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Abstract
This paper presents a proposal for addressing the

complexities of coordinating multiple Air Handling
Units (AHUs) within large indoor environments to
enhance energy efficiency and occupant comfort.
Traditional Reinforcement Learning (RL) methods
typically focus on scenarios with a single AHU, often
neglecting critical variables such as humidity. We
propose a detailed system model that incorporates
temperature, humidity, and CO2 dynamics within a
multi-objective optimization framework. Our pro-
posed method leverages a multi-agent Deep Rein-
forcement Learning (DRL) framework, where each
AHU operates as an autonomous agent. This con-
ceptual approach aims to improve the scalability and
adaptability of HVAC systems in extensive building
infrastructures, aiming to surpass the constraints as-
sociated with conventional single-AHU strategies.

1. Introduction
Modern commercial buildings require advanced

HVAC control strategies that balance energy effi-
ciencywith stringent comfort demands, particularly
in configurations involving multiple AHUs. Tradi-
tional model predictive control (MPC) approaches
strugglewith the complexdynamics of these systems
[1]. Recent DRL applications show potential but tend
to simplify system dynamics or the control structure
[2–4]. Moreover, most DRL studies on HVAC control
focus on single-AHU setups and fail to address the
scalability needed for multiple AHUs that manage
extensive spaces [5]. This oversight is significant in
large-scale buildings where several AHUsmust work
in unison to maintain optimal conditions.
Addressing these challenges, this paper intro-

duces a more detailed system model that consid-
ers the interplay among temperature, humidity, and
air quality across multiple AHUs. We propose a
multi-agent DRL approach where each AHU acts as
a learning agent with localized zone control but op-
erates within a coordinated system-wide strategy.
This method aims to reduce energy consumption
while improving comfort in complex building en-
vironments, leveraging decentralized control to en-
hance system responsiveness and efficiency.

2. SystemModel
Consider a building floor or large commer-

cial space partitioned into N zones. Let N =
{1, 2, . . . , N} denote the set of zones. These zones
are grouped under M AHUs, so that each AHU
m ∈ {1, . . . ,M} controls a subset Km of zones

(
∑

m |Km| = N ). The time horizon is divided into
L discrete slots, t ∈ {1, . . . , L}, each of duration∆t.
Control Variables:
Zone-Level Damper Angles, θtn: Each zone n is served
by a VAV box with a damper controlling airflow. The
angle θtn influences f t

n(θ
t
n), the airflow delivered to

zone n.
AHU Air Exchange Rates, xt

m: Each AHU m deter-
mines how much fresh air is mixed with return air,
represented by xt

m ∈ [0, 1]. A higher xt
m corresponds

to drawing in a larger fraction of outside air.
Mixed-Air States: For AHUm, let Ct

m, T t
m, and Ht

m

be the CO2, temperature, and humidity of the mixed
air. If Ct

out, T t
out,Ht

out denote outside conditions and
{Ct

n, T
t
n, H

t
n} are zone returns, then:

Ct
mix,m = xt

m Ct
out + (1− xt

m)

∑
n∈Km

Ct
n f

t
n∑

n∈Km
f t
n

, (1)

The same for T t
mix,m, Ht

mix,m. This captures how
fresh outside air and return air from zones are
blended.
Thermal Dynamics: Let T t

n be the temperature in
zone n at time t. We adopt a lumped heat-balance
approach, where the net heat flow in each zone de-
pends on walls, adjacent zones, internal loads, and
HVAC-supplied airflow:

T t+1
n = T t

n + ∆t ·
(
hwall(T

t
n, {T t

n′}) + hinternal(O
t
n)

+ hAHU
(
f t
n(θ

t
n), T

∗
m, T t

n

))
, (2)

where T ∗
m is the supply-air setpoint, and Ot

n cap-
tures occupancy-based heat gains. Functions hwall(·)
and hinternal(·) can be derived from standard building
thermal models [5]. The term hAHU(·) encapsulates
the cooling effect from air delivered to zone n.
Humidity Dynamics: Let Ht

n denote the humidity
in zone n. Similar to temperature, humidity changes
arise from (i) moisture flow through walls or adja-
cent zones, (ii) occupant-generated moisture, and
(iii) AHU-supplied air. We write:

Ht+1
n = Ht

n + ∆t ·
(
gzone(H

t
n, {Ht

n′})

+ goccupant(O
t
n) + gAHU

(
f t
n(θ

t
n), H

∗
m, Ht

n

))
, (3)

where H∗
m is the target humidity set by AHU m.

