A′ = At + η∇Lf (A
t) + ξ, then we have the

solution as follows

At+1 =

At + η∇ALf (A

t), if η|∇AL(At)T∇ALf (A
t)| ≤ ϵt,

At + η∇ALf (A
t) +

etϵt − η∇AL(At)T∇ALf (A
t)

∥∇AL(At)∥2F
∇AL(At), otherwise,

where et = sign
(
∇AL(At)T∇ALf (A

t)
)
.

B ATTACK SETTINGS

In this section, we introduce our attack settings in detail from three perspectives, the attacker’s goal,
the attacker’s knowledge, and the attacker’s capability.

Attacker’s Goal. There are two different settings of our problem, the fairness evasion attack,
and the fairness poisoning attack. In the fairness evasion attack, the attacker’s goal is to let the
victim model make unfair predictions on test nodes, where the victim model is trained with fairness
consideration on the clean graph. Note that it is possible for real-world attackers to attack the access
control of the databases to modify the input graph data, especially for edge computing systems with
a coarse-grained access control (Ali et al., 2016; Xiao et al., 2019). In addition, once the model is
deployed, the attacker can launch evasion attacks at any time, which increases the difficulty and cost
of defending against evasion attacks (Zhang et al., 2022). Considering the severe impact of evasion
attacks, many prevalent existing works Dai et al. (2018); Zügner et al. (2018); Zügner & Günnemann
(2019); Zhang et al. (2022) make great efforts to study evasion attacks. In the fairness poisoning
attack, the attacker’s goal is to let the victim model make unfair predictions on test nodes, where
the victim model is trained with fairness consideration on the poisoned graph. For both settings,
we use commonly used fairness metrics, e.g., demographic parity (Dwork et al., 2012) and equal
opportunity (Hardt et al., 2016) to measure the fairness of predictions.

Attacker’s Knowledge. To make our attack practical in the real world, we set several limitations
on the attacker’s knowledge and formulate the attack within a gray-box setting. It is worth noting
that our attacker’s knowledge basically follows previous attacks on prediction utility of GNNs (Wu
et al., 2019; Xu et al., 2019; Zügner & Günnemann, 2019; Chang et al., 2020a; Ma et al., 2020; Li
et al., 2022a; Ma et al., 2022; Lin et al., 2022). Specifically, the attacker is able to observe the node
attributes X, graph structure A, ground truth labels Y , and sensitive attribute value set S, but cannot

18

Published as a conference paper at ICLR 2024

observe the victim GNN model fθ. Therefore, the attackers need to exploit a surrogate model gθ to
achieve their goal.

It is worth noting that our method can be directly adapted to a white-box setting by replacing the
trained surrogate model in the attacker’s objective with the true victim model in Problem 1. In con-
trast, designing fairness attacks in a black-box attack setting can be extremely challenging. The
difference between gray-box attacks and black-box attacks is black-box attackers are not allowed to
access the ground truth labels. Different from node embeddings which can be obtained in an unsu-
pervised way, group fairness metrics have to rely on the ground truth labels, which makes existing
black-box attacks on graphs difficult to adapt to fairness attacks. Despite the difficulty of black-box
fairness attacks, we provide an initial step toward a potential way to extend our framework to a
black-box setting. First, the attacker can collect some data following a similar distribution, i.e., if
the original graph is a Citeseer citation network, the attacker can collect data from Arxiv; if the orig-
inal graph is a Facebook social network, the attacker can collect data from Twitter (X). During the
data collection (preprocessing), the dimension of collected node features should be aligned with the
original graph. Then, the attacker can train a state-of-the-art inductive GNN model on the collected
graph data and obtain the predicted labels on the original graph. Finally, the attacker can use the
predicted labels as a pseudo label to implement our G-FairAttack on the original graph.

Attacker’s Capability. Between attacking the graph structure and the node attributes, we only
consider the structure attack as the structure perturbation in the discrete domain is more challenging
to solve and the structure attack can be easily adapted to obtain the attribute attack. Hence, we
consider that attackers can only modify the graph structure A, i.e., adding new edges or cutting
existing edges, consistent with many previous attacks on prediction utility of GNNs (Dai et al., 2018;
Xu et al., 2019; Zügner & Günnemann, 2019; Wang & Gong, 2019; Bojchevski & Günnemann,
2019; Chang et al., 2020a). In addition, the structure perturbation should be unnoticeable. Existing
attacks of GNNs (Zügner et al., 2018; Zügner & Günnemann, 2019; Dai et al., 2018; Bojchevski &
Günnemann, 2019) proposed the following unnoticeable constraints: ∆ edges are changed at most;
there are no singleton nodes, i.e., nodes without neighbors after the attack; the degree distributions
before and after the attack should be the same with high confidence. We follow these works to ensure
the unnoticeability of our attack. More importantly, we propose an extra unnoticeable constraint to
ensure the difference of the utility losses before and after the attack is less than ϵ. This unnoticeable
utility constraint makes attacks on fairness difficult to recognize.

After clarifying detailed attack settings, we use Figure 1 to illustrate a toy example of our proposed
attack problem. In Figure 1, We use squares to denote the sensitive group 0 and triangles to denote
the sensitive group 1. We use blue to label class-0 nodes and orange to label class-1 nodes. We
compute the demographic parity and the equal opportunity metrics (larger value means less fair)
to evaluate the fairness of the model prediction. By modifying two edges (from left to right), the
attacker can let the fairness-aware GNN make unfair predictions while preserving the accuracy.

C FAST COMPUTATION

C.1 FAST COMPUTATION SKETCH

The goal of fast computation is to solve the problem (ut, vt)← argmax(u,v)∈Ct r̃t(u, v) efficiently.
According to the definition of r̃t(u, v), the computation of r̃t(u, v) depends on two loss functions:
the attacker’s objective Lf and the utility loss L. Between them, Lf can be formulated as

Lf (gθ∗ ,A,X,Y,Vtest,S) =

∣∣∣∣∣ ∑
i∈Vtest

kiI≥0

(
gθ∗ (A,X)[i]

)∣∣∣∣∣ , (11)

where ki = 1/ |V0 ∩ Vtest| if i ∈ V0 and ki = −1/ |V1 ∩ Vtest| if i ∈ V1. I≥0(·) denotes an indicator
function where I≥0(x) = 1 if x ≥ 0 and I≥0(x) = 0 otherwise. The other L can be formulated as

L(gθ∗ ,A,X,Y,Vtrain) = −
1

|Vtrain|
∑

i∈Vtrain

yi log
(
σ(gθ∗(A,X)[i])

)
+ (1− yi) log

(
1− σ(gθ∗(A,X)[i])

)
,

(12)

19

Published as a conference paper at ICLR 2024

Algorithm 1 G-FairAttack: A Sequential Attack on Fairness of GNNs.
Input: Clean adjacency matrix A, attribute matrix X, attack budget ∆, utility budget ϵ.
Output: The solution of Problem 1: A∗.
1: t← 0, C0 ← E , A0 ← A
2: θ0 ← argminθ Ls (gθ,A,X,Y,S)
3: while t ≤ ∆ and

∣∣L(gθt ,At)− L(gθ0 ,A0)
∣∣ ≤ ϵ do

4: (ut, vt)← argmax(u,v)∈Ct r̃t(u, v), according to Algorithm 2.
5: At+1 ← flip(ut,vt)A

t

6: θt+1 ←
{
θt, Evasion
argminθ Ls

(
gθ,A

t+1,X,Y,S
)
, Poisoning

7: Ct+1 ← Ct\{(ut, vt), (vt, ut)}
8: t← t+ 1
9: end while

10: A∗ ← At

where σ(·) denotes the sigmoid function. In the t-th iteration of our sequential attack, to com-
pute the score function r̃t(u, v) efficiently, we should reduce the complexity of computing both
∆Lt(u, v) and ∆Lt

f (u, v). Specifically, our solution is to compute flip(u,v)Z
t incrementally and

obtain gθt(flip(u,v)A
t,X) = flip(u,v)Z

tθt. Then we can compute ∆Lf (u, v) and ∆L(u, v) ac-
cording to Equation (11) and Equation (12). We first review the computation of flip(u,v)Zt when a
new edge (u, v) is added.

Case 1: If i ∈ {u, v}, we can compute flip(u,v)Z
t
[i,:] as

flip(u,v)Z
t
[i,:] =

d̂t
[i]

d̂t
[i] + 1

(Zt
[i,:] −

Ât
[i,:]X

(d̂t
[i])

2
) +

Ât
[i,:]X+X[j,:]

(d̂t
[i] + 1)2

+
Ât

[j,:]X+X[i,:]

(d̂t
[i] + 1)(d̂t

[j] + 1)
, (13)

where j = v if i = u and j = u otherwise;

Case 2: If i ∈ N t
u ∪N t

v\{u, v}, we can compute flip(u,v)Z
t
[i,:] as

flip(u,v)Z
t
[i,:] = Zt

[i,:]−Ii∈N t
u
·(
Ât

[u,:]X

d̂t
[i]d̂

t
[u]

−
Ât

[u,:]X+X[v,:]

d̂t
[i](d̂

t
[u] + 1)

)−Ii∈N t
v
·(
Ât

[v,:]X

d̂t
[i]d̂

t
[v]

−
Ât

[v,:]X+X[u,:]

d̂t
[i](d̂

t
[v] + 1)

),

(14)
where Ii∈N = 1 if i ∈ N , and Ii∈N = 0 otherwise;

Case 3: If i ̸∈ N t
u ∪N t

v , we have flip(u,v)Z
t
[i,:] = Zt

[i,:].

Next, we introduce the computation of flip(u,v)Zt when an existing edge (u, v) is removed. Simi-
larly, we divide the computation into three cases as follows.

