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Abstract

Neural Collapse refers to the curious phenomenon in the end of training of a neural1

network, where feature vectors and classification weights converge to a very simple2

geometrical arrangement (a simplex). While it has been observed empirically in3

various cases and has been theoretically motivated, its connection with crucial4

properties of neural networks, like their generalization and robustness, remains5

unclear. In this work, we study the stability properties of these simplices. We6

find that the simplex structure disappears under small adversarial attacks, and7

that perturbed examples "leap" between simplex vertices. We further analyze8

the geometry of networks that are optimized to be robust against adversarial9

perturbations of the input, and find that Neural Collapse is a pervasive phenomenon10

in these cases as well, with clean and perturbed representations forming aligned11

simplices, and giving rise to a robust simple nearest-neighbor classifier. By studying12

the propagation of the amount of collapse inside the network, we identify novel13

properties of both robust and non-robust machine learning models, and show that14

earlier, unlike later layers maintain reliable simplices on perturbed data.15

1 Introduction16

Reinforcing arguments about the simplicity of neural networks found by stochastic gradient descent17

in classification settings, Papyan et al. [2020] made the surprising empirical observation that both18

the feature representations in the penultimate layer (grouped by their corresponding class) and the19

weights of the final layer form a simplex equiangular tight frame (ETF) with C vertices, where20

C is the number of classes. Curiously, such a geometric arrangement becomes more pronounced21

well-beyond the point of (effectively) zero loss on the training data, motivating the common tendency22

of practitioners to optimize a network for as long as the computational budget allows. The collection23

of these empirical phenomena was termed Neural Collapse.24

While the results of [Papyan et al., 2020] fueled much research in the field, many questions remain25

regarding the connection of Neural Collapse with properties like generalization and robustness of26

Neural Networks. In particular with regards to adversarial robustness, the ability of a model to27

withstand adversarial modifications of the input without effective drops in performance, it has been28

originally claimed that the instantiation of Neural Collapse has positive effect on defending against29

adversarial attacks [Papyan et al., 2020, Han et al., 2022]. However, this seems to at least superficially30

contradict the fact that neural networks are not a priori adversarially robust [Szegedy et al., 2014,31

Carlini and Wagner, 2017].32

In this paper, we thoroughly study the stability properties of the simplices under adversarial attacks33

and then investigate whether Neural Collapse happens and whether it is necessary for adversarially34

robust models. In particular, our contributions and findings, partially illustrated in Figure 1, are:35
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Figure 1: Visualisation of our findings. Sticks represent class-means. Small dots correspond to the
representation of an individual datum, and the color represents the ground-truth label. Left to Right:
clean representations with standardly-trained (ST) networks; perturbed representations with ST
networks; clean representations with adversarially-trained (AT) networks; perturbed representations
with AT networks. With ST nets, the adversarial perturbations push the representation to “leap"
towards another cluster with slight angular deviation. AT makes the simplex resilient to such
adversarial attacks, with higher and intra-class variance.

• Is NC robust? We initiate the study of the neural collapse phenomenon in the context of adversarial36

robustness, both for standarly trained networks under adversarial attacks and for adversarially37

trained robust networks to investigate the stability and prevalence of the NC phenomenon. Our38

work exposes considerable additional fundamental, and we think, surprising, geometrical structure:39

• No! For standardly trained networks we find that small, imperceptible adversarial perturbations40

of the training data remove any simplicial structure at the representation layer: neither variance41

collapse nor simplex representations appear under standard metrics. Further analysis through class-42

targeted attacks that preserve class-balance shows a “cluster-leaping” phenomenon: representations43

of adversarially perturbed data jump to the (angular) vicinity of the original class means.44

