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A MP-MAB and CMAB

The formulation of the MP-MAB model in the main paper shares several similarities with the CMAB
model (Chen et al., 2013, 2016b; Kveton et al., 2015c). However, these connections are largely
ignored and unexplored in the previous literature, and we elaborate their similarities and differences
here. First, the K arms with different utilities for M players can be equivalently interpreted as MK
base arms in the CMAB model. The matching set S can be viewed as one special set of super arms in
CMAB, where each super arm is of size M and must contain one arm from each player’s K arms.
Furthermore, the semi-bandit feedback in CMAB assumes that observations from pulled arms are
observable instead of the entire reward function, which is similar to the collision-sensing feedback
discussed in the main paper. At last, the definition of reward function and regret also fit in the CMAB
framework.

The key differences between MP-MAB and CMAB are in the structure of decentralized players. In
CMAB, there is one centralized agent who decides all the actions and gets all the observations. How-
ever, MP-MAB is a decentralized setup where each player makes her own decisions and gets her own
observations. From the perspective of decision making, the centralized configuration is more efficient
as it will naturally choose the collision-free matchings. On the other hand, collision-avoidance is much
harder in MP-MAB due to the decentralized decision making. To be more specific about the difference
regarding the feedback, at time t, the centralized agent in CMAB makes decision based on the entire
historyH(t) =

{
sm(τ), Osm(τ),m(τ)

}
m∈[M ],1≤τ≤t−1

, while playerm in MP-MAB makes decision

with her individual history Hm(t) =
{
sm(τ), Osm(τ),m(τ), ηsm(τ)(S(τ))

}
1≤τ≤t−1

. Obviously, in-
formation contained in Hm(t) is more limited than that in H(t). Note that

{
ηsm(τ)(S(τ))

}
1≤τ≤t−1

is omitted in H(t) since it can be directly inferred by the centralized agent. Thus, MP-MAB can be
viewed as a decentralized version of CMAB to some extent.

B Algorithmic Details of BEACON

Some omitted algorithmic details of BEACON are presented in this section.

B.1 Orthogonalization Procedure

In the orthogonalization (sometimes also referred to as the initialization) procedure, players estimate
the number of players in the MP-MAB game and obtain distinct indices in a fully distributed manner.
The initialization technique from Wang et al. (2020) is adopted in BEACON. It consists of two sub-
phases: orthogonalization and rank assignment. The orthogonalization sub-phase aims at assigning
each player with a unique external rank k ∈ [K]. It contains a sequence of blocks with length
K + 1, where each player attempts to fixate on arms without collision at first time step and states
of fixation (successful or not) are broadcast (enabled by implicit communication). Note that in
the original scheme (Wang et al., 2020), the broadcast is performed on the reserved arm K, which
results in the need of K > M . To accommodate the scenarios with K = M , the broadcast can take
place sequentially on arm 1 to arm K. In the rank assignment sub-phase, a modified Round-Robin
sequential hopping scheme helps the players convert their external ranks to internal ranks m ∈ [M ]
and estimate the overall number of players M . Detailed algorithms can be found in Wang et al.
(2020). Using the same proofs in Lemma 1 and Lemma 2 in Wang et al. (2020), we have the following
performance characterization.

Lemma 1. The expected duration of the orthogonalization procedure in BEACON is less than
K2M
K−M + 2K time steps. Once the procedure completes, all players correctly learn the number of
players M and each of them is assigned with a unique index between 1 and M .
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B.2 Detailed Communication Protocols

In this section, more details of the communication design are presented. First, as illustrated in
Section 3.3, the implicit communications are performed by having the “receive” player sample one
arm and the “send” player either pull (create collision; bit 1) or not pull (create no collision; bit 0) the
same arm to transmit one-bit information. Other players that are not communicating would fixate
on other arms to avoid interruptions. The arm(s) that the players pull for receiving or avoiding are
referred to as “communication arm(s)”, which is an arm-player matching and is assigned before the
communication happens. In BEACON, the matching of communication arms for epoch r > 1 is
chosen as the exploration matching in the previous epoch, i.e., Sr−1. The benefit of this choice is that
with the increasing explorations, Sr−1 would gradually become near-optimal with a high probability,
which also leads to smaller communication losses. Specifically, in epoch r, follower m > 1 (resp.
the leader) communicates to the leader (resp. follower m > 1) by either pulling or not pulling arm
sr−1

1 (resp. arm sr−1
m ), while the leader (resp. the follower m) stays on arm sr−1

1 (resp. arm sr−1
m )

during receiving. To make this happen, in addition to the knowledge of index sr−1
m which is assigned

to follower m for explorations, index sr−1
1 should also be communicated to the followers in the

communication phase of epoch r − 1.

Then, as illustrated in Section 3.3, there are three kinds of information to be communicated, which
are separately discussed in the following.

Arm statistics. The main idea of the adaptive differential communication (ADC) design is illustrated
in Section 3.3. However, two important ingredients are missing. The first is when follower m
quantizes the arm statistics µ̃rk,m from the collected sample mean µ̂rk,m using d1 + prk,m/2e bits. The
least significant bit (LSB) is always ceiled to 1 if d1 + prk,m/2e bits cannot fully represent µ̂rk,m. We
refer such process of quantizing µ̃rk,m as ceil(µ̂rk,m) with d1 + prk,m/2e bits. This process is needed
for the later theoretical analysis to have µ̃rk,m ≥ µ̂rk,m.