Case 1: If i ∈ {u, v}, we can compute flip(u,v)Z
t
[i,:] as

flip(u,v)Z
t
[i,:] =

d̂t
[i]

d̂t
[i] − 1

(Zt
[i,:] −

Ât
[i,:]X

(d̂t
[i])

2
−

Ât
[j,:]X

d̂t
[i]d̂

t
[j]

) +
Ât

[i,:]X−X[j,:]

(d̂t
[i] − 1)2

, (15)

where j = v if i = u and j = u otherwise;

Case 2: If i ∈ N t
u ∪N t

v\{u, v}, we can compute flip(u,v)Z
t
[i,:] as

flip(u,v)Z
t
[i,:] = Zt

[i,:]−Ii∈N t
u
·(
Ât

[u,:]X

d̂t
[i]d̂

t
[u]

−
Ât

[u,:]X−X[v,:]

d̂t
[i](d̂

t
[u] − 1)

)−Ii∈N t
v
·(
Ât

[v,:]X

d̂t
[i]d̂

t
[v]

−
Ât

[v,:]X−X[u,:]

d̂t
[i](d̂

t
[v] − 1)

),

(16)
where Ii∈N = 1 if i ∈ N , and Ii∈N = 0 otherwise;

Case 3: If i ̸∈ N t
u ∪N t

v , we have flip(u,v)Z
t
[i,:] = Zt

[i,:].

The overall fast computation algorithm is shown in Algorithm 2, where argmax@aρ
t(u, v) is denoted

as the set of (u, v) corresponding to the top-a elements of ρt(u, v).

20

Published as a conference paper at ICLR 2024

Algorithm 2 The fast computation algorithm of (ut, vt).

Input: Adjacency matrix At, attribute matrix X, output matrix Zt, degree vector d̂t, product ma-
trix ÂtX, model parameter θt.

Output: Target edge (ut, vt) in Algorithm 1.
1: Ct ← argmax@a

(u,v)∈Et

ρt(u, v).

2: k ← 0, pt ← 0, qt ← 0.
3: for (u, v) ∈ Ct do
4: flip(u,v)Z

t ← Zt

5: for i ∈ N t
u ∪N t

v do
6: if i ∈ {u, v} then
7: Update flip(u,v)Z

t
[i,:] according to Equation (13) or Equation (15).

8: else
9: Update flip(u,v)Z

t
[i,:] according to Equation (14) or Equation (16).

10: end if
11: end for
12: gθt(flip(u,v)A

t,X)← flip(u,v)Z
tθt

13: Compute L(flip(u,v)At,X) and Lf (flip(u,v)A
t,X) according to Equation (11) and Equa-

tion (12).
14: pt

[k] ← L(flip(u,v)A
t,X)− L(At,X)

15: qt
[k] ← Lf (flip(u,v)A

t,X)− Lf (A
t,X)

16: k ← k + 1
17: end for
18: r̃t ← qt − (pt)T qt

∥pt∥2
2
pt

19: imax ← argmaxi=0,...,|Ct|−1 r̃
t
[i]

20: (ut, vt)← Ct[imax]

C.2 COMPLEXITY ANALYSIS

Based on Algorithm 2, we provide a detailed complexity analysis for our proposed G-FairAttack.

Proposition 2. The overall time complexity of G-FairAttack with the fast computation is O(d̄n2 +
dxan), where d̄ denotes the average degree.

Proof. First, to compute Ct, we compute |Ztθt| and find the maximum Mt in O(dxn). Then we
compute ρt(u, v) =

∑
i∈N t

u∪N t
v
Mt − |Zt

[i,:]θ
t| for (u, v) ∈ Et in O(d̄n2), and find the top-a

elements as Ct in O(n log a). Then, the computation of pt and qt can be divided into the following
steps for each edge (u, v) ∈ Ct.

1. The computation of flip(u,v)Zt
[i,:] for i ∈ N t

u ∪ N t
v . We can store and update ÂtX, d̂t, and Zt

for each iteration. Hence, the computation of Equation (13), Equation (14), Equation (15), and
Equation (16) only requires O(1). Consequently, the total time complexity of this step is O(d̄).

2. The computation of gθt(flip(u,v)A
t,X) = flip(u,v)Z

tθt requires O(ndx).

3. According to Equation (11) and Equation (12), the computation of the loss functions
L(flip(u,v)At,X) and Lf (flip(u,v)A

t,X) based on gθt(flip(u,v)A
t,X) requires O(n).

Considering all edges from Ct, the computation of pt and qt requires O(dxan). Finally, we can
compute r̃t and find (ut, vt) in O(a). Combining all these steps, the complexity of Algorithm 2 is
O(d̄n2 + dxan) in total.

With our fast computation method, the total time complexity of G-FairAttack is O((d̄n2+dxan)∆).
Here, the retraining of the surrogate model θt+1 = argminθ Ls

(
gθ,A

t+1,X,Y,S
)

in the fairness
poisoning attack is neglected because the convergence is not controllable. The overall G-FairAttack

21

Published as a conference paper at ICLR 2024

algorithm is shown in Algorithm 1. We can obtain the space complexity of G-FairAttack as O(|E|+
dxn).

Next, we show that our complexity can be further reduced in practice. We list two potential ways as
follows.

1. The first approach is to implement our fast computation algorithm in parallel. As the proof of
Proposition 2 shows, the main part of G-FairAttack’s complexity is the computation of ρt(u, v)
for (u, v) ∈ Et, which has O(d̄n2) complexity. It is distinct that this computation can be imple-
mented in parallel where Et is partitioned into p subsets, and each subset is fed into one process.
By exploiting parallel computation, the overall complexity can be reduced to O(d̄n2/p).

2. Instead of ranking all of the edges in Et by ρt(u, v), we can just randomly sample a edges from
Et as Ct. By using random sampling instead of ranking, the overall complexity can be reduced
to O(dxan). However, the error of the fast computation might increase without a careful choice
of the sampling distribution.

Note that most existing adversarial attack approaches (Zügner et al., 2018; Zügner & Günnemann,
2019; Bojchevski & Günnemann, 2019; Lin et al., 2022) do not have a lower complexity (less than
O(n2)) than our proposed G-FairAttack. The adversarial attacks with an O(n2) complexity can
already fit most commonly used graph datasets. In general, our method is practical for most graph
datasets as the existing literature. For extremely large datasets, we can also use the aforementioned
strategies to reduce further the time complexity.

Finally, we would like to make a more detailed comparison of the time complexity with adopted
attacking baselines. The random sampling-based baselines, i.e., random and FA-GNN, definitely
have lower time complexity (O(∆), ∆ is the attack budget) because they are based on random
sampling. Although their complexity is low, the effectiveness of random sampling-based attacks is
very limited. For the rest gradient-based attack baselines, i.e., Gradient Ascent and Metattack, their
time complexities are O(n2) (Zügner & Günnemann, 2019), the same as G-FairAttack. However,
gradient-based methods have a larger space complexity compared with G-FairAttack (O(n2) vs.
O(dxn+ |E|)).

D G-FAIRATTACK VS GRADIENT-BASED METHODS

0
0

1

1

𝑓=1

𝑓=2

𝑓=1
𝑓=0

x2

x1

grad(0,0)

𝑓=0

𝑓=1

𝑓=0

Discrete Update:

(0,0) (1,0)

Figure 4: The limitation of the gradient-
based optimization method. The blue
ellipses are isolines of the loss function.

The fairness attack of GNNs is a discrete optimization
problem, which is highly challenging to solve. Most
of the existing adversarial attacks that focus on the
prediction utility of GNNs adopt gradient-based meth-
ods (Zügner & Günnemann, 2019; Wu et al., 2019; Xu
et al., 2019; Geisler et al., 2021) to find the maximum of
the attacker’s objective. As G-FairAttack, gradient-based
structure attacks flip the edges sequentially. In the t-th it-
eration (t = 1, 2, . . .), the gradient-based optimization al-
gorithm finds a target edge (ut, vt) based on the gradient
of the adjacency matrix ∇AtL where L is the objective
function of the attacker, and flips this target edge to ob-
tain the update adjacency matrix At+1, which is expected
to increase the attacker’s objective. In particular, to obtain
∇AtL, gradient-based methods extend the discrete adja-
cency matrix At ∈ {0, 1}n×n to a continuous domain
Rn×n and compute∇AtL ∈ Rn×n. Specifically, for poi-
soning attacks where the problem becomes a bilevel opti-
mization, existing methods exploit the meta-learning (Zügner & Günnemann, 2019) or the convex
relaxation (Xu et al., 2019) techniques to remove the inner optimization. After obtaining∇AtL, the
gradient-based methods should update At in the discrete domain instead of using gradient ascent
directly. Specifically, gradient-based methods choose the target edge corresponding to the largest
element or use random sampling to find a target element At

[u,v].

Although existing attacks of GNNs based on gradient-based methods successfully decrease the pre-
diction utility of victim models, they have two main limitations.

22

Published as a conference paper at ICLR 2024

The first limitation is that we cannot ensure the loss function after flipping the target edge will
increase because the update in the discrete domain brings an uncontrollable error. The intuition
of the gradient-based method is that we cannot update the adjacency matrix with gradient ascent
because the adjacency matrix is binary and only one edge can be flipped in each time. Hence, we
expect that flipping the target edge corresponding to the largest gradient component can lead to the
largest increment of the attacker’s objective L(A,X). However, this expectation can be false since
the update of the adjacency matrix (flipping one target edge) has a fixed length. Next, we prove
Proposition 1.

Proposition 1. Gradient-based methods for optimizing the graph structure are not guaranteed to
decrease the objective function.