• Yes for AT networks! Two identical simplices emerge. Adversarially trained, robust, networks45

exhibit a simplex structure both on original clean and adversarially perturbed data, albeit of higher46

variance. These two simplices turn out to be the same. We find that the simple nearest-neighbor47

classifiers extracted from such models also exhibit robustness.48

• Early layers are more robust. Analyzing NC metrics in the representations of the inner layers,49

we observe that initial layers exhibit a higher degree of collapse on adversarial data. The resulting50

simplices, when used for Nearest Neighbour clustering, give surprisingly robust classifiers. This51

phenomenon disappears in later layers.52

2 Background53

Papyan et al. [2020] demonstrated the prevalence of NC on networks optimized by SGD, by tracing54

the following quantities (please refer to Appendix B.2 for exact definitions):55

(NC1) Variability collapse: For all classes, the within-class variation of the last layer representations56

collapses to zero.57

(NC2, Equiangular): Class-Means converge to equal, maximal pairwise angles.58

(NC2, Equinorm): Class-Means converge to equal length.59

(NC3) Convergence to self-duality: The linear classifier and the class-means converge to each other60

(after rescaling).61

(NC4) Simplification to Nearest Class Center (NCC) classifier: The prediction of the network is62

equivalent to that of the NCC classifier formed by the (non-centered) class-means.63

We adopt the natural extensions of the above metrics for adversarially trained models, and further64

study some new quantities, relevant to our analysis, which are defined and explained in Appendix65

B.2.66
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3 Experiments67

In this section, we present our main experimental results measuring neural collapse in standardly68

(ST) (with SGD) and adversarially trained (AT) models [Madry et al., 2018]. We consider image69

classification tasks on CIFAR-10 and CIFAR-100 and we train two large convolutional networks, a70

standard VGG and a Pre-Activation ResNet18, from random initializations. We launch 3 independent71

runs and report the mean and standard deviation throughout our paper. Further results for varying72

choices of hyperparameters can be found in the Appendix.73

Remark: When collecting feature representations for adversarially perturbed data, we always74

compute the current epoch’s perturbations.75
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Figure 2: Accuracy, Loss, and NC evolution for standardly (ST) and adversarially (AT) trained VGG
and ResNet. For AT models, clean and Guassian curves coincide. Setting: CIFAR-10, ℓ∞ adversary.

3.1 Standardly trained neural nets76

The first and third column of Figure 2 show the evolution of the NC quantities as described in Section77

2 for standardly trained models. We use both adversarially perturbed and Gaussian reference data to78

study the stability of the original simplices. As expected, NC metrics converge on the clean training79

data. Neural Collapse is slightly attenuated on Gaussian reference data, but disappears strikingly80

for adversarially perturbed data, suggesting that the simplex formed by clean training data is robust81

against random perturbations, but fragile to adversarial attacks. The results certainly corroborate the82

conclusion that the representation class-means of perturbed points with ground-truth label c do not83

form any geometrically-meaningful structure at all.84
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Figure 3: Angular distance. Left and Inner Left: Average between targeted attack class-means and
clean class-means on ST network. Inner Right and Right: Average between perturbed class-means
and clean class-means on AT network. Setting: CIFAR-10, ℓ∞ adversary.

Figure 3 (left) shows Simplex Similarity and non-centered Angular Distance of the simplices formed85

by targeted adversarial examples and by clean examples as described in Appendix B.2. These results86

give us a full glimpse of how standardly trained networks are non-robust and fail under adversarial87

attacks: adversarial perturbations break the simplex ETF by “leaping” the representation from one88

class-mean to another, forming a norm-imbalanced less concentrated structure around the original89

simplex.90

3.2 Neural Collapse during Adversarial Training91

We train neural nets adversarially to full convergence with perfect clean and robust training accuracy92

and measure NC metrics for clean and perturbed (epoch-wise) training data in Figure 2 (columns 293

and 4). Interestingly, we find that Neural Collapse qualitatively occurs in this setting as well, both for94

clean and perturbed data, and two simplices emerge. Notice, however, that the extent of variability95

collapse (NC1) on the perturbed points is smaller than on the “clean” data or the Gaussian noise96

benchmark, indicating that clean examples are more concentrated around the vertices. To understand97

the relative positioning of the two simplices, we investigate the Simplex Similarity and Angular98