The second missing component in ADC is referred to as the signal-then-communicate approach.
The purpose of this approach is to synchronize the communication order and communication duration
among players. It consists of two parts: the leader would first create a collision on the follower’s
communication arm to indicate the beginning of her statistics sharing; then, since the length of
non-zero LSB at the end of δrk,m is not fixed, after receiving the start signal, the follower m would
take the following approach to transmit L bits (L is however unknown to the leader), in which
creating no collision indicates there are more bits to transmit while creating collision means the end
of transmission:

collision: start signal→ no collision→ one information bit→ · · ·
→ no collision→ one information bit→ collision: end signal.

Using no collision as an indicator also reduces the practical communication loss, as it avoids creating
collisions during communications. In summary, with this signal-to-communicate approach, the
original L-bits information of arm statistics would require no more than (2L+ 2)-bits.

The chosen matching and leader’s communication arm. In epoch r, the leader needs to notify
follower m of both srm (for exploration) and sr1 (for communication in the next epoch). Similar to
sharing arm statistics, the leader has to initiate the communication with a specific follower by creating
a collision. Since both arm indices can be communicated via a fixed length of dlog2(K)e bits, they
can be directly transmitted without using no-collisions to synchronize. Thus, with K arms for each
player, this part of communication can be done in 2dlog2(K)e+ 1 bits for each follower.

Batch size. A naive idea to transmit the batch size pr is to directly notify the followers of this
number. However, the value of pr is at most O(log(T )), which requires O(log log(T )) bits. With
at most O(log(T )) epochs of communication, directly sharing pr may lead to a dominating regret.
Luckily, sharing pr only serves to let players explore the same length, which can be achieved by
a much simpler and more efficient stop-upon-signal approach. Specifically, while pr is calculated
by the leader, rather than broadcasting it to the followers via implicit collisions, she counts the
exploration length herself and creates a collision on the exploration arm of each follower upon the
end of exploration in this epoch. Upon perceiving collisions, followers become aware that the current
exploration phase has ended.
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B.3 Algorithm for Followers

The detailed algorithm for the follower m is presented in Algorithm. 2.

Algorithm 2 BEACON: Follower m
1: Set epoch counter r ← 0; arm counter [prk,m]k∈[K] ← 0; sample time [T rk,m]k∈[M ] ← 0; communicated

statistics [µ̃rk,m]k∈[M ] ← 0

2: In order k ∈ [K], play arm [(m− 1 + k) mod K] once and update sample time T r+1
k,m ← T rk,m + 1

3: while not reaching the time horizon T do
4: r ← r + 1
5: ∀k ∈ [K], prk,m ←

⌊
log2(T rk,m)

⌋
6: Update µ̂rk,m as the sample mean from the first 2p

r
k,m exploratory samples from arm k

. Communication Phase
7: for k ∈ [K] do
8: if prk,m > pr−1

k,m then
9: µ̃rk,m ← ceil(µ̂rk,m) with d1 + prk,m/2e bits

10: δ̃rk,m ← µ̃rk,m − µ̃r−1
k,m

11: Send(δ̃rk,m, 1)
12: else
13: µ̃rk,m ← µ̃r−1

k,m
14: end if
15: end for
16: srm ← Receive(srm, 1)

. Exploration Phase
17: Play arm srm until signaled
18: Update T r+1

srm,m
← T rsrm,m + 2pr

19: end while

B.4 Sending and Receiving Protocols

The Send() and Receive() functions in Algorithms 1 and 2 denote the protocols of sending and
receiving information via forced collisions. In order to make this work self-contain, these two
functions are illustrated in Algorithms 3 and 4, while a more detailed illustration of the implicit
communication approach can be found in Boursier and Perchet (2019). We further note that to better
expose the sending and receiving structure, Algorithms 3 and 4 contain the key ideas in implicit
communications, but omit some detailed protocols, e.g., the signal-then-communicate approach.

Algorithm 3 Send() for Player m

Input: bit string u = [u1, u2, ..., ul] with length l,
receiver index n

1: Initialization: player m’s communication arm cm,
player n’s communication arm cn

2: for i = 1, 2, · · · , l do
3: if ui = 1 then
4: Pull arm cn . collision for bit 1
5: else
6: Pull arm cm . no collision for bit 0
7: end if
8: end for

Algorithm 4 Receive() for Player n

Input: bit string u′ with length l, sender index m
1: Initialization: player n’s communication arm cn
2: for i = 1, 2, · · · , l do
3: Pull arm cn
4: if collision then
5: u′i ← 1 . collision for bit 1
6: else
7: u′i ← 0 . no collision for bit 0
8: end if
9: end for
Output: u′

C Reward Functions

C.1 Additional Examples

Other than the proportional fairness function and minimal reward function gliven in the main paper, the
following general (nonlinear) reward functions are also commonly adopted in real-world applications:
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• Threshold: V (S, t) =
∑
m∈[M ] 1 {Osm,m(t) ≥ ϕm}, where ϕm is a player-dependent threshold.

It characterizes the need of reaching certain thresholds, e.g., quality-of-service requirements, in
cognitive radio systems;

• Video quality-rate model: V (S, t) =
∑
m∈[M ] Um(Osm,m(t)), where Um(Osm,m(t)) is a piece-

wise linear concave function on [0, 1] with decreasing slopes. It is typically used to describe video
quality, and illustrates the decreasing of marginal utility with increased allocated resources;

• Top-L utility: V (S, t) = max
{∑

m∈LOsm(t),m(t)|L = [m1, ...,mL] ⊆ [M ], |L| = L
}

, which
features the highest sum of observations from any L players.

C.2 Comparison with Max-Min Fairness in Bistritz et al. (2020)

In Bistritz et al. (2020), fairness is considered among the players in MP-MAB with a specific “Max-
Min” fairness measure, which shares some similarities with the minimal reward function considered
in this work but with major differences discussed in the following.