Proof. Consider the loss function L(A,X) near a specific point A0 where A ∈ Rn2

is a vectorized
adjacency matrix. Based on Taylor’s Theorem, we have

L(A,X) = L(A0,X) +∇AL(A0,X)⊤(A−A0) +R1(A),

where R1(A) = h1(A)∥A −A0∥ is the Peano remainder and we have limA→A0
h1(A) = 0. For

gradient-based methods, we have A1 = A0+ek where ek is the basis vector at the k-th dimension.
Then, we have

L(A1,X) = L(A0,X) +∇AL(A0,X)[k] + h1(A1).

Here, we know that ∇AL(A0,X)[k] is the largest positive element of ∇AL(A0,X), which is a
fixed value. Then, we expect that choosing A1 can lead to the fact that L(A1,X) > L(A0,X), i.e.,
∇AL(A0,X)[k] + h1(A1) > 0. However, this inequality is not true without further assumptions
when ∥A1 −A0∥0 = 1.

In comparison, we also show that the error can be controlled in the continuous domain by a careful
selection of the learning rate. In the continuous domain, the situation is different because we can
make the value of ∥A1 − A0∥ arbitrarily small by tuning the learning rate η where A1 = A0 +
η∇AL(A0,X)[k]ek. Note that we have limA→A0

h1(A) = 0 and the value of ∇AL(A0,X)[k] is
fixed. Hence we can choose a proper η which makes ∥A1−A0∥ small enough to ensure |h1(A1)| <
∇AL(A0,X)[k]. Finally, we have ∇AL(A0,X)[k] + h1(A1) > 0 and L(A1,X) > L(A0,X)
consequently. We also provide a two-dimensional case in Figure 4. In the iteration, the optimization
starts at (0, 0). The gradient at (0, 0) is [1 0]⊤. According to the gradient-based methods, the next
point should be at (1, 0). However, the loss after updating does not increase f(1, 0) = f(0, 0).
Instead, (0, 1) is a better update for f(0, 1) > f(0, 0) in this iteration.

The second limitation is the large space complexity. The computation of ∇AtL requires storing a
dense adjacency matrix with O(n2) space complexity, which is costly at a large scale.

In contrast, our proposed G-FairAttack successfully addresses these limitations. First, G-FairAttack
can ensure the increase of the attacker’s objective after flipping the target edge since G-FairAttack
exploits a ranking-based method to choose the target edge in each iteration. In particular, we
choose the target edge as max(u,v)∈Ct rt(u, v) = Lf (gθt , f lip(u,v)A

t) − Lf (gθt ,At), which en-
sures that flipping the target edge can maximize the increment of attacker’s objective. Second,
unlike gradient-based methods, G-FairAttack does not require storing a dense adjacency matrix as
no gradient computations are involved. Referring to the discussion in Appendix C.2, the space
complexity of G-FairAttack is O(|E| + dxn), much lower than gradient-based methods (O(n2)).
Moreover, we conduct an experiment to demonstrate the superiority of G-FairAttack compared with
gradient-based optimization methods. Specifically, we compare the effectiveness of G-FairAttack
with two gradient-based optimization methods in both fairness evasion attack and fairness poi-
soning attack settings. If an optimization algorithm leads to a larger increase in the attacker’s
objective, it is more effective. For the fairness evasion attack, we choose Gradient Ascent as
the baseline method. Given the attack budget ∆ = 0.5%|E|, we record the value of the at-
tacker objective Lf (gθ∗ ,At), i.e., demographic parity based on a surrogate model in the t-th it-
eration, for t = 0, . . . ,∆. The result is shown in Figure 5(a). We observe that the attacker
objective keeps increasing during our non-gradient optimization (adopted by G-FairAttack) pro-
cess and reaches an optimum rapidly, while the gradient-based optimization method (adopted by
Gradient Ascent) cannot ensure the increment of the attacker objective during the optimization.

23

Published as a conference paper at ICLR 2024

Table 3: Dataset statistics.
Dataset #Nodes #Edges #Attributes #Train/% #Validation/% #Test/% Sensitive
Facebook 1,045 53,498 574 50% 20% 30% Gender
Pokec 7,659 41,100 277 13% 25% 25% Region
Credit 30,000 200,526 13 20% 20% 30% Age

0 50 100
Iterations

0

5

10

dp
 /

% G-FairAttack
Gradient Ascent

(a) Fairness evasion attack.

0 50 100
Iterations

0

2

dp
 In

cr
em

en
t /

 % G-FairAttack
Metattack

(b) Fairness poisoning attack.

Figure 5: The variation of attacker’s objective during the
optimization process on Facebook, comparing non-gradient
methods (G-FairAttack) with gradient-based methods (Gra-
dient Ascent, Metattack).

For the fairness poisoning attack,
we choose Metattack as the base-
line method. During the optimiza-
tion process, the surrogate model gθt

is retrained in each iteration. The
convergence of the surrogate model
during the retraining is not control-
lable. To make a fair compari-
son, we should ensure both optimiza-
tion methods compute the attacker
objective based on the same surro-
gate model. Hence we fix At and
gθt for both methods and record the
increment of the attacker objective
Lf (gθt ,At+1)− Lf (gθt ,At) in the t-th iteration, for t = 0, . . . ,∆, where At+1 is obtained based
on different optimization methods. In conclusion, we compare the increment of the attacker’s objec-
tive caused by a single optimization step of different optimization methods in this case. The result is
shown in Figure 5(b). For G-FairAttack, the attacker’s objective increases in 28 iterations, i.e., pos-
itive ∆dp variation, and decreases in 1 iteration. For Metattack, the attacker objective increases in
only 5 iterations and decreases in 5 iterations as well. Therefore, a single step of G-FairAttack leads
to a larger increase of the attacker’s objective than Metattack given the same initial point At. In con-
clusion, our proposed G-FairAttack leads to a better solution in the optimization process compared
with gradient-based methods in both fairness evasion attacks and fairness poisoning attacks.

E IMPLEMENTATION DETAILS

E.1 DATASETS

The statistics of these datasets are shown in Table 3. In the Facebook graph (Leskovec & Mcauley,
2012), the nodes represent user accounts of Facebook, and the edges represent the friendship re-
lations between users. Node attributes are collected from user profiles. The sensitive attributes of
user nodes are their genders. The task of Facebook is to predict the education type of the users. In
the Credit defaulter graph (Dai & Wang, 2021), the nodes represent credit card users, and the edges
represent whether two users are similar or not according to their spending and payment patterns.
The sensitive attributes of user nodes are their ages. The task of Credit is to predict whether a user
will default on the credit card payment or not. In the Pokec graph (Agarwal et al., 2021), the nodes
represent user accounts of a prevalent social network in Slovakia, and the edges represent the friend-
ship relations between users. The sensitive attributes of user nodes are their regions. The task of
Pokec is to predict the working fields of the users. It is worth noting that we use a subgraph of Pokec
in (Dong et al., 2022a) instead of the original version in (Dai & Wang, 2021). In our experiment
implementation, we adopt the PyGDebias library (Dong et al., 2023a) to load these datasets.

E.2 BASELINES

We first introduce the detailed settings of the attack baselines in the first stage of evaluation.

• Random (Zügner et al., 2018; Hussain et al., 2022): Given the attack budget ∆, we randomly flip
∆ edges (removing existing edges or adding new edges) and obtain the attacked graph. It is a
random method that fits both the fairness evasion attack setting and the fairness poisoning attack
setting.

24

Published as a conference paper at ICLR 2024

• FA-GNN (Hussain et al., 2022): Given the attack budget ∆, we randomly link ∆ pairs of nodes
that belong to different classes and different sensitive groups. Specifically, we choose the most
effective link strategy, ”DD”, in our experiments. It is also a random method that fits both attack
settings.

• Gradient Ascent: Given the attack budget ∆, we flip ∆ edges sequentially in ∆ iterations. In each
iteration, we compute the gradient∇A′Lf (gθ∗ ,A′) and flip one edge corresponding to the largest
element of the gradient, where θ∗ = argminθ Ls(gθ,A). To make Lf differentiable, we use the
soft predictions to substitute the prediction labels in Lf as (Zeng et al., 2021). Here, we choose
a two-layer graph convolutional network (Kipf & Welling, 2017) as the surrogate model gθ, and
CE loss as the surrogate loss function Ls. Gradient Ascent is an optimization-based method that
only fits the fairness evasion attack setting.

• Metattack (Zügner & Günnemann, 2019): Given the attack budget ∆, we sequentially flip ∆
edges in ∆ iterations. In each iteration, we compute the meta gradient ∇A′Lf (gθ∗(A′),A′) by
MAML (Finn et al., 2017) and flip one edge corresponding to the largest element of the meta
gradient, where θ∗ = argminθ Ls(gθ,A

′). To make Lf differentiable, we implement the same
adaption of Lf as Gradient Ascent. Here, we also choose a two-layer GCN as the surrogate model
gθ and CE loss as the surrogate loss function Ls. Metattack is also an optimization-based method,
while it only fits the fairness poisoning attack.

It is worth noting that for both Gradient Ascent and Metattack, we should flip the sign of the gradient
components for connected node pairs as this yields the gradient for a change in the negative direction
(i.e., removing the edge) (Zügner & Günnemann, 2019). Hence, we flip the edge corresponding to
the largest score∇A[u,v]

Lf · (−2 ·A[u,v] + 1) for (u, v) ∈ E for Gradient Ascent and Metattack.

Next, we introduce our adopted test GNNs in the second stage. We choose four types of GNNs,
including a vanilla GNN and three types of fairness-aware GNNs.

• Vanilla: We choose a two-layer GCN (Kipf & Welling, 2017), which is a mostly adopted GNN
model in existing works.

• ∆dp: We choose the output-based regularization method (Navarin et al., 2020; Zeng et al., 2021;
Wang et al., 2022a; Dong et al., 2023c). Specifically, we choose a two-layer GCN as the backbone
and add a regularization term ∆dp to the loss function. Moreover, to make the regularization term
differentiable, we use the soft prediction to substitute the prediction label in ∆dp as (Zeng et al.,
2021).