Distance between non-centered class-means in Figure 3 (right). The vanishing distance suggests99

these two simplices are exactly the same. These results suggest that Adversarial Training nudges100

the network to learn simple representational structures (namely, a simplex ETF) not only on clean101

examples but also on perturbed examples to achieve robustness against adversarial perturbations.102

Equivalently, the simplices induced by robust networks are not fragile anymore, but resilient. Note103

also that NC4 results imply that there is a simple nearest-neighbor classifier that is robust against104

adversarial perturbations generated from the network.105

Curiously, this is not the case for all training algorithms that produce robust models. In particular,106

a state-of-the-art algorithm that aims to balance clean and robust accuracy, TRADES [Zhang et al.,107

2019], shows fundamentally different behavior (see Figure 4 in the Appendix). Even though both108

terms of the loss (see Equation 4) are driven to zero, we do not observe Neural Collapse; the amount of109

collapse is roughly one order of magnitude larger than for vanilla AT, and the feature representations110

do not approach the ETF formation, even well past the onset of the terminal phase. We view this as111

evidence that the prevalence of Neural Collapse is not necessary for robust classification.112

3.3 Layerwise Analysis113

Furthermore, the Appendix contains our detailed layerwise analysis on both ST and AT models.114

We observe that initial layers exhibit a higher degree of collapse on adversarial data, while NCC115

classifiers defined on intermediate layers show surprising robustness, even if the whole model fails to116

do so.117

4 Conclusion118

Neural Collapse is an interesting phenomenon displayed by Neural Networks used in classification119

tasks. We empirically studied and quantified the sensitivity of this geometric arrangement to input120

perturbations, and, further, displayed that Neural Collapse can appear (but not always does!) in121

Neural Networks trained to be robust. We conclude that Neural Collapse is prevalent in many deep122

learning settings, including adversarially trained networks, though it does not seem to be necessary123

for robustness.124
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Appendix239

A Relevant Work240

Neural Collapse & Geometric properties of Optimization in Deep Learning. The term Neural241

Collapse was coined by Papyan et al. [2020] to describe phenomena about the feature representations242

of the last layer and the classification weights of a deep neural network at convergence. It collectively243

refers to the onset of variability collapse of within-class representations (NC1), the formation of244

two simplices (NC2) - one from the class-mean representations and another from the classification245

weights - that are actually dual (NC3), and, finally, the underlying simplicity of the prediction rule246

of the network, which becomes nothing but a simple nearest-neighbor classifier (NC4) (see Section247

B for formal definitions). [Papyan et al., 2020], using ideas from Information Theory, showed that248

the formation of a simplex is optimal in the presence of vanishing within-class variability. Mixon249

et al. [2022] introduced the unconstrained features model (independently proposed by [Fang et al.,250

2021] as the Layer-Peeled model), a model where the feature representations are considered as free251

optimization variables, and showed that a global optimizer of this problem (for the MSE loss) exhibits252

Neural Collapse. Many derivative works have proven Neural Collapse modifying this model, by253

either considering other loss functions or trying to incorporate more deep learning elements into254

it [Fang et al., 2021, Zhu et al., 2021, Ji et al., 2022, E and Wojtowytsch, 2022, Zhou et al., 2022,255

Tirer and Bruna, 2022, Han et al., 2022]. The notion of maximum separability dates back to Support256

Vector Machines [Cortes and Vapnik, 1995], while the bias of gradient-based optimization algorithms257

towards such solutions has been used to explain the success of boosting methods [Schapire et al.,258

1997], and, more recently, to motivate the generalization properties of neural networks [Neyshabur259

et al., 2015, Soudry et al., 2018, Lyu and Li, 2020]. The connection between Neural Collapse and260

generalization of neural networks (on in-distribution and transfer-learning tasks) has been explored in261