Reward function of Bistritz et al. (2020). The instantaneous system reward gained by the players
of playing matching S at time t in Bistritz et al. (2020) is defined as

V ′(S, t) = min
m∈[M ]

{E [Osm,m(t)]} = min {µS � ηS} ,

where expectations have already been taken inside the minimal function. To be consistent with the
notation of this paper, the corresponding expected system reward of Bistritz et al. (2020) can be
written as

V ′µ,S = E [V ′(S, t)] = min
m∈[M ]

{µS � ηS} = min {µS � ηS} = V ′(S, t), (5)

which does not differ from the instantaneous reward and remains the same with different utility
distributions.

Reward function of this paper. However, for the minimal reward function defined in this work, the
instantaneous reward is

V (S, t) = min
m∈[M ]

{Osm,m(t)} ,

which is determined entirely by the instantaneously realized observations of players and does not
incorporate any form of expectation. Further, the expected system reward is

Vµ,S = E [V (S, t)] = E
[

min
m∈[M ]

{Osm,m(t)}
]
,

which does not have a uniform expression for different utility distributions.

Illustration of the differences. The differences can be illustrated more clearly by assuming that the
utility distributions are mutually independent Bernoulli distributions, i.e., φk,m = Bernoulli(µk,m),
where µk,m ≤ 1 here is the probability that utility 1 is generated by arm (k,m). Then, the expected
system reward function of Bistritz et al. (2020) and this work are shown in the following, respectively:

Max-Min fairness in Bistritz et al. (2020): V ′µ,S = min
m∈[M ]

{µsm,m};

Minimal reward function in this work: Vµ,S =
∏

m∈[M ]

µsm,m.

Although the Max-Min fairness measure has several distinctions with the minimal reward function,
its expected system reward function in Eqn. (5) also satisfies Assumptions 1–3. Thus, if we directly
take Eqn. (5) as the expected sysmtem reward function (without explicitly defining the instantaneous
reward function), both the design and analysis of BEACON are applicable to the Max-Min fairness
setting in Bistritz et al. (2020). In this sense, Bistritz et al. (2020) studied a special case of the general
framework proposed in this work. Furthermore, since Theorem 3 holds for this special case, this work
improves the O(log log(T ) log(T )) regret provided by Bistritz et al. (2020) into a strictly O(log(T ))
regret.
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D Experiment Details and Additional Results

D.1 Codes and Computational Resources

The codes for the experiments are publicly available at https://github.com/ShenGroup/MPMAB_
BEACON, along with detailed instructions. The experiments do not require heavy computations and all
the simulations were performed by a common PC, which only took a few hours to complete in total.

D.2 Detailed Experiment Settings

All experimental results are averaged over 100 independent runs and the utility distributions are
taken as mutually independent Bernoulli distributions, i.e., φk,m = Bernoulli(µk,m).. The 5-arms-5-
players game adopted for the evaluation of the linear reward function shown in Fig. 2(a) is specified
in the following, which is the same as the one adopted in Boursier et al. (2020):

µT = [µk,m]T(k,m) =


0.5 0.49 0.39 0.29 0.5
0.5 0.49 0.39 0.29 0.19
0.29 0.19 0.5 0.499 0.39
0.29 0.49 0.5 0.5 0.39
0.49 0.49 0.49 0.49 0.5

 .
The 8-arms-6-players instance used in the simulation with the proportional fairness function and the
minimal function in Figs. 2(c) and 2(d) is shown in the following:

µT = [µk,m]T(k,m) =


0.45 0.49 0.59 0.17 0.37 0.86 0.94 0.98
0.39 0.25 0.4 0.6 0.24 0.54 0.43 0.67
0.39 0.33 0.8 0.01 0.12 0.2 0.61 0.77
0.95 0.22 0.24 0.88 0.2 0.12 0.29 0.3
0.69 0.89 0.25 0.59 0.43 0.18 0.01 0.84
0.97 0.15 0.89 0.16 0.09 0.57 0.61 0.19

 .

D.3 METC Enhancements

To have a more fair comparison with METC (Boursier et al., 2020), several enhancements and adjust-
ments are conducted. First, all empirical enhancements introduced in the supplementary material
of Boursier et al. (2020) are implemented to achieve the best performance. Second, since METC is
originally designed only for the linear reward function, enhancements are made to accommodate
the adoption of general nonlinear reward functions. Specifically, for each active arm (k,m), METC
selects the empirically best matching Bk,m containing arm (k,m) w.r.t. the upper confidence bounds
µ̄′ = [µ̄′k,m](k,m)∈[K]×[M ]. The construction of µ̄′ strictly follows the design from Boursier et al.
(2020). In its original form, this step is confined to the linear reward function as

Bk,m ← arg max
S∈S,sm=k

{∑
n∈[M ]

µ̄′sn,n

}
.

We apply the same principle to the general reward functions by assuming an enhanced oracle such
that

Bk,m ← OracleEnhanced(µ̄′, k,m)← arg max
S∈S,sm=k

{v(µ̄′S � ηS)} .

The same idea is applied to the procedure of eliminating arms in METC. Note that the requirement
for this oracle is much higher than the one used in BEACON, since it needs to output a specific
exploration matching for each active arm, instead of only one matching as in BEACON.

D.4 Additional Experimental Results

First, Figs. 3(a) and 3(b) are the complete versions of Figs. 2(a) and 2(d), where the significant
advantage of BEACON over METC is illustrated more clearly.