• I(Ŷ , S): For mutual information loss, except for directly decreasing the mutual information, the
adversarial training (Bose & Hamilton, 2019; Dai & Wang, 2021) could also be seen as a specific
case of exploiting the mutual information loss according to (Kang et al., 2022). In an adversarial
training framework, an adversary is trained to predict S based on Ŷ . If the prediction is more
accurate, it demonstrates that the output Ŷ of the GNN contains more information about the
sensitive attribute S, i.e., the GNN model is less fair. We choose FairGNN (Dai & Wang, 2021)
as the baseline in the mutual information type. FairGNN contains a discriminator to predict the
sensitive attribute based on the output of a GNN backbone. The GNN backbone is trained to fool
the discriminator for predicting the sensitive attribute. Specifically, we choose a single-layer GCN
as the GNN backbone.

• W (Ŷ , S): We choose EDITS (Dong et al., 2022a), a model agnostic debiasing framework for
GNNs. EDITS finds a debiased adjacency matrix and a debiased node attribute matrix by min-
imizing the Wasserstein distance of the distributions of node embeddings on different sensitive
groups. With the debiased input graph data, the fairness of the GNN backbone is improved.
Specifically, we choose a two-layer GCN as the GNN backbone.

E.3 EXPERIMENTAL SETTINGS

The implementation of our experiments could be divided into two parts, fairness attack methods,
and the test GNN models. For attack methods, we use the source code of FA-GNN (Hussain et al.,
2022) and Metattack (Zügner & Günnemann, 2019). Other attack methods including G-FairAttack
are implemented in PyTorch (Paszke et al., 2019). For test GNN models, we use the source code
of GCN (Kipf & Welling, 2017), FairGNN (Dai & Wang, 2021), and EDITS (Dong et al., 2022a).

25

Published as a conference paper at ICLR 2024

Table 4: The hyperparameter settings of four different types of test GNNs on three benchmarks in
fairness evasion attack and fairness poisoning attack settings. The detailed definition and description
of parameters α, β, µ1, µ2, µ3, µ4, and r refers to (Dai & Wang, 2021; Dong et al., 2022a).

Test GNN Hyperparameter Fairness Evasion Attack Fairness Poisoning Attack
Facebook Pokec Credit Facebook Pokec Credit

GCN

learning rate 1e−4 1e−4 1e−2 1e−4 1e−3 1e−3

weight decay 1e−5 1e−2 1e−5 1e−5 1e−5 1e−5

dropout 0.5 0.2 0.5 0.5 0.5 0.5
epochs 2,000 1,000 1,000 1,000 500 200

Reg

learning rate 1e−4 1e−3 5e−2 1e−4 1e−3 5e−3

weight decay 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5

dropout 0.5 0.2 0.2 0.5 0.5 0.5
epochs 2,000 10,000 2,000 1,000 1,000 500

fairness loss weight α 1 150 1 1 80 1

FairGNN

learning rate 1e−3 5e−3 1e−2 1e−4 5e−3 1e−3

weight decay 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5

dropout 0.5 0.5 0.2 0.5 0.5 0.5
epochs 2,000 5,000 1,000 1,500 5,000 1,000

covariance constraint weight α 60 1 20 2 100 30
adversarial debiasing weight β 10 500 10 3 1,000 1

EDITS

learning rate 1e−4 1e−4 5e−3 1e−3 1e−4 1e−3

weight decay 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5

dropout 5e−2 5e−2 5e−2 5e−2 5e−2 5e−2

epochs 1,000 500 500 2,000 1,000 200
µ1 1e−2 3e−2 5e−2 1e−2 3e−2 5e−2

µ2 0.8 70 0.1 0.8 70 0.1
µ3 0.1 1 1 0.1 1 1
µ4 20 15 15 20 15 15

edge binarization threshold r 1e−4 0.3 5e−3 1e−4 0.2 2e−2

We exploit Adam optimizer (Kingma & Ba, 2015) to optimize the surrogate model, gradient-based
attacks, and the test GNNs. All experiments are implemented on an Nvidia RTX A6000 GPU. We
provide the hyperparameter settings of G-FairAttack in Table 5, and the hyperparameter settings of
test GNNs in Table 4. 3

E.4 REQUIRED PACKAGES

We list some key packages in Python required for implementing G-FairAttack as follows.

• Python == 3.9.13

• torch == 1.11.0

• torch-geometric == 2.0.4

• numpy == 1.21.5

• numba == 0.56.3

• networkx == 2.8.4

• scikit-learn == 1.1.1

• scipy == 1.9.1

• dgl == 0.9.1

• deeprobust == 0.2.5

3The open-source code is available at https://github.com/zhangbinchi/G-FairAttack.

26

https://github.com/zhangbinchi/G-FairAttack

Published as a conference paper at ICLR 2024

F SUPPLEMENTARY EXPERIMENTS

F.1 EFFECTIVENESS OF ATTACK

Table 5: The hyperparameter settings of G-FairAttack on
three benchmarks. The ”(s)” denotes that the correspond-
ing hyperparameter is related to the training of the surrogate
model.

Hyperparameter Facebook Pokec Credit
attack budget ∆ 5% 5% 1%
utility budget ϵ 5% 5% 5%

threshold a 0.1 5e−3 1e−4

learning rate (s) 1e−3 1e−3 5e−2

weight decay (s) 1e−5 1e−5 1e−5

epochs (s) 2,000 2,000 1,000
dropout (s) 0.5 0.5 0.5

fairness loss weight α (s) 1 1 1
bandwidth h (s) 0.1 0.1 0.1

number of intervals m (s) 10,000 10,000 1,000

In Section 4.2, we discussed the ef-
fectiveness of G-FairAttack in attack-
ing the fairness of different types of
GNNs. Here, we provide more re-
sults of the same experiment as Sec-
tion 4.2 but in different attack set-
tings and more fairness metrics. Ta-
ble 6 shows the experimental results
of fairness evasion attacks in ∆eo

fairness metric, Table 7 shows the ex-
perimental results of fairness poison-
ing attacks in ∆dp fairness metric,
and Table 8 shows the experimental
results of fairness poisoning attacks
in ∆eo fairness metric. From the re-
sults, we can find that the overall performance of G-FairAttack is better than any other baselines,
which highlights the clear superiority of G-FairAttack. In addition, we can find that G-FairAttack
seems less desirable in the cases where vanilla GCN serves as the victim model. The reason for
this phenomenon is our surrogate loss contains two parts, utility loss term L and fairness loss term
Lf , while the real victim loss of vanilla GCN only contains the utility loss term L. However, in
the general case (without knowing the type of the victim model), G-FairAttack can outperform all
other baselines when the surrogate loss differs from the victim loss (when attacking fairness-aware
GNNs). Despite that, the shortage in attacking vanilla GNNs can be solved easily by choosing a
smaller hyperparameter α (the weight of Lf). As Table 5 shows, we fix the hyperparameter setting
(also fix α) for all attack methods when attacking different types of victim models because the at-
tacker cannot choose different hyperparameters based on the specific type of the victim model in
the gray-box attack setting. By fixing the hyperparameter settings for different victim models, the
experimental results demonstrate that our G-FairAttack is victim model-agnostic and easy to use
(in terms of hyperparameter tuning). In addition, we can also find that the fairness poisoning attack
is a more challenging task (easier to fail), while effective fairness poisoning attack methods induce
a more serious deterioration in the fairness of the victim model. Furthermore, we obtain that edge
rewiring based methods (EDITS) can effectively defend against some fairness attacks (more details
about this conclusion are discussed in Appendix G).

F.2 EFFECTIVENESS OF SURROGATE LOSS

In Section 4.3, we discussed the effectiveness of our proposed surrogate loss in representing dif-
ferent types of fairness loss in different victim models. Here, we provide more results of the
same experiment as Section 4.3 but in different attack settings and datasets. Table 9 shows the
experimental results of fairness evasion attacks on the Facebook dataset. As mentioned in Sec-
tion 4.3, the surrogate loss function in the attack method and the victim loss function in the
victim model are different in our attack setting. The attacker does not know the form of the
victim loss function due to the gray-box setting. If the surrogate loss is the same as the vic-
tim loss, the attack method naturally can have a desirable performance (as white-box attacks).

Table 9: Results of G-FairAttack on Facebook while replac-
ing the total variation loss with other loss terms.

Attack FairGNN EDITS
∆dp (%) ∆eo (%) ∆dp (%) ∆eo (%)

Clean 6.23 ± 0.69 4.78 ± 0.98 1.15 ± 0.25 2.31 ± 0.58
G-FA-None 6.35 ± 0.83 4.78 ± 0.98 4.19 ± 0.29 2.88 ± 0.33
G-FA-∆dp 6.35 ± 0.83 4.78 ± 0.98 3.86 ± 0.29 2.88 ± 0.33
G-FA 8.62 ± 0.91 5.70 ± 0.64 4.19 ± 0.29 2.88 ± 0.33

However, in this experiment, we
demonstrate that G-FairAttack (with
our proposed surrogate loss) has the
most desirable performance when at-
tacking different victim models with
a different victim loss from the sur-
rogate loss. Consequently, our exper-
iment verifies that our surrogate loss
function is adaptable to attacking dif-
ferent types of victim models.

27

Published as a conference paper at ICLR 2024

Table 6: Experiment results of fairness evasion attack, where AUC and ∆eo are adopted as the
prediction utility metric and the fairness metric, correspondingly.