[Galanti et al., 2021, Hui et al., 2022]. Finally, the propagation of Neural Collapse inside the network262

has been studied by [Ben-Shaul and Dekel, 2022, He and Su, 2022, Hui et al., 2022, Li et al., 2022,263

Tirer et al., 2022, Rangamani et al., 2023].264

Adversarial Examples & Robustness. Neural Networks are famously susceptible to adversarial265

perturbations of their inputs, even of very small magnitude [Szegedy et al., 2014]. Most of the attacks266

that drive the performance of networks to zero are gradient-based [Goodfellow et al., 2015, Carlini267

and Wagner, 2017]. These perturbations are surprisingly consistent between different architectures268

and hyperparameters, they are in many cases transferable between models [Papernot et al., 2017],269

and they can also be made universal (one perturbation for all inputs) [Moosavi-Dezfooli et al., 2017].270

For training robust models, one can resort to algorithms from robust optimization [Xu et al., 2009,271

Goodfellow et al., 2015, Madry et al., 2018]. In particular, the most effective algorithm used in272

deep learning is called Adversarial Training [Madry et al., 2018]. During adversarial training one273

alternates steps of generating adversarial examples and training on this data instead of the original274

one. Several variations of this approach have been proposed in the literature (e.g. Zhang et al. [2019],275

Shafahi et al. [2019], Wong et al. [2020]), modifying either the attack used for data generation or the276

loss used to measure mistakes. However, models produced by this algorithm, despite being relatively277

robust, still fall behind in terms of absolute performance [Croce et al., 2021], while there are still278

many unresolved conceptual questions about adversarial training [Rice et al., 2020]. In terms of the279

geometrical properties of the solutions, [Li et al., Lv and Zhu, 2022] showed that in some cases (either280

in the presence of separable data or/and homogeneous networks) adversarial training converges to a281

solution that maximally separates the adversarial points.282

B Methodology283

In this section, we proceed with formal definitions of Neural Collapse (NC), adversarial attacks, and284

Adversarial Training (AT), together with the variants we study in this paper.285

B.1 Notation286

Let X be an input space, and Y be an output space, with |Y| = C. Denote by S a given class-balanced287

dataset that consists of C classes and n data points per class. Let f : X → Y be a neural network,288

with its final linear layer denoted as W. For each class c, the corresponding classifier is denoted as wc,289
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and the bias is called bc. Denote the representation of the i-th sample within class c as hi,c ∈ Rp, and290

the union of such representations H(S). We define the global-mean vector µG ∈ Rp, and class-mean291

vector µc ∈ Rp associated with S as µG ≜ 1
nC

∑
i,c hi,c and µc ≜ 1

n

∑
i hi,c, c = 1, . . . , C. For292

brevity, we refer in the text to the globally-centered class-means, {µc −µG}Cc=1, as just class-means,293

since these vectors are constituents of the simplex. We denote µ̃c = (µc − µG)/∥µc − µG∥2294

the normalized class-means. Unless otherwise specified, the term “representation” refers to the295

penultimate layer of the network.296

B.2 Neural Collapse Concepts297

[Papyan et al., 2020] demonstrate the prevalence of NC on networks optimized by SGD, by tracing298

the following quantities1. Throughout our paper, we closely follow Papyan et al. [2020] and Han299

et al. [2022] on formalization of NC1-NC4. Before proceeding to the NC concepts, we introduce300

Simplex ETF: A standard simplex ETF composed of C points is a set of points in RC , each point301

belonging to a column of302 √
C

C − 1
(I − 1

C
1C1

⊤
C),

where I ∈ RC×C is the identity matrix and 1C = [1 · · · 1]
⊤ ∈ RC is the all-ones vector. In our303

discussion, a simplex can be thought of as a standard simplex ETF up to partial rotations, reflections,304

and rescaling.305

Between-class and within-class covariance: Using terminology developed in Section B, we define306

between-class covariance ΣB ∈ Rp×p as307

ΣB ≜ AVGc(µc − µG)(µc − µG)
⊤

and ΣW ∈ Rp×p as308

ΣW ≜ AVGi,c(hi,c − µc)(hi,c − µc)
⊤.