Then, Fig. 4(a) presents the regret differences between BEACON and METC corresponding to
Fig. 2(b). A large game setting with M = 10,K = 30, T = 106 are evaluated using 100 randomly
generated instances with results reported in Fig. 4(b) and 4(c). We can observe that the performance
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(a) Linear reward function. (b) Minimal function.

Figure 3: Complete regret comparisons of Figs. 2(a) and 2(d). The regret curves of CUCB and
BEACON are sometimes too close to each other to be distinguished.

(a) Linear reward function. (b) Linear reward function and a
large game.

(c) Linear reward function and a
large game.

Figure 4: Regret histograms with the linear reward function. (a) is the regret difference corresponding
to Fig. 2(b). (b) is the cumulative result from 100 randomly generated instances with a large game
setting with M = 10 and K = 30, and (c) is the corresponding regret difference for (b).

of BEACON is stable with this large game setting and is still significantly better than METC, which
further demonstrates the advantages of BEACON.

Also, 100 randomly generated instances with M = 5,K = 6, T = 106 are used to evaluate
the performance of BEACON and METC in dealing with the proportional fairness function. The
histogram of the regrets is given in Fig. 5(a) along with the histogram of the regret differences in
Fig. 5(b), the latter of which gives a more definitive illustration of the advantage of BEACON. It can
be observed that BEACON effectively deals with this proportional fairness function and outperforms
METC uniformly across all realizations, which again proves the stable performance of BEACON in
dealing with general reward functions.

In addition to the theoretical comparison of regret analyses given in Table 1, we also provide some
empirical explanations of BEACON’s advantages over METC. First, the differential communication
design is the key to lower communication losses. In fact, in the experiments, the statistical difference
to be communicated, i.e., δrk,m, is much smaller than the theory dictates. We have frequently observed

(a) Proportional fairness function. (b) Proportional fairness function.

Figure 5: Regret histograms with the proportional fairness function. (a) is the cumulative regret result
from 100 randomly generated instances, and (b) is the corresponding regret difference for (a).

6



that there are only one to two non-zero bits to be communicated. Second, for explorations, METC
adopts the strategy of arm elimination, while BEACON does not explicitly eliminate arms but instead
uses confidence bounds to balance exploration and exploitation. From the experimental results, the
arm elimination approach in METC is more costly than the exploration strategy in BEACON. This
improvement again illustrates the importance of the connection between MP-MAB and CMAB.

E Proof for Theorem 3

We begin with the analysis of BEACON with general reward functions, i.e., Theorem 3, since it is
more intuitive than the one for the linear reward function, i.e., Theorem 1. The latter follows the
same spirit of the former but is carefully tailored to the linear reward function.

The complete version of Theorem 3 is first presented in the following.
Theorem 4 (Complete version of Theorem 3). Under Assumptions 1, 2, and 3, the regret of
BEACON is upper bounded as

R(T ) ≤
∑

(k,m)∈[K]×[M ]

[
28∆k,m

min ln(T )

(f−1(∆k,m
min))2

+

∫ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx+ 4KM∆k,m

max

]

+
6

ln 2
M2K log2(K)∆c ln(T ) +

18

ln 2
MK∆c ln(T ) +MK∆c +

(
K2M

K −M
+ 2K

)
∆c +K∆max

= Õ

 ∑
(k,m)∈[K]×[M ]

[
∆k,m

min

(f−1(∆k,m
min))2

+

∫ ∆k,m
max

∆k,m
min

1

(f−1(x))2
dx

]
log(T ) +M2K∆c log(T )


= Õ

 ∑
(k,m)∈[K]×[M ]

∆k,m
max log(T )

(f−1(∆k,m
min))2

+M2K∆c log(T )

 .

To facilitate the proof, we introduce (or recall) the following notations:

Vµ,∗ = max{Vµ,S |S ∈ S} = max{v(µS � ηS)|S ∈ S}: the optimal reward value;

S∗ = {S|S ∈ S, Vµ,S = Vµ,∗}: the set of the optimal matchings;
Sc = {S|∃m 6= n, sm = sn}: the set of matchings with collisions;
Sb = S\(S∗ ∪ Sc): the set of collision-free suboptimal matchings;

∆k,m
min = Vµ,∗ −max{Vµ,S |S ∈ Sb, sm = k};

∆k,m
max = Vµ,∗ −min{Vµ,S |S ∈ Sb, sm = k};

∆min = min{∆k,m
min}: the smallest reward gap among collision-free matchings;

∆max = max{∆k,m
max}: the largest reward gap among collision-free matchings;

∆c = Vµ,∗ −min{Vµ,S |S ∈ Sc} ≤ f(1): the largest possible per-step loss upon collisions.

Proof for Theorems 3 and 4. The overall regret R(T ) can be decomposed into three parts: the explo-
ration regret Re(T ), the communication regret Rc(T ), and the other regret Ro(T ), i.e.,

R(T ) = Re(T ) +Rc(T ) +Ro(T ).

The exploration regret Re(T ) and the communication regret Rc(T ) are caused by exploration and
communication phases, respectively, and are analyzed in the following subsections. The other regret
Ro(T ) contains the regret caused by orthogonalization and activation, i.e., the explorations before
epoch 1, and can be easily bounded as

Ro(T ) ≤
(
K2M

K −M
+ 2K

)
∆c +K∆max, (6)

where the first term is the regret from orthogonalization (Lemma 1) and the second term is the regret
from activation.