Victim Attack Facebook Pokec z Credit
AUC(%) ∆eo(%) AUC(%) ∆eo(%) AUC(%) ∆eo(%)

GCN

Clean 64.53 ± 0.05 0.52 ± 0.41 72.87 ± 0.20 8.75 ± 0.94 70.48 ± 0.14 12.29 ± 2.14
Random 65.05 ± 0.10 1.55 ± 0.00 72.56 ± 0.20 8.71 ± 2.50 70.53 ± 0.13 12.57 ± 2.29
FA-GNN 63.00 ± 0.06 2.12 ± 0.58 72.12 ± 0.28 1.31 ± 1.05 70.44 ± 0.12 14.39 ± 2.65

Gradient Ascent 64.77 ± 0.11 1.93 ± 0.33 72.88 ± 0.18 5.93 ± 1.74 - -
G-FairAttack 64.20 ± 0.03 2.38 ± 0.68 72.91 ± 0.20 6.69 ± 1.63 70.44 ± 0.11 12.75 ± 2.12

Reg

Clean 64.09 ± 0.16 0.38 ± 0.00 71.08 ± 0.35 1.73 ± 1.15 70.26 ± 0.34 0.66 ± 0.84
Random 64.49 ± 0.26 0.77 ± 0.33 70.86 ± 0.30 1.34 ± 1.12 70.31 ± 0.34 0.82 ± 0.98
FA-GNN 62.28 ± 0.23 0.90 ± 0.78 70.12 ± 0.25 5.23 ± 0.38 70.34 ± 0.36 0.32 ± 0.27

Gradient Ascent 64.40 ± 0.12 0.20 ± 0.00 71.21 ± 0.49 2.25 ± 1.19 - -
G-FairAttack 63.30 ± 0.14 1.74 ± 0.33 71.11 ± 0.26 7.14 ± 1.26 70.21 ± 0.37 2.08 ± 1.20

FairGNN

Clean 65.24 ± 0.49 0.97 ± 0.77 69.71 ± 0.09 0.81 ± 0.69 67.32 ± 0.46 0.94 ± 0.67
Random 64.88 ± 0.52 0.44 ± 0.29 69.36 ± 0.20 0.48 ± 0.40 67.32 ± 0.44 0.92 ± 0.69
FA-GNN 59.78 ± 0.96 1.01 ± 1.29 69.57 ± 0.28 2.58 ± 0.58 67.26 ± 0.49 0.95 ± 0.42

Gradient Ascent 65.19 ± 0.47 1.01 ± 1.29 69.21 ± 0.16 1.25 ± 0.43 - -
G-FairAttack 64.34 ± 0.45 1.79 ± 1.30 69.83 ± 0.14 2.30 ± 0.49 67.30 ± 0.47 1.12 ± 1.04

EDITS

Clean 70.95 ± 0.28 0.38 ± 0.00 70.89 ± 0.44 5.15 ± 0.51 69.11 ± 0.50 6.15 ± 1.67
Random 68.13 ± 0.20 0.97 ± 0.68 70.89 ± 0.44 5.15 ± 0.51 69.04 ± 0.06 6.93 ± 2.13
FA-GNN 70.72 ± 0.27 0.38 ± 0.00 70.89 ± 0.44 5.15 ± 0.51 69.11 ± 0.50 6.16 ± 1.66

Gradient Ascent 68.36 ± 0.24 0.57 ± 0.56 70.89 ± 0.44 5.15 ± 0.51 - -
G-FairAttack 68.12 ± 0.22 1.23 ± 0.73 70.99 ± 0.44 6.18 ± 1.23 69.04 ± 0.06 6.93 ± 2.13

Table 7: Experiment results of fairness poisoning attack, where ACC and ∆dp are adopted as the
prediction utility metric and the fairness metric, correspondingly.

Victim Attack Facebook Pokec z Credit
ACC(%) ∆dp(%) ACC(%) ∆dp(%) ACC(%) ∆dp(%)

GCN

Clean 80.25 ± 0.64 6.33 ± 0.54 61.51 ± 0.54 8.39 ± 1.25 69.77 ± 0.36 10.61 ± 0.73
Random 80.15 ± 1.02 4.17 ± 1.58 60.98 ± 0.29 7.76 ± 0.93 69.71 ± 0.55 10.96 ± 1.35
FA-GNN 79.41 ± 0.67 5.84 ± 0.32 59.97 ± 0.90 2.46 ± 1.18 69.56 ± 0.81 18.58 ± 1.78
Metattack 79.30 ± 1.15 33.33 ± 5.97 60.14 ± 0.29 44.90 ± 0.10 - -

G-FairAttack 78.55 ± 0.18 14.99 ± 2.08 61.81 ± 0.21 6.15 ± 1.52 69.57 ± 1.13 10.87 ± 0.96

Reg

Clean 80.41 ± 0.18 4.63 ± 1.18 65.20 ± 1.26 1.55 ± 0.82 68.22 ± 0.73 1.48 ± 0.28
Random 80.18 ± 0.30 1.41 ± 1.23 63.00 ± 1.50 2.01 ± 1.98 68.62 ± 0.48 1.58 ± 0.64
FA-GNN 79.38 ± 0.31 1.42 ± 0.89 64.02 ± 0.47 0.76 ± 0.81 69.29 ± 0.63 0.79 ± 0.41
Metattack 80.81 ± 0.40 9.45 ± 0.96 62.89 ± 1.90 4.88 ± 1.62 - -

G-FairAttack 77.95 ± 0.16 15.65 ± 0.69 65.45 ± 0.55 7.76 ± 0.08 67.80 ± 1.34 2.32 ± 0.51

FairGNN

Clean 80.36 ± 0.18 2.71 ± 0.50 60.87 ± 3.00 0.80 ± 0.62 75.57 ± 0.65 4.78 ± 1.58
Random 78.66 ± 0.00 0.18 ± 0.31 54.21 ± 5.10 1.79 ± 0.93 75.42 ± 0.57 5.08 ± 1.71
FA-GNN 78.77 ± 0.18 0.33 ± 0.58 60.54 ± 2.48 1.24 ± 0.77 75.38 ± 0.88 4.89 ± 0.56
Metattack 78.66 ± 0.84 3.86 ± 3.51 55.16 ± 6.70 6.08 ± 3.64 - -

G-FairAttack 77.92 ± 0.18 10.64 ± 0.97 59.36 ± 1.19 3.91 ± 3.07 75.47 ± 0.56 5.85 ± 1.66

EDITS

Clean 79.62 ± 1.10 1.36 ± 1.54 62.33 ± 0.84 3.32 ± 0.64 67.73 ± 0.46 7.23 ± 0.33
Random 81.21 ± 0.32 3.86 ± 2.27 62.49 ± 0.69 4.62 ± 0.97 69.19 ± 0.86 7.91 ± 0.91
FA-GNN 79.83 ± 0.18 3.04 ± 0.50 63.38 ± 0.18 2.47 ± 1.38 67.55 ± 0.89 7.30 ± 0.19
Metattack 81.95 ± 1.21 4.50 ± 0.67 62.72 ± 0.19 2.83 ± 0.80 - -

G-FairAttack 81.95 ± 0.48 6.15 ± 0.77 62.65 ± 0.81 4.85 ± 0.44 69.01 ± 0.79 8.14 ± 0.41

F.3 ATTACK PATTERNS

In this experiment, we compare the patterns of G-FairAttack with FA-GNN (Hussain et al., 2022).
FA-GNN divides edges into four different groups, ’EE’, ’ED’, ’DE’, and ’DD’, where edges in EE
link two nodes with the same label and the same sensitive attribute, edges in ED link two nodes with
the same label and different sensitive attributes, edges in DE link two nodes with different labels and
the same sensitive attribute, edges in DD link two nodes with different labels and different sensitive
attributes In particular, we record the proportion of poisoned edges in these four groups yielded by

28

Published as a conference paper at ICLR 2024

Table 8: Experiment results of fairness poisoning attack, where AUC and ∆eo are adopted as the
prediction utility metric and the fairness metric, correspondingly.

Victim Attack Facebook Pokec z Credit
AUC(%) ∆eo(%) AUC(%) ∆eo(%) AUC(%) ∆eo(%)

GCN

Clean 64.53 ± 0.05 1.16 ± 0.78 67.53 ± 0.25 10.16 ± 1.20 69.36 ± 0.08 9.83 ± 0.76
Random 65.49 ± 0.37 1.29 ± 0.87 66.97 ± 0.11 8.81 ± 1.07 69.45 ± 0.06 10.18 ± 1.62
FA-GNN 64.45 ± 0.68 2.51 ± 0.33 65.77 ± 0.43 1.78 ± 0.66 69.16 ± 0.11 18.55 ± 2.02
Metattack 65.02 ± 0.17 24.84 ± 6.37 64.33 ± 0.33 43.71 ± 1.18 - -

G-FairAttack 62.41 ± 0.07 9.53 ± 1.56 67.26 ± 0.26 9.71 ± 1.84 69.37 ± 0.14 10.23 ± 1.29

Reg

Clean 64.57 ± 0.21 1.02 ± 0.91 68.93 ± 1.25 1.39 ± 0.85 69.70 ± 0.49 1.01 ± 1.40
Random 64.45 ± 0.36 1.40 ± 0.62 66.41 ± 2.23 1.22 ± 0.41 69.79 ± 0.46 0.86 ± 1.00
FA-GNN 61.67 ± 0.53 0.29 ± 0.58 66.65 ± 0.66 3.05 ± 2.29 69.67 ± 0.76 1.42 ± 0.79
Metattack 64.31 ± 0.17 4.88 ± 1.43 65.94 ± 2.99 6.23 ± 0.38 - -

G-FairAttack 61.69 ± 0.14 9.80 ± 0.91 68.06 ± 1.58 6.88 ± 2.35 69.76 ± 0.49 2.36 ± 1.50