Next, we start the introduction of NC concepts. We use the following exact definitions proposed by309

Han et al. [2022]:310

(NC1) Variability Collapse:311

Σ†
BΣW → 0,

where † denotes the Moore-Penrose inverse. The NC1 curve corresponds to Tr(Σ†
BΣW).312

(NC2) Convergence to Simplex ETF:313

⟨µ̃c, µ̃c′⟩ → − 1

C − 1
∀ c ̸= c′

314
|∥µc − µG∥2 − ∥µc′ − µG∥2| → 0 ∀ c, c′

The NC2 Equinorm curve corresponds to the variation of ||µc−µG||2 across all labels c, the standard315

deviation of these c quantities: std(||µc − µG||2). The NC2 Equiangular curve corresponds to316

AVGc̸=c′ abs(⟨µ̃c, µ̃c′⟩+ 1
C−1 ), where abs is the absolute value operator.317

(NC3) Convergence to self-duality:318

wc

||wc||2
− µc − µG

||µc − µG||2
→ 0 ∀ c.

The NC3 curve corresponds to √∑
c

|| wc

||wc||2
− µc − µG

||µc − µG||2
||22.

(NC4) Simplification to NCC classifier:319

argmax
c′

⟨wc′ ,h⟩+ bc′ → argmin
c′

∥h− µc′∥2 ∀ h ∈ H(S).

The NC4 curve corresponds to the mismatch ratio of these two quantities.320

1In particular, Neural Collapse becomes more evident in the so-called Terminal Phase of Training, the phase
beyond the point of (effectively) zero training loss.
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In our experiments, we calculate the NC statistics with the code provided by Han et al. [2022]2.321

Furthermore, in this work, we compare representations of original and perturbed data, which imposes322

ambiguity on which class-mean vectors µc,µG to use (from S or S ′). In the spirit of the original323

definitions, for NC1-4 we will use the class means induced by the dataset S ′, even if different from324

the training set. NC4 studies the predictive power of the NCC classifier on S ′ by comparing it to325

the network classification output, which at TPT is equivalent to the ground truth label. For study of326

reference data S ′ outside the TPT, we introduce two quantities, also applicable to any intermediate327

layer:328

NCC-Network Matching Rate: measures the rate at which the NCC classifier defined in NC4329

trained on S coincides with the output of the network on dataset S ′. Note that we use µc calculated330

by S.331

argmax
c′

⟨wc′ ,h⟩+ bc′
?
= argmin

c′
∥h− µc′∥2, h ∈ H(S ′).

NCC Accuracy: measures the accuracy on dataset S ′ of the NCC classifier defined in NC4 trained332

on S. Note that we use µc calculated by S. ch denotes the ground-truth label of the input.333

ch
?
= argmin

c′
∥h− µc′∥2, h ∈ H(S ′).

Note that when S = S ′, both NCC-Network Matching Rate and NCC Accuracy stem from (NC4).334

We also introduce the following measures to quantify the proximity of two simplices over C-classes:335

Simplex Similarity: We define the similarity measure between two C-class simplices with normal-
ized class means µ̃c, µ̃

′

c as
AVGc arccos ⟨µ̃c, µ̃

′
c⟩.

Non-centered Angular Distance: Similarly, given two simplices, without taking the global mean µG

and µ′
G into account, we can calculate the angular distance with non-centered class-means directly:

AVGc arccos ⟨
µc

||µc||2
,

µ′
c

||µ′
c||2

⟩.