With Lemmas 2 and 3, which bound Rc(T ) and Re(T ) respectively, established in the following
subsections, and the bound on Ro(T ) in Eqn. (6), Theorems 3 and 4 can be directly proved.
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E.1 Communication Regret

Lemma 2. For BEACON, under time horizon T , the cumulative length of all communication phases
Dc is bounded as

E[Dc] ≤
6

ln 2
M2K log2(K) ln(T ) +

18

ln 2
MK ln(T ) +MK,

and the communication loss Rc(T ) is bounded as

Rc(T ) ≤ E[Dc]∆c ≤
6

ln 2
M2K log2(K)∆c ln(T ) +

18

ln 2
MK∆c ln(T ) +MK∆c.

Proof for Lemma 2. As illustrated in Section 3.3 and Appendix B, communication phases consist of
three parts of information sharing: arm statistics µ̃rk,m, the chosen matching Sr, and the batch size
parameter pr. With the detailed communication protocol described in Appendix B, we bound the
communication lengths of the aforementioned three parts, respectively.

Part I: Arm statistics. We take arm (k,m),m 6= 1 as an example. In epoch 1, µ̃0
k,m is initialized as 0

while µ̄1
k,m is the value of one random utility sample from arm (k,m). With p1

k,m = blog2(T 1
k,m)c =

blog2(1)c = 0, µ̃1
k,m is quantized from µ̂1

k,m with 1 + p1
k,m = 1 bit. The difference δ̃1

k,m =

µ̃1
k,m − µ̃0

k,m = µ̃1
k,m is transmitted and it contains only 1 bit.

In epoch r > 1, if prk,m > pr−1
k,m , i.e., prk,m = pr−1

k,m + 1, arm statistics of arm (k,m) should be
communicated via the truncated version of the difference δ̃rk,m = µ̃rk,m − µ̃

r−1
k,m . Then, we can bound

the duration of communication through bounding δ̃rk,m. Specifically, it holds that

|δ̃rk,m| = |µ̃rk,m − µ̃r−1
k,m|

= |µ̃rk,m − µ̂rk,m − (µ̃r−1
k,m − µ̂

r−1
k,m) + (µ̂rk,m − µ̂r−1

k,m)|

≤ |µ̃rk,m − µ̂rk,m|+ |µ̃r−1
k,m − µ̂

r−1
k,m|+ |µ̂

r
k,m − µ̂r−1

k,m|
(a)

≤
√

1

2p
r
k,m

+

√
1

2p
r
k,m−1 + |µ̂rk,m − µ̂r−1

k,m|,

where inequality (a) is due to the quantization process specified Section B.2, i.e., µ̃rk,m = ceil(µ̂rk,m)

with d1 + prk,m/2e bits. This quantization leads to a quantization error of at most 2−p
r
k,m/2. Further,

denoting γk,mτ as the τ -th random utility sample from arm (k,m) during exploration phases, we can
rewrite the difference µ̂rk,m − µ̂

r−1
k,m as

µ̂rk,m − µ̂r−1
k,m =

∑2
prk,m

τ=1 γk,mτ
2p

r
k,m

−
∑2

prk,m−1

τ=1 γk,mτ
2p

r
k,m−1

=

∑2
prk,m−1

τ=1 γk,mτ +
∑2

prk,m

τ=1+2
pr
k,m
−1 γk,mτ

2p
r
k,m

−
∑2

prk,m−1

τ=1 γk,mτ
2p

r
k,m−1

=

∑2
prk,m

τ=1+2
pr
k,m
−1 γk,mτ −

∑2
prk,m−1

τ=1 γk,mτ

2p
r
k,m

=
1

2p
r
k,m

2
prk,m−1∑
τ=1

(
γk,m
τ+2

pr
k,m
−1 − γk,mτ

)
which is a 1√

2
pr
k,m

+1
-sub-Gaussian random variable since the utility samples are independent across

time. Thus, we can further derive that, with a dummy variable x ≥
√

ln 2,

P

(∣∣∣µ̂rk,m − µ̂r−1
k,m

∣∣∣ ≥√ x2

2p
r
k,m

)
≤ 2 exp

[
−2p

r
k,m

x2

2p
r
k,m

]
≤ 2 exp[−x2]

8



⇒P

(
|δ̃rk,m| ≥

√
1

2p
r
k,m

+

√
1

2p
r
k,m−1 +

√
x2

2p
r
k,m

)
≤ 2 exp[−x2]

(a)⇒P

(
Lrk,m ≥ 3 +

prk,m
2

+ log2

(
1 +
√

2 + x√
2p

r
k,m

))
≤ 2 exp[−x2]

⇒P
(
Lrk,m ≥ 3 + log2 (3 + x)

)
≤ 2 exp[−x2]

⇒P
(
Lrk,m ≤ 3 + log2 (3 + x)

)
≥ 1− 2 exp[−x2]

(b)⇒P
(
Lrk,m ≤ l

)
≥ 1− 2 exp

[
−(2l−3 − 3)2

]
where Lrk,m in implication (a) is the length of the truncated version |δ̃rk,m| and is upper bounded by

Lrk,m ≤ d1 + prk,m/2e − blog2(1/|δ̃rk,m|)c

≤ 3 + prk,m/2 + log2(|δ̃rk,m|).

In deriving (b), we substitute the variable 3 + log2(3 +x) with l, which satisfies that l ≥ 3 + log2(3 +√
ln 2), and thus equivalently x = 2l−3 − 3. With the above results and viewing Lrk,m as a random

variable, we have that its cumulative distribution function (CDF) FLr
k,m

(l) satisfies the following
property:

∀l ≥ 5 > 3 + log2(3 +
√

ln 2), FLr
k,m

(l) = P
(
Lrk,m ≤ l

)
≥ 1− 2 exp

[
−(2l−3 − 3)2

]
.