FairGNN

Clean 65.57 ± 0.40 0.65 ± 0.78 65.22 ± 2.04 0.94 ± 0.83 65.95 ± 0.46 3.04 ± 1.35
Random 64.66 ± 0.75 0.19 ± 0.33 59.56 ± 1.92 2.46 ± 2.43 65.48 ± 0.55 3.35 ± 1.41
FA-GNN 63.54 ± 0.14 0.00 ± 0.00 64.73 ± 2.79 2.13 ± 1.35 65.13 ± 0.60 3.19 ± 0.66
Metattack 65.10 ± 0.42 3.60 ± 4.13 57.99 ± 8.86 7.13 ± 3.07 - -

G-FairAttack 62.99 ± 0.29 4.70 ± 1.44 65.79 ± 2.64 2.78 ± 1.51 65.89 ± 0.53 3.83 ± 1.64

EDITS

Clean 79.00 ± 2.49 0.19 ± 0.33 67.00 ± 0.59 3.19 ± 0.84 69.83 ± 0.13 6.81 ± 0.49
Random 71.58 ± 0.36 1.03 ± 0.95 68.23 ± 0.62 6.79 ± 1.00 69.55 ± 0.27 6.91 ± 1.05
FA-GNN 77.06 ± 2.13 0.58 ± 0.58 67.55 ± 0.32 2.86 ± 2.67 69.82 ± 0.17 6.83 ± 0.52
Metattack 71.60 ± 0.40 0.52 ± 0.44 67.51 ± 0.56 3.15 ± 1.23 - -

G-FairAttack 70.33 ± 1.76 1.61 ± 0.59 68.26 ± 0.57 6.98 ± 0.29 69.62 ± 0.20 7.29 ± 0.53

Table 10: Attack patterns (statistics of poisoned edges in different groups) of G-FairAttack.

Dataset Fairness Evasion Attack Fairness Poisoning Attack
EE/% ED/% DE/% DD/% EE/% ED/% DE/% DD/%

Facebook 43.46 28.42 14.44 13.96 31.86 28.72 19.07 20.34
Pokec 25.51 23.47 26.39 24.63 26.58 24.73 22.01 26.68
Credit 74.89 7.37 16.06 1.68 38.63 22.59 24.78 13.99

G-FairAttack and FA-GNN. The results of attack patterns of G-FairAttack are shown in Table 10.
According to the study in (Hussain et al., 2022), injecting edges in DD and EE can increase the
statistical parity difference. Based on this guidance, FA-GNN randomly injects edges that belong to
group DD to attack the fairness of GNNs. Hence, the attack patterns of FA-GNN for all datasets and
attack settings are all the same, i.e., 100% for the DD group and 0% for the other groups. However,
our proposed G-FairAttack has different patterns of poisoned edges. For the Facebook and the
Credit dataset, G-FairAttack poisons more EE edges than other groups. For the Pokec dataset, the
proportion of poisoned edges in four groups is balanced. Although we cannot analyze the reason
for the apparent difference in this paper, we can argue that G-FairAttack is much harder to defend
because it does not have a fixed pattern for all cases, unlike FA-GNN.

F.4 ATTACK GENERALIZATION

Although the generalization capability of adversarial attacks on GNNs with a linearized surrogate
model has been verified by previous works (Zügner et al., 2018; Zügner & Günnemann, 2019), we
conduct numerical experiments to verify the generalization capability of G-FairAttack to other GNN
architectures. In the experiments, G-FairAttack is still trained with a two-layer linearized GCN as the
surrogate model, while we choose two different GNN architectures, GraphSAGE (Hamilton et al.,
2017) and GAT (Veličković et al., 2018), as the backbone of adopted victim models. Experimental
results are shown in Tables 11 to 14. From the results, we can observe that G-FairAttack still success-
fully reduces the fairness of victim models with different GNN backbones, and G-FairAttack still has
the most desirable performance on attacking different types of fairness-aware GNNs. In addition, to
verify the generality of G-FairAttack, we conduct experiments on the German Credit dataset (Agar-
wal et al., 2021). In the German dataset, nodes represent customers of a German bank, and edges

29

Published as a conference paper at ICLR 2024

Table 11: Experiment results of fairness evasion attack on the Facebook dataset. All victim models
adopt GraphSAGE as the GNN backbone.

Attack ACC(%) AUC(%) ∆dp(%) ∆eo(%)

SAGE

Clean 93.20 ± 0.15 93.78 ± 0.08 14.00 ± 0.72 7.08 ± 0.64
Random 93.95 ± 0.26 94.32 ± 0.11 15.14 ± 0.63 7.21 ± 0.64
FA-GNN 93.31 ± 0.26 93.83 ± 0.07 13.14 ± 0.63 5.28 ± 0.64

Gradient Ascent 92.99 ± 0.26 94.00 ± 0.02 14.67 ± 0.63 7.98 ± 0.64
G-FairAttack 93.42 ± 0.30 93.63 ± 0.09 15.33 ± 0.25 7.53 ± 0.00

Reg

Clean 91.93 ± 0.15 93.82 ± 0.12 4.13 ± 0.72 1.93 ± 0.27
Random 92.78 ± 0.15 94.41 ± 0.13 6.44 ± 0.47 2.32 ± 0.00
FA-GNN 92.04 ± 0.26 93.91 ± 0.05 2.95 ± 1.32 0.58 ± 0.27

Gradient Ascent 91.83 ± 0.15 93.89 ± 0.10 3.67 ± 0.44 1.55 ± 0.55
G-FairAttack 92.15 ± 0.30 93.72 ± 0.13 5.46 ± 0.25 2.38 ± 0.91

FairGNN

Clean 87.26 ± 0.94 93.74 ± 0.50 0.91 ± 0.56 0.90 ± 0.64
Random 87.16 ± 0.91 93.83 ± 0.40 1.83 ± 1.13 0.45 ± 0.64
FA-GNN 87.37 ± 1.17 93.07 ± 0.48 1.91 ± 1.06 0.45 ± 0.64

Gradient Ascent 87.48 ± 0.84 93.58 ± 0.47 1.14 ± 0.63 0.90 ± 0.64
G-FairAttack 87.26 ± 1.30 93.66 ± 0.48 2.16 ± 0.96 0.90 ± 0.64

EDITS

Clean 93.42 ± 0.15 93.62 ± 0.03 8.94 ± 0.41 1.22 ± 0.64
Random 92.60 ± 0.14 93.82 ± 0.16 11.57 ± 0.20 6.76 ± 0.00
FA-GNN 93.39 ± 0.14 93.67 ± 0.07 9.07 ± 0.42 1.45 ± 0.68

Gradient Ascent 92.83 ± 0.27 93.80 ± 0.09 12.29 ± 0.63 5.75 ± 0.58
G-FairAttack 92.57 ± 0.15 93.74 ± 0.12 11.61 ± 0.22 6.76 ± 0.00

Table 12: Experiment results of fairness poisoning attack on the Facebook dataset. All victim models
adopt GraphSAGE as the GNN backbone.

Attack ACC(%) AUC(%) ∆dp(%) ∆eo(%)

SAGE

Clean 91.83 ± 0.18 94.05 ± 0.11 16.78 ± 0.58 9.40 ± 0.78
Random 92.99 ± 0.32 94.09 ± 0.03 15.91 ± 0.52 8.56 ± 0.45
FA-GNN 93.10 ± 0.48 94.83 ± 0.10 11.09 ± 0.71 5.22 ± 0.00
Metattack 92.15 ± 0.18 92.91 ± 0.15 19.16 ± 0.75 11.84 ± 0.99

G-FairAttack 90.66 ± 0.18 93.83 ± 0.04 18.89 ± 0.27 12.94 ± 0.33

Reg

Clean 83.86 ± 0.48 93.08 ± 0.22 4.03 ± 0.53 0.45 ± 0.78
Random 82.69 ± 0.37 93.24 ± 0.15 3.96 ± 0.31 0.00 ± 0.00
FA-GNN 83.33 ± 0.37 93.06 ± 0.31 5.38 ± 0.54 0.00 ± 0.00
Metattack 84.39 ± 0.00 92.58 ± 0.17 2.54 ± 0.00 0.00 ± 0.00

G-FairAttack 84.50 ± 0.48 90.73 ± 0.37 6.19 ± 0.29 2.70 ± 0.00

FairGNN

Clean 88.96 ± 2.05 94.17 ± 0.19 2.54 ± 1.71 1.35 ± 0.00
Random 86.73 ± 3.19 94.06 ± 0.33 2.89 ± 2.32 0.00 ± 0.00
FA-GNN 86.09 ± 4.42 94.48 ± 0.23 1.61 ± 0.70 0.00 ± 0.00
Metattack 86.41 ± 2.89 93.75 ± 0.15 3.13 ± 2.24 0.90 ± 0.78

G-FairAttack 86.41 ± 0.80 92.90 ± 0.30 5.03 ± 0.48 3.15 ± 0.78

EDITS

Clean 91.08 ± 0.00 92.08 ± 0.28 4.57 ± 0.74 1.36 ± 0.33
Random 92.25 ± 0.18 93.83 ± 0.09 16.74 ± 1.14 9.72 ± 1.26
FA-GNN 89.17 ± 0.32 91.23 ± 0.17 5.46 ± 0.75 7.41 ± 1.45
Metattack 91.83 ± 0.49 93.65 ± 0.11 17.27 ± 0.72 10.04 ± 0.89

G-FairAttack 92.04 ± 0.32 93.55 ± 0.13 17.58 ± 0.47 10.43 ± 0.58

are generated based on the similarity between credit accounts. The task is to predict whether a cus-
tomer has a high credit risk or low, with gender as the sensitive attribute. In this experiment, we
choose GraphSAGE (Hamilton et al., 2017) as the backbone of the victim models and adopt both
fairness evasion and poisoning settings. Experimental results are shown in Tables 16 and 17. We
can observe that the superiority of G-FairAttack is preserved on the German dataset. In conclusion,
supplementary experiments verify the generalization capability of G-FairAttack in attacking victim
models with various GNN architectures and consolidate the universality of G-FairAttack.