Note that the similarity and angular distance between a simplex and itself is zero.336

B.3 Gradient-Based Adversarial Attack, Adversarial Training (AT), and TRADES337

Given a deep neural network f with parameters θ, a clean example (x, y) and cross-entropy loss338

L(·, ·), the untargeted adversarial perturbation is crafted by running multiple steps of projected339

gradient descent (PGD) to maximize the CE loss [Kurakin et al., 2017, Madry et al., 2018] (in what340

follows, we focus on ℓ∞ adversary with ℓ2 deferred to the appendix):341

xk+1 = ΠBϵ
x0

(
xk + α · sign(∇xkL(f(xk), y)

)
, (1)

where x0 = x is the original example, α is the step size, x̃ = xN is the final adversarial example,342

and Π is the projection on the valid ϵ-constraint set, Bϵ
x, of the data. Bϵ

x is usually taken as either an343

ℓ∞ or ℓ2 ball centered in x0. Further, to control the predicted label of x̃, a variant called targeted344

attack minimizes the CE loss w.r.t. a target label yt ̸= y:345

xk+1 = ΠBϵ
x0

(
xk − α · sign(∇xkL(f(xk), yt)

)
. (2)

With a standardly-trained network, both these methods can effectively reduce the accuracy to 0%. To346

combat this phenomenon, robust optimization algorithms have been proposed. The most representa-347

tive methodology, adversarial training [Madry et al., 2018], generates x̃ on-the-fly with Equation (1)348

for each epoch from x, and takes the model-gradient update on x̃ only.349

An alternative robust training variant, TRADES [Zhang et al., 2019], is of particular interest as it350

aims to address both robustness and clean accuracy. Thus the gradient steps of TRADES directly351

involve both x and x̄, where x̄ is also obtained by PGD, but under the KL-divergence loss:352

xk+1 = ΠBϵ
x0

(
xk + α · sign(∇xkLKL(f(x), f(x

k))
)
. (3)

2https://colab.research.google.com/github/neuralcollapse/neuralcollapse/blob/main/
neuralcollapse.ipynb

10

https://colab.research.google.com/github/neuralcollapse/neuralcollapse/blob/main/neuralcollapse.ipynb
https://colab.research.google.com/github/neuralcollapse/neuralcollapse/blob/main/neuralcollapse.ipynb


The total TRADES loss is a summation of the CE loss on the clean data and a KL-divergence (KLD)353

loss between the predicted probability of x and x̄ with a regularization constant β:354

LCE(f(x), y) + β · LKL(f(x), f(x̄)). (4)

C Experimental Details355

Code. For ℓ∞ and ℓ2 PGD attacks with ST and AT, we used the code from Rice et al. [2020] 3. For356

TRADES, we adopted the original implementation4. We have attached the code for reproducing NC357

results with ST, AT, and TRADES within a zip file.358

Plotting. Throughout our paper, we plot all quantities per 5 epochs in all figures.359

Layerwise NC. We study the layerwise NC1, NC2 and NC4 quantities for both PreActResNet18360

(ResNet18) and VGG11. With ResNet18, which consists of one convolutional layer, four residual361

blocks, and the final linear layer, we use the features after every block for the first five blocks (one362

convolutional layer and four residual blocks) as representations. With VGG, which consists of eight363

convolutional blocks (convolutional layer + batch-normalization + max-pooling) and the final linear364

layer, we use the features after each convolutional block as representations. We apply average-pooling365

subsampling on representations that are too large for feasible computation of NC1’s pseudo-inverse.366

D TRADES Results on CIFAR-10 with ℓ∞ adversary367

For CIFAR-10’s results with TRADES, we have produced Figure 4, which depicts the evolution368

of loss, accuracy and all of the NC metrics under the standard ℓ∞ adversary. Note that we plot369

the KLD-loss here to showcase optimization convergence, to avoid the effect of the regularization370

constant β.371

E Complementary Results on CIFAR-10, ℓ2 adversary.372

Here we complement our main text with robust network experiments on CIFAR-10 for ℓ2 adversarial373

perturbations.374

Figure 5 illustrates NC results of Adversarial Training and TRADES training with the ℓ2 adversary.375