Using the property of CDF, we can bound the expectation of Lrk,m as

E
[
Lrk,m

]
=

∞∑
l=0

(1− FLr
k,m

(l))

≤ 6 +

∞∑
l=6

2 exp
[
−(2l−3 − 3)2

]
≤ 6 +

∫ ∞
l=5

2 exp
[
−(2l−3 − 3)2

]
dl

≤ 7.

Thus, we have that in expectation, the truncated version of |δ̃rk,m| has a length that is less than 7 bits.
In addition, 1-bit information should also be transmitted to indicate the sign of δ̃rk,m. As a summary,
in expectation, 8 bits is sufficient to represent the truncated version of δ̃rk,m,

With overall time horizon of T , there are at most log2(T ) statistics updates of arm (k,m) in addition
to the first epoch. The expected communication duration for arm statistics Ds is bounded as

E [Ds]
(a)
= MK︸︷︷︸

epoch r = 1

+E

∑
r

∑
(k,m):prk,m>p

r−1
k,m

(2 + 2(Lrk,m + 1))


︸ ︷︷ ︸

epoches r > 1

≤MK + (2 + 2× 8)MK log2(T )

≤ 18MK log2(T ) +MK

=
18

ln 2
MK ln(T ) +MK, (7)

where equation (a) takes the signal-then-communicate protocol described in Appendix B into consider-
ation, where transmitting δ̃rk,m consists of 1 step of the leader notifying the follower to start, (Lrk,m+1)

steps of the truncated version of δ̃rk,m and correspondingly (Lrk,m + 2) steps of synchronization
between the leader and follower.
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Part II & III: Matching choice and batch size. These two parts of communications are relatively
easy to bound. In each epoch r, the leader initiates and then transmits two arm indices (sr1 and srm) to
each follower m, thus, the communication duration Dm for matching assignments is bounded as

Dm =
∑
r

(M − 1)(1 + 2dlog2(K)e)

≤ (M − 1)(2 log2(K) + 3)MK log2(T )

<
1

ln 2
M2K(2 log2(K) + 3) ln(T ). (8)

For the communication duration Db for the batch size, as illustrated in Appendix B, the leader notifies
followers to stop exploring by sending stopping signals. Thus, it holds that

Db =
∑
r

(M − 1) ≤ (M − 1)MK log2(T ) <
1

ln 2
M2K ln(T ). (9)

By combining Eqns. (7), (8) and (9), Lemma 2 can be obtained as

E[Dc] = E[Ds] + E[Dm] + E[Db]

≤ 18

ln 2
MK ln(T ) +MK +

1

ln 2
M2(2 log2(K) + 3)K ln(T ) +

1

ln 2
M2K ln(T )

≤ 6

ln 2
M2K log2(K) ln(T ) +

18

ln 2
MK ln(T ) +MK.

E.2 Exploration Regret

Lemma 3. For BEACON, under time horizon T , the exploration regret is upper bounded as

Re(T ) ≤
∑

(k,m)∈[K]×[M ]

[
28∆k,m

min ln(T )

(f−1(∆k,m
min))2

+

∫ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx+ 4KM∆k,m

max

]
.

Proof for Lemma 3. The following proof is inspired by the proof for CUCB in Chen et al. (2013).
However, Chen et al. (2013) does not consider the batched structure, which introduces additional
challenges for the proof here. To better characterize the exploration regret, we introduce the following
notations:

Sk,mb = {S|S ∈ Sb, sm = k} = {Sk,m1 , ..., Sk,mN(k,m)};

∆k,m
n = Vµ,∗ − Vµ,Sk,m

n
,∀n ∈ {1, ..., N(k,m)},

where Sk,mb is the set of collision-free sub-optimal matchings that contain arm (k,m) and we denote
its size as N(k,m). ∆k,m

n denotes the sub-optimality gap of the matching Sk,mn . In the following
proof, we re-arrange the set Sk,mb = {Sk,m1 , ..., Sk,mN(k,m)} in a decreasing order w.r.t. the gap ∆k,m

n ,

i.e., if n1 ≥ n2, ∆k,m
n1
≤ ∆k,m

n2
. Also, for convenience, we denote ∆k,m

N(k,m)+1 = 0. Furthermore, it

naturally holds that ∆k,m
min = ∆k,m

N(k,m) and ∆k,m
max = ∆k,m

1 .

We denote qk,mn ,∀n ∈ {1, ..., N(k,m)} as the integer such that

2q
k,m
n −1 ≤ 14 ln(T )

(f−1(∆k,m
n ))2

< 2q
k,m
n <

28 ln(T )

(f−1(∆k,m
n ))2

.

In addition, we define qk,m0 = 0 and qk,mN(k,m)+1 = dlog2(T )e. Note that with the above definition of
qk,mn , it holds that

∀p ≥ qk,mn , f

(
2

√
3 ln tr
2p+1

+

√
1

2p

)
≤ f

(
3

√
3 ln tr
2p+1

)
≤ f

(
3

√
3 lnT

2p+1

)
< ∆k,m

n , (10)
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which is a key property that is utilized in the subsequent proofs.

For epoch r, we define the “representative arm” ρr = (srm,m) as one of the arms in Sr such that
prsrm,m = pr. If there are more than one arm in Sr with arm counter pr, ρr is randomly chosen from
them. Thus, it is guaranteed that there is one and only one representative arm for each exploration
phase. With the arm counter updating rule specified in Section 3.2, the counter of arm ρr will certainly
increase by 1 after epoch r.