30

Published as a conference paper at ICLR 2024

Table 13: Experiment results of fairness evasion attack on the Facebook dataset. All victim models
adopt GAT as the GNN backbone.

Attack ACC(%) AUC(%) ∆dp(%) ∆eo(%)

GAT

Clean 79.93 ± 1.39 66.97 ± 2.36 2.84 ± 1.34 0.71 ± 0.44
Random 79.30 ± 0.55 67.33 ± 0.50 1.11 ± 0.47 0.51 ± 0.48
FA-GNN 80.15 ± 0.48 67.45 ± 2.45 4.62 ± 1.60 0.26 ± 0.44

Gradient Ascent 80.25 ± 1.40 67.30 ± 2.16 4.24 ± 1.16 1.35 ± 1.00
G-FairAttack 79.09 ± 1.21 66.76 ± 2.50 4.35 ± 1.66 1.73 ± 1.67

Reg

Clean 80.15 ± 0.36 66.50 ± 1.08 4.88 ± 0.60 0.52 ± 0.48
Random 79.83 ± 0.48 67.68 ± 1.29 2.82 ± 2.10 0.45 ± 0.49
FA-GNN 80.15 ± 0.36 69.79 ± 1.89 5.64 ± 0.96 1.10 ± 0.95

Gradient Ascent 80.36 ± 0.18 65.89 ± 1.27 5.19 ± 1.22 0.52 ± 0.59
G-FairAttack 78.77 ± 0.37 66.74 ± 1.09 5.48 ± 1.66 1.09 ± 0.29

FairGNN

Clean 79.19 ± 0.67 66.17 ± 1.75 2.47 ± 2.94 0.64 ± 0.29
Random 79.62 ± 0.55 62.54 ± 2.47 1.49 ± 0.84 0.26 ± 0.44
FA-GNN 79.19 ± 0.74 64.29 ± 3.51 1.84 ± 2.15 0.90 ± 0.62

Gradient Ascent 78.98 ± 0.32 64.03 ± 1.73 2.73 ± 2.82 0.39 ± 0.33
G-FairAttack 78.45 ± 0.80 63.94 ± 2.30 3.69 ± 2.41 2.13 ± 0.78

EDITS

Clean 79.30 ± 0.96 68.59 ± 3.81 0.66 ± 0.60 3.27 ± 2.19
Random 76.01 ± 1.76 63.08 ± 1.90 0.81 ± 0.65 4.74 ± 2.04
FA-GNN 79.30 ± 0.96 68.58 ± 3.87 0.66 ± 0.60 3.27 ± 2.19

Gradient Ascent 77.50 ± 1.50 61.28 ± 2.44 0.81 ± 0.20 2.95 ± 3.62
G-FairAttack 76.01 ± 1.94 63.08 ± 1.92 1.04 ± 0.59 4.74 ± 2.61

Table 14: Experiment results of fairness poisoning attack on the Facebook dataset. All victim models
adopt GAT as the GNN backbone.

Attack ACC(%) AUC(%) ∆dp(%) ∆eo(%)

GAT

Clean 69.21 ± 0.80 60.03 ± 0.52 8.09 ± 3.17 4.34 ± 4.09
Random 71.76 ± 0.48 57.17 ± 1.87 3.81 ± 3.36 4.23 ± 4.39
FA-GNN 80.68 ± 0.49 73.64 ± 1.66 2.97 ± 1.22 3.27 ± 2.33
Metattack 69.11 ± 0.85 63.29 ± 1.80 74.62 ± 3.79 70.30 ± 2.58

G-FairAttack 73.35 ± 1.33 57.36 ± 2.10 9.85 ± 1.62 5.30 ± 3.20

Reg

Clean 79.09 ± 0.81 64.86 ± 0.81 2.22 ± 2.57 0.71 ± 0.11
Random 78.98 ± 0.32 67.50 ± 0.53 1.00 ± 1.00 0.00 ± 0.00
FA-GNN 78.66 ± 0.00 69.19 ± 2.44 0.00 ± 0.00 0.00 ± 0.00
Metattack 76.85 ± 1.29 63.39 ± 1.12 8.60 ± 7.05 7.40 ± 5.04

G-FairAttack 78.77 ± 0.37 59.78 ± 1.00 10.99 ± 1.47 7.28 ± 0.99

FairGNN

Clean 78.56 ± 0.48 56.57 ± 7.18 1.09 ± 1.50 0.77 ± 1.33
Random 78.66 ± 1.15 52.88 ± 1.68 1.20 ± 0.69 1.15 ± 0.70
FA-GNN 77.17 ± 2.57 49.37 ± 4.58 1.29 ± 2.23 1.23 ± 2.12
Metattack 79.30 ± 0.55 52.19 ± 4.20 0.62 ± 0.68 0.84 ± 1.13

G-FairAttack 77.60 ± 0.97 57.90 ± 5.65 3.20 ± 2.88 4.12 ± 3.65

EDITS

Clean 73.89 ± 1.99 61.19 ± 3.47 4.36 ± 2.94 3.59 ± 4.22
Random 78.88 ± 0.97 62.58 ± 3.75 1.83 ± 0.88 3.02 ± 1.12
FA-GNN 78.66 ± 0.00 58.58 ± 3.62 0.00 ± 0.00 0.00 ± 0.00
Metattack 78.77 ± 2.35 69.58 ± 5.19 2.77 ± 0.94 0.84 ± 0.77

G-FairAttack 75.58 ± 5.61 64.60 ± 8.87 6.96 ± 4.05 5.19 ± 7.07

F.5 ADVANCED ATTACK BASELINES

We supplement experiments on more previous attacks with fairness-targeted adaptations. We choose
two more recent adversarial attacks for GNNs in terms of prediction utility, namely MinMax (Wu
et al., 2019) and PRBCD (Geisler et al., 2021). To satisfy our fairness attack settings, we modify
the attacker’s objective with the demographic parity loss term (in the same way as adapting gradient
ascent attack and Metattack). We implement all attack baselines in a fairness evasion attack setting
with the same budget (5%). We compare the performance of these attacks with G-FairAttack based
on four different victim models with GraphSAGE as the GNN backbone on the Facebook dataset.
Results are shown in Table 15. From the experimental results, we can observe that (1) G-FairAttack

31

Published as a conference paper at ICLR 2024

Table 15: Experiment results of fairness evasion attack on the Facebook dataset compared with more
advanced attack baselines. All victim models adopt GraphSAGE as the GNN backbone.

Attack ACC(%) AUC(%) ∆dp(%) ∆eo(%) Train ACC(%)

SAGE

Clean 92.36 ± 0.32 94.06 ± 0.14 16.71 ± 0.79 10.10 ± 0.41 100.00 ± 0.00
PRBCD 92.68 ± 0.00 94.26 ± 0.10 15.23 ± 0.31 8.11 ± 0.33 99.62 ± 0.00
MinMax 92.99 ± 0.00 94.32 ± 0.15 15.69 ± 0.31 8.69 ± 0.33 98.66 ± 0.19

G-FairAttack 92.15 ± 0.37 93.89 ± 0.15 18.71 ± 0.74 11.91 ± 0.97 100.00 ± 0.00

Reg

Clean 91.29 ± 0.49 93.69 ± 0.13 0.86 ± 0.83 1.79 ± 1.87 98.66 ± 0.33
PRBCD 91.72 ± 0.85 94.00 ± 0.07 1.33 ± 2.00 1.73 ± 0.33 98.08 ± 0.51
MinMax 91.61 ± 0.49 94.01 ± 0.08 0.77 ± 0.41 1.73 ± 0.33 97.19 ± 0.11

G-FairAttack 91.19 ± 0.37 93.66 ± 0.12 1.80 ± 0.60 2.12 ± 1.20 98.53 ± 0.29

FairGNN

Clean 92.57 ± 0.48 93.97 ± 0.20 3.38 ± 1.44 2.02 ± 0.58 98.98 ± 0.55
PRBCD 92.46 ± 0.26 94.03 ± 0.26 3.36 ± 1.05 1.93 ± 0.33 98.53 ± 0.29
MinMax 92.67 ± 0.55 94.12 ± 0.27 3.53 ± 1.60 1.93 ± 0.33 97.57 ± 0.29

G-FairAttack 92.57 ± 0.18 93.80 ± 0.23 4.40 ± 1.14 2.05 ± 1.25 98.98 ± 0.55

EDITS

Clean 93.42 ± 0.18 93.66 ± 0.07 9.12 ± 0.58 1.67 ± 0.78 98.34 ± 0.11
PRBCD 93.10 ± 0.73 93.88 ± 0.14 10.78 ± 1.15 5.41 ± 2.34 97.89 ± 0.19
MinMax 93.20 ± 0.37 93.88 ± 0.13 10.94 ± 1.70 4.31 ± 1.90 97.45 ± 0.29

G-FairAttack 93.10 ± 0.15 93.88 ± 0.15 10.78 ± 1.15 5.41 ± 2.34 97.95 ± 0.22

Table 16: Experiment results of fairness evasion attack on the German dataset. All victim models
adopt GraphSAGE as the GNN backbone.