All plots are consistent with our findings in the main text: Adversarial Training alters Neural Collapse376

such that the clean representation simplex overlaps with the perturbed representation simplex, whereas377

TRADES does not lead to any simplex ETF.378

F Complementary Results on CIFAR-100379

In this section, we reproduce our experiments on CIFAR-100. We illustrate results with (ℓ∞, ℓ2)380

adversaries and obtain the same conclusions as those on CIFAR-10. This suggests the universality of381

the intrinsic adversarial perturbation dynamics that we have detailed in the main text.382

F.1 CIFAR-100 ℓ∞ Standard and Adversarial Training Results383

All results are summarized within Figure 6. Similar to the main text, we plot the untargeted attack384

illustration in Figure 7. Notably, on CIFAR-100 with ST, adversarial perturbations also push the385

representation to leap toward the predicted class’s simplex cluster with very small angular deviation.386

F.2 CIFAR-100 ℓ∞ TRADES Results387

For CIFAR-100 ℓ∞ trained with TRADES, Figure 8 depicts the results, and we observe that no388

simplex exists, consistent with previous results.389

3https://github.com/locuslab/robust_overfitting
4https://github.com/yaodongyu/TRADES
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Figure 4: Accuracy, Loss and NC evolution with TRADES trained networks. Upper: ResNet18;
Lower: VGG11. No simplices are formed with TRADES training. Setting: CIFAR-10, ℓ∞ adversary.

F.3 CIFAR-100 ℓ2 AT and TRADES Results390

These results are shown in Figure 9. All observations are consistent with previous results.391

F.4 CIFAR-100 Simplex Similarity Results392

The Simplex Similarity and non-centered Angular Distance of the simplices formed by targeted393

adversarial and clean examples with ST, and the simplices generated by clean and perturbed examples394

with AT, are depicted in Figure 10. The result is the same as the one for CIFAR-10 in the main text,395

Figure 3.396

G Layerwise Results397

While originally variability collapse and simplex formation were observed for the last layer repre-398

sentations, follow-up studies extended the analysis to the intermediate layers of the neural network.399

In particular, He and Su [2022] found that the amount of variability collapse measured at different400

layers (at convergence) decreases smoothly as a function of the index of the layer. Further, Hui401

et al. [2022] coined the term Cascading Neural Collapse to describe the phenomenon of cascading402

variability collapse; starting from the end of the network, the collapse of one layer seemed to be403

signaling the collapse of the previous layers (albeit to a lesser extent). Here, we replicate this study of404

the intermediate layer computations, while also studying the representations of the perturbed points405

(both in standard and adversarial training). In particular, we collect the input of either convolutional406
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Figure 5: Accuracy, Loss and NC evolution with adversarially trained and TRADES trained networks.
Setting: CIFAR-10, ℓ2 adversary.

or linear layers of the network at convergence, order them by depth index, and compute the NC407

quantities of Section B. The results are presented in Figure 11.408

Both for ST and AT models, we reproduce the power law behavior observed in [He and Su, 2022]409

for clean data; the feature variability collapses progressively, and, interestingly, undergoes a slower410

decrease in the case of adversarial training. The adversarial data representations for ST models,411

however, while failing to collapse at the final layer (as already established in Figure 2), exhibit the412

same amount of “clustering” as those of the original data for the earlier layers. This hints that from the413

viewpoint of the earlier layers, clean and adversarial data are indistinguishable. And, this, is indeed414

the case! Looking at the first and third column of Figure 12, we observe that the simple classifier415

formed by the centers of the early layers is quite robust (∼ 40%) to these adversarial examples (both416

train and test). Curiously, this robustness is higher than the one of the simple classifiers defined by417

layers of an adversarially trained model (although the two numbers are not directly comparable). This418

is, undeniably, a peculiar phenomenon of standardly trained models that is worth more exploration;419

could it be that the lesser variability exhibited in the earlier layers is actually beneficial for robustness420

or is it just the stability of the feature space that makes prediction more robust?421

In Figure 13 and Figure 14, we perform the same computations on CIFAR-100. We arrive at the same422

conclusions.423
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Figure 6: Accuracy, Loss and NC evolution with standardly trained networks. Setting: CIFAR-100,
ℓ∞ adversary.