Step I: Regret decomposition. With respect to the representative arm, we decompose the exploration
regret as

Re(T ) = E

[∑
r

2pr (Vµ,∗ − Vµ,Sr )

]

= E

∑
r

∑
(k,m)∈[K]×[M ]

2pr (Vµ,∗ − Vµ,Sr )1 {ρr = (k,m)}


(a)
= E

∑
r

∑
(k,m)∈[K]×[M ]

2p
r
k,m(Vµ,∗ − Vµ,Sr )1 {ρr = (k,m)}


(b)
= E

∑
r

∑
(k,m)∈[K]×[M ]

N(k,m)∑
n=1

2p
r
k,m∆k,m

n 1
{
ρr = (k,m), Sr = Sk,mn

}
(c)
= E

 ∑
(k,m)∈[K]×[M ]

∑
pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n 1

{
Sk,m,pk,m

= Sk,mn
}

(d)
=

∑
(k,m)∈[K]×[M ]

Rk,me (T ), (11)

where equality (a) is from the definition of the representative arm that if ρr = (k,m), it
holds that pr = prk,m. Equality (b) further associates the regret of each exploration phase
with specific sub-optimal matchings. Sk,m,pk,m

denotes the exploration matching with rep-
resentative arm (k,m) and the corresponding arm counter pk,m. Equality (c) holds be-
cause once ρr = (k,m), its arm counter will increase. Equality (d) denotes Rk,me (T ) :=

E
[∑

pk,m>0

∑N(k,m)
n=1 2pk,m∆k,m

n 1
{
Sk,m,pk,m

= Sk,mn
}]

, which represents the regret associated
with arm (k,m).

For term Rk,me (T ), we further have

Rk,me (T ) =E

 ∑
pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n 1

{
Sk,m,pk,m

= Sk,mn
}

=
∑

pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,mn
)

(a)

≤
∑

pk,m>0

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,mn |Ek,m,pk,m

)
P
(
Ek,m,pk,m

)
+

∑
pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,mn |Ēk,m,pk,m

)
P
(
Ēk,m,pk,m

)

≤
∑

pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,mn |Ek,m,pk,m

)

11



+
∑

pk,m≥0

2pk,m∆k,m
maxP

(
Ēk,m,pk,m

)

≤
N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<q

k,m
h+1

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,mn |Ek,m,pk,m

)
︸ ︷︷ ︸

term (A)

+
∑

pk,m≥0

2pk,m∆k,m
maxP

(
Ēk,m,pk,m

)
︸ ︷︷ ︸

term (B)

,

where equality (a) introduces the notion of the “nice event” Ek,m,pk,m
, which is described in the

following.

At epoch r, the nice event Er is defined as

Er =

{
∀(k,m) ∈ [K]× [M ],−

√
3 ln tr

2p
r
k,m+1 < µ̃rk,m − µk,m <

√
3 ln tr

2p
r
k,m+1 +

√
1

2p
r
k,m

}
.

Furthermore, when the representative arm in epoch r is arm (k,m) with counter pk,m, Er is denoted
as Ek,m,pk,m

.

Step II: Bounding term (B). We start with term (B) by bounding the probability that event Ēr
happens. Specifically, it holds that

P
(
Ēr
)
≤

∑
(k,m)∈[K]×[M ]

P

(
µ̃rk,m − µk,m ≤ −

√
3 ln tr

2p
r
k,m+1

)

+
∑

(k,m)∈[K]×[M ]

P

(
µ̃rk,m − µk,m ≥

√
3 ln tr

2p
r
k,m+1 +

√
1

2p
r
k,m

)

=
∑

(k,m)∈[K]×[M ]

P

(
µ̃rk,m − µ̂rk,m + µ̂rk,m − µk,m ≤ −

√
3 ln tr

2p
r
k,m+1

)

+
∑

(k,m)∈[K]×[M ]

P

(
µ̃rk,m − µ̂rk,m + µ̂rk,m − µk,m ≥

√
3 ln tr

2p
r
k,m+1 +

√
1

2p
r
k,m

)
(a)

≤
∑

(k,m)∈[K]×[M ]

P

(
µ̂rk,m − µk,m ≤ −

√
3 ln tr

2p
r
k,m+1

)

+
∑

(k,m)∈[K]×[M ]

P

(
µ̂rk,m − µk,m ≥

√
3 ln tr

2p
r
k,m+1

)

≤
∑

(k,m)∈[K]×[M ]

blog2(tr)c∑
pk,m=0

2P

(
µ̂rk,m − µk,m ≥

√
3 ln tr

2p
r
k,m+1 , p

r
k,m = pk,m

)

≤
∑

(k,m)∈[K]×[M ]

blog2(tr)c∑
pk,m=0

2P

(∑2pk,m

τ=1 γk,mτ
2pk,m

− µk,m ≥
√

3 ln tr
2pk,m+1

)

(b)

≤
∑

(k,m)∈[K]×[M ]

blog2(tr)c∑
pk,m=0

2 exp

[
−2 · 2pk,m

3 ln tr
2pk,m+1

]

≤ 2KM
blog2(tr)c+ 1

(tr)3

≤ 2KM
1

(tr)2

12



(c)

≤ 2KM
1

(2pr )2
, (12)

where inequality (a) holds because µ̃rk,m = ceil(µ̂rk,m) with d1+prk,m/2e bits and µ̃rk,m− µ̂rk,m > 0
Inequality (b) is from the Hoeffding’s inequality. Inequality (c) utilizes the observation that tr ≥ 2pr .