Attack ACC(%) AUC(%) ∆dp(%) ∆eo(%)

SAGE

Clean 58.80 ± 1.06 66.56 ± 0.98 58.02 ± 5.05 56.20 ± 5.76
Random 58.80 ± 1.06 66.44 ± 1.02 56.32 ± 2.70 53.57 ± 3.01
FA-GNN 59.60 ± 0.80 68.44 ± 0.96 55.18 ± 3.90 52.66 ± 4.88

Gradient Ascent 58.13 ± 1.51 66.14 ± 1.00 59.52 ± 4.58 57.99 ± 4.93
G-FairAttack 58.00 ± 1.74 65.75 ± 1.21 58.73 ± 4.81 56.83 ± 4.95

Reg

Clean 61.87 ± 2.41 61.40 ± 0.78 2.91 ± 2.28 4.34 ± 1.76
Random 61.33 ± 2.01 61.44 ± 0.96 3.90 ± 1.35 5.18 ± 1.08
FA-GNN 62.00 ± 3.02 61.79 ± 0.65 3.69 ± 2.11 5.22 ± 2.05

Gradient Ascent 61.20 ± 2.40 60.53 ± 1.02 3.97 ± 4.17 4.62 ± 2.99
G-FairAttack 61.33 ± 2.27 61.49 ± 1.44 4.61 ± 3.49 6.65 ± 2.53

FairGNN

Clean 64.40 ± 3.12 59.73 ± 3.99 4.26 ± 3.39 5.36 ± 2.32
Random 64.53 ± 3.11 59.71 ± 3.83 4.61 ± 2.80 5.67 ± 3.63
FA-GNN 64.67 ± 2.89 60.03 ± 4.06 4.40 ± 2.85 5.95 ± 3.22

Gradient Ascent 64.80 ± 3.17 59.40 ± 4.62 4.90 ± 2.86 5.64 ± 2.35
G-FairAttack 64.27 ± 2.89 59.66 ± 3.57 5.46 ± 3.14 5.92 ± 2.33

EDITS

Clean 68.27 ± 1.97 57.48 ± 2.13 2.17 ± 1.22 3.12 ± 1.77
Random 68.13 ± 1.22 58.90 ± 1.62 2.81 ± 2.14 3.41 ± 2.13
FA-GNN 68.27 ± 1.97 57.48 ± 2.14 2.17 ± 1.22 3.12 ± 1.77

Gradient Ascent 68.13 ± 1.22 58.90 ± 1.62 2.81 ± 2.14 3.41 ± 2.13
G-FairAttack 68.13 ± 1.22 58.90 ± 1.62 2.81 ± 2.14 3.41 ± 2.13

has the most desirable performance in attacking different types of (fairness-aware) victim models
and (2) G-FairAttack best preserves the prediction utility of victim models over the training set. In
conclusion, we obtain that our proposed surrogate loss and constrained optimization technique help
G-FairAttack address the two proposed challenges of fairness attacks while a simple adaptation of
previous attacks is not effective in solving these challenges.

G DEFENSE AGAINST FAIRNESS ATTACKS OF GNNS

In this paper, the purpose of investigating the fairness attack problem on GNNs is to highlight the
vulnerability of GNNs on fairness and to inspire further research on the fairness defense of GNNs.
Hence, we would like to discuss the defense against fairness attacks of GNNs. Considering the
difficulty in fairness defense, this topic deserves a careful further study, and we only provide some
simple insights on defending against fairness attacks of GNNs in this section.

32

Published as a conference paper at ICLR 2024

Table 17: Experiment results of fairness poisoning attack on the German dataset. All victim models
adopt GraphSAGE as the GNN backbone.

Attack ACC(%) AUC(%) ∆dp(%) ∆eo(%)

SAGE

Clean 59.60 ± 1.06 63.87 ± 1.30 41.29 ± 7.36 36.94 ± 7.94
Random 62.13 ± 1.97 65.48 ± 0.57 41.52 ± 8.40 38.34 ± 5.29
FA-GNN 64.67 ± 1.01 71.22 ± 2.08 43.99 ± 0.63 42.79 ± 2.16
Metattack 58.13 ± 3.63 64.03 ± 0.71 46.31 ± 3.22 43.87 ± 3.49

G-FairAttack 63.87 ± 2.34 66.10 ± 1.68 47.98 ± 4.99 43.56 ± 5.48

Reg

Clean 58.00 ± 2.50 60.70 ± 2.35 0.80 ± 0.28 1.37 ± 1.55
Random 60.13 ± 2.84 61.83 ± 1.25 0.80 ± 0.13 3.15 ± 2.83
FA-GNN 60.80 ± 1.74 64.42 ± 0.64 0.72 ± 0.88 4.83 ± 1.37
Metattack 58.67 ± 1.01 60.21 ± 0.25 0.42 ± 0.33 2.59 ± 0.52

G-FairAttack 57.87 ± 3.72 60.42 ± 1.48 3.38 ± 1.86 7.77 ± 3.48

FairGNN

Clean 60.91 ± 2.58 62.15 ± 3.70 1.87 ± 1.93 1.48 ± 1.50
Random 66.33 ± 2.98 63.76 ± 5.71 4.50 ± 3.57 6.33 ± 4.44
FA-GNN 68.22 ± 3.36 63.07 ± 5.19 2.59 ± 2.73 1.86 ± 1.10
Metattack 67.78 ± 4.92 63.04 ± 4.35 2.06 ± 2.09 1.98 ± 1.07

G-FairAttack 65.34 ± 4.70 64.32 ± 6.83 7.86 ± 1.68 10.64 ± 2.54

EDITS

Clean 64.01 ± 1.83 65.59 ± 0.92 12.74 ± 1.44 6.66 ± 3.28
Random 61.90 ± 1.16 66.18 ± 1.56 10.02 ± 3.78 7.84 ± 5.78
FA-GNN 63.45 ± 2.51 64.66 ± 1.55 19.45 ± 2.53 13.62 ± 3.63
Metattack 62.24 ± 0.51 63.46 ± 1.97 15.92 ± 8.11 10.77 ± 3.41

G-FairAttack 65.34 ± 1.02 65.31 ± 1.49 20.43 ± 5.37 15.30 ± 5.53

(1). According to the study in (Hussain et al., 2022), injecting edges that belong to DD and EE
groups can increase the statistical parity difference. Hence, a simple fairness defense strategy is to
delete edges in DD and EE groups randomly. This strategy makes it possible to remove some poi-
soned edges in the input graph. However, this method cannot defend against G-FairAttack because
G-FairAttack can poison the edges in all groups (EE, ED, DE, and DD).

(2). In our opinion, preprocessing debiasing frameworks such as EDITS can be a promising
paradigm for fairness defense. Next, we explain the reasons in detail. We first review the pro-
cesses of EDITS framework. EDITS is a preprocessing framework for GNNs (Dong et al., 2022a).
First, we feed the clean graph into EDITS framework and obtain a debiased graph by reconnect-
ing some edges and changing the node attributes where we can modify the debiasing extent with a
threshold. Then, EDITS runs a vanilla GNN model (without fairness consideration), such as GCN,
on the debiased graph. Finally, we find that the output of GCN on the debiased graph is less biased
than the output of GCN on the clean graph. As a preprocessing framework, EDITS would flip the
edges again to obtain a debiased graph for training after we poison the graph structure by attacking
methods. Consequently, we can obtain that EDITS can obtain very similar debiased graphs for any
two different poisoned graphs with a strict debiasing threshold, while the accuracy will also decrease
as the debiasing threshold becomes stricter because the graph structure has been changed too much.
In conclusion, EDITS has a tradeoff between the debiasing effect and the prediction utility. EDITS
can be a strong fairness defense method for GNNs by sacrificing the prediction utility.

(3). A possible defense strategy against fairness attacks of GNNs is to solve a similar optimization
problem as Problem 1 while minimizing the attacker’s objective as

min
A′∈F

Lf (gθ∗ ,A′,X,Y,Vtest,S)

s.t. θ∗ = argmin
θ
Ls (gθ,A

′,X,Y,S) , ∥A′ −A∥F ≤ 2∆,

L(gθ∗ ,A,X,Y,Vtrain)− L(gθ∗ ,A′,X,Y,Vtrain) ≤ ϵ.

(17)

The meaning of this optimization problem is to find the rewired graph structure that minimizes the
prediction bias. The prediction bias is computed based on the model trained on the rewired graph. It
can be seen as an inverse process of G-FairAttack. As a result, we can rewire the problematic edges
that hurt the fairness of the model trained on the rewired graph.

33

Published as a conference paper at ICLR 2024

H BROADER IMPACT

Adversarial attacks on fairness can make a significant impact in real-world scenarios (Solans et al.,
2021; Mehrabi et al., 2021; Hussain et al., 2022). In particular, fairness attacks can exist in many
different real-world scenarios.

• For personal benefits, malicious attackers can exploit the fairness attack to affect a GNN model
(for determining the salary of an employer or the credit/loan of a user account) into favoring
specific demographic groups by predicting higher values of money while disadvantaging other
groups.

• For commercial competitions, a malicious competitor can attack the fairness of a GNN-based
recommender system deployed by a tech company and make its users unsatisfied, especially when
defending techniques of GNNs’ utility have been widely studied while defending techniques of
GNNs’ fairness remain undeveloped.

• For governmental credibility, malicious adversaries can attack models used by a government
agency with the goal of making them appear unfair in order to depreciate their value and cred-
ibility.

In addition, adversarial attack on fairness is widely studied on independent and identically dis-
tributed data. Extensive works (Chang et al., 2020b; Solans et al., 2021; Mehrabi et al., 2021; Van
et al., 2022; Chhabra et al., 2023) have verified the vulnerability of algorithmic fairness of machine
learning models. In this paper, we find the vulnerability of algorithmic fairness also exists in GNNs
by proposing a novel adversarial attack on fairness of GNNs. It has the potential risk of being lever-
aged by malicious attackers with access to the input data of a deployed GNN model. Despite that,
our research has a larger positive influence compared with the potential risk. Considering the lack
of defense methods on fairness of GNNs, our study highlights the vulnerability of GNNs in terms of
fairness and inspires further research on the fairness defense of GNNs. Moreover, we also provide
discussions on attack patterns and simple ways to defend against fairness attacks.

34