H Small Epsilon Results424

Here, we illustrate how AT indeed progressively induces more robust NC metrics and sim-425

plex ETFs with respect to the perturbation radius ϵ. Figure 15 shows the NC metrics over426

8/255−perturbed data. Conversely, using an ST model, the NC metrics when evaluating on427

(2/255, 4/255, 8/255)−perturbed data also increases monotonically with adversarial strength. This428

is illustrated in Figure 16.5429

5For small radius AT and small radius adversarial attack for ST, we scale the PGD step size α linearly with ϵ
to ensure PGD to work properly.
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Figure 7: Illustration of untargeted adversarial attacks on standardly trained, converged, models
that correspond to one random seed. (CIFAR-100, ℓ∞). Left: Number of examples with a certain
predicted label. Inner Left: The norms of clean class-means. Inner Right: The norms of predicted
class-means with perturbed data. Right: Angular distance between clean and predicted class-mean
with perturbed data. Upper: ResNet18; Lower: VGG11. For 100 classes, the between-class angular
distance is arccos (− 1

99 ) = 1.58 rad = 90.58 degrees, while 0.2 rad is only 11.4 degrees.
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Figure 8: Accuracy, Loss and NC evolution with TRADES trained networks. Upper: ResNet18;
Lower: VGG11. Results indicate AT boosts Neural Collapse so that it also happens on adversarially-
perturbed data. Setting: CIFAR-100, ℓ∞ adversary.
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Figure 9: Accuracy, Loss and NC evolution with ℓ2 robust models on CIFAR-100. Setting: CIFAR-
100, ℓ2 adversary.
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Figure 10: Angular distance. Left and Inner Left: Average between targeted attack class-means and
clean class-means on ST network. Inner Right and Right: Average between perturbed class-means
and clean class-means on AT network. Setting: CIFAR-100, ℓ∞ adversary.
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Figure 11: Layerwise evolution of NC1, NC2 and NC4 for ST and AT networks. NC metrics for
perturbed data tend to undergo some amount of clustering in the earlier layers. For AT, collapse
undergoes a slower decrease through layers than for ST. Setting: CIFAR-10, ℓ∞ adversary.
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Figure 12: Layerwise NCC classifier. We measure the performance of the NCC classifier obtained
from (training) class means on both train and test data. NCC Robustness refers to NCC Accuracy on
perturbed data. Note that, on training data, the NCC Robustness and the perturbed NCC-Net Matching
Rate curves overlap. Early layers give a surprisingly robust NCC classifier (NCC Robustness) for
both train and test data. Setting: CIFAR-10, ℓ∞ adversary.
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Figure 13: Layerwise evolution of NC1, NC2 and NC4 for ST and AT networks. NC metrics for
perturbed data tend to undergo some amount of clustering in the earlier layers. For AT, collapse
undergoes a slower decrease through layers than for ST. Setting: CIFAR-100, ℓ∞ adversary.
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Figure 14: Layerwise NCC classifier. We measure the performance of the NCC classifier obtained
from (training) class means on both train and test data. NCC Robustness refers to NCC Accuracy on
perturbed data. Note that, on training data, the NCC Robustness and the perturbed NCC-Net Matching
Rate curves overlap. Early layers give a surprisingly robust NCC classifier (NCC Robustness) for
both train and test data. Setting: CIFAR-100, ℓ∞ adversary.
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Figure 15: Progressive Loss and NC evolution, AT with varying strength. The color indicates the
epsilon used for training. Setting: CIFAR-10, ℓ∞ adversary.
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Figure 16: Progressive Loss and NC evolution, ST with varying attacking strength. The color
indicates the epsilon used for evaluation. Setting: CIFAR-10, ℓ∞ adversary.
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