Functions gzone(·) and goccupant(·) follow standard
building moisture exchange principles.
CO2 Dynamics: Maintaining healthy CO2 levels is
critical for occupant comfort and safety. Let Ct

n be
the CO2 concentration in zone n. The next state de-
pends on how much of the zone air is replaced by
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HVAC air (carrying mixed CO2 level Ct
m) and on oc-

cupant respiration:

Ct+1
n =

(
1− αt

n

)
Ct

n + αt
n C

t
m + rtn, (4)

where αt
n ∝ ft

n(θ
t
n)∆t
Vn

(a ratio of incoming airflow to
zone volume Vn), Ct

m merges outside air with return
air (scaled byxt

m), and rtn is occupant-generatedCO2.
Energy Costs and Constraints: The AHU must
cool/dehumidify themixed air to maintain setpoints
(T ∗

m, H∗
m). This incurs a cost that depends on how

much outside air (xt
m) is used and how much total

airflow
∑

n∈Km
f t
n(θ

t
n) is needed:

Et(θt,xt) =

M∑
m=1

pt

ηCOP

{ ∑
n∈Km

ρ cp f
t
n

(
θtn

)(
T t
mix,m−T ∗

m

)
+

∑
n∈Km

ρ f t
n

(
θtn

)(
Ht

mix,m −H∗
m

)
Lv

}
,

where pt is the electricity price at time t, η is an effi-
ciency factor, and COP is the Coefficient of Perfor-
mance for the cooling/heating coil. ρ is the density
of air, cp is its specific heat capacity, and Lv is the
latent heat of vaporization, relevant for dehumidifi-
cation processes.
Feasibility Constraints:

Tmin ≤ T t
n ≤ Tmax, Hmin ≤ Ht

n ≤ Hmax, C
t
n ≤ Cmax.

The above enforces safe ranges for all physical and
comfort-related quantities.

3. ProposedMulti-Agent DRL Framework
Our control framework adopts amulti-agent Deep

Reinforcement Learning (DRL) structure to manage
the joint optimization of multiple AHUs and their
respective zone-level dampers. Each AHU acts as a
system-level agent controlling outside-air exchange,
and each zone functions as a local agent modulating
damper angles, designed to handle the complexity of
large-scale HVAC systems.
Agents and Action Spaces Control is decomposed
into two layers: system-level agents (AHU agents)
output continuous actions representing the fraction
of outside air mixed with recirculated air, affecting
mixed-air states and subsequently influencing en-
ergy usage and indoor air quality. Zone-level agents
(damper agents) modulate airflow through damper
angles, directly impacting local temperature, hu-
midity, and CO2 dynamics.
State SpaceEach agent observes both localmeasure-
ments and relevant global signals such as temper-
ature, humidity, CO2 levels, occupancy, and poten-
tially a weather forecast or other exogenous factors.
Reward Design The global reward structure reflects
energy efficiency and comfort objectives, penalizing
deviations from desired setpoints for temperature
and humidity and violations of CO2 levels, balancing
the trade-offs among these objectives.
Multi-Agent Learning Architecture A central-
ized training with decentralized execution (CTDE)

scheme allows individualized policy learning for
each agent while promoting coordinated behaviors
through a shared global critic. This includes em-
ploying a multi-agent variant of Proximal Policy
Optimization (PPO), handling policy updates and
constraint enforcement to maintain system stability
and ensure occupant safety.
Hierarchical Extensions and Implementation Con-
siderationsWhile MAPPO handles multiple agents,
a hierarchical RL structure can simplify credit as-
signment and scaling. Implementation includes
fully connected or recurrent neural networks, pa-
rameter sharing, and transfer learning across sim-
ilar buildings to enhance training efficiency and sys-
tem adaptability.

Conclusion
This paper proposes an initial framework for a

DRL systemaimed atmanagingmultiple AHUs in ex-
pansive commercial settingswhile adhering to phys-
ical system constraints for optimization. Given the
preliminary nature of this work, future efforts will
focus on refining the system model and algorithms
based on the formulated problem structure. De-
tailed crafting of these algorithms will be essential
for advancing the framework’s broad applicability in
complex HVAC control scenarios.
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