With Eqn. (12), we can further bound term (B) as

term (B) =
∑

pk,m≥0

2pk,m∆k,m
maxP

(
Ēk,m,pk,m

)
(a)

≤2
∑

pk,m≥0

2pk,m∆k,m
max ·KM

1

(2pk,m)2

=2
∑

pk,m≥0

∆k,m
max ·KM

1

2pk,m

≤4KM∆k,m
max,

where inequality (a) is with Eqn. (12) and pr = pk,m.

Step III: Bounding term (A). Before bounding term (A), we first establish the following implications.
For epoch r, if ρr = (k,m) and pr = prk,m = pk,m, denoting µ̄r and Sr as µ̄k,m,pk,m and Sk,m,pk,m

respectively, if event Ek,m,pk,m
happens, we have

pk,m ≥ qk,mh , the oracle outputs Sk,m,pk,m
= Sk,mn

⇒pk,m ≥ qk,mh ,∀S ∈ S∗\Sc, v(µ̄
k,m,pk,m

Sk,m
n

� ηSk,m
n

) ≥ v(µ̄
k,m,pk,m

S � ηS)

⇒pk,m ≥ qk,mh ,∀S ∈ S∗\Sc, v(µ̄
k,m,pk,m

Sk,m
n

) ≥ v(µ̄
k,m,pk,m

S )

(a)⇒pk,m ≥ qk,mh ,∀S ∈ S∗\Sc, v(µSk,m
n

) + f
(∥∥∥µ̄k,m,pk,m

Sk,m
n

− µSk,m
n

∥∥∥
∞

)
≥ v(µ̄

k,m,pk,m

S )

(b)⇒pk,m ≥ qk,mh ,∀S ∈ S∗\Sc, Vµ,Sk,m
n

+ f

(
2

√
3 ln tr

2pk,m+1
+

√
1

2pk,m

)
≥ Vµ,∗

(c)⇒pk,m ≥ qk,mh , VSk,m
n

+ ∆k,m
h > V∗, (13)

where implication (a) is from Assumption 3 and implication (b) utilizes the definition of Ek,m,pk,m
,

Assumption 2 and that arms in Sk,m,pk,m
have counters at least pk,m. Implication (c) is from the

definition of qk,mh and Eqn. (10).

With Eqn. (13), we can get that if pk,m ≥ qk,mh , the matchings Sk,mn with n ≤ h cannot be Sr;
otherwise it contradicts with the definition of ∆k,m

h . Thus, we can further bound term (A) as

term (A) =

N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<q

k,m
h+1

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,mn |Ek,m,pk,m

)

=

N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<q

k,m
h+1

N(k,m)∑
n=h+1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,mn |Ek,m,pk,m

)
(a)

≤
N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<q

k,m
h+1

N(k,m)∑
n=h+1

2pk,m∆k,m
h+1P

(
Sk,m,pk,m

= Sk,mn |Ek,m,pk,m

)
(b)

≤
N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<q

k,m
h+1

2pk,m∆k,m
h+1

=

N(k,m)∑
h=0

(2q
k,m
h+1 − 2q

k,m
h )∆k,m

h+1
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=

N(k,m)−1∑
h=0

(2q
k,m
h+1 − 2q

k,m
h )∆k,m

h+1

≤2
qk,m
N(k,m)∆k,m

N(k,m) +

N(k,m)−1∑
h=1

2q
k,m
h

(
∆k,m
h −∆k,m

h+1

)
(c)

≤
28∆k,m

N(k,m) ln(T )

(f−1(∆k,m
N(k,m)))

2
+

N(k,m)−1∑
h=1

28 ln(T )

(f−1(∆k,m
h ))2

(
∆k,m
h −∆k,m

h+1

)
(d)

≤
28∆k,m

N(k,m) ln(T )

(f−1(∆k,m
N(k,m)))

2
+

∫ ∆k,m
1

∆k,m
N(k,m)

28 ln(T )

(f−1(x))2
dx

=
28∆k,m

min ln(T )

(f−1(∆k,m
min))2

+

∫ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx,

where inequality (a) holds because ∀n ≥ h + 1, ∆k,m
n ≤ ∆k,m

h+1, and inequality (b) is from∑N(k,m)
n=h+1 P

(
Sk,m,pk,m

= Sk,mn |Ek,m,pk,m

)
≤ 1. Inequality (c) is from the definition of qk,mn and

inequality (d) is because 28 ln(T )
(f−1(x))2 is strictly decreasing in [∆k,m

N(k,m),∆
k,m
1 ].

By combining terms (A) and (B), we have

Rk,me (T ) ≤ 28∆k,m
min ln(T )

(f−1(∆k,m
min))2

+

∫ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx+ 4KM∆k,m

max

≤ 28∆k,m
max ln(T )

(f−1(∆k,m
min))2

+ 4KM∆k,m
max.

Overall, we conclude that

Re(T ) =
∑

(k,m)∈[K]×[M ]

Rk,me (T )

≤
∑

(k,m)∈[K]×[M ]

[
28∆k,m

min ln(T )

(f−1(∆k,m
min))2

+

∫ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx+ 4KM∆k,m

max

]

≤
∑

(k,m)∈[K]×[M ]

28∆k,m
max ln(T )

(f−1(∆k,m
min))2

+ 4K2M2∆max.

Theorems 3 and 4 can be proved by combining Lemmas 2, 3, and Eqn. (6).

F Proof for Theorem 1

A complete version of Theorem 1 is first presented in the following.
Theorem 5 (Complete version of Theorem 1). With a linear reward function, the regret of BEACON
is upper bounded as

Rlinear(T ) ≤
∑

(k,m)∈[K]×[M ]

3727M

∆k,m
min

ln(T ) + 8K2M3 +M2K

+ (22M + 2M log2(K))

[
2MK

ln 2
ln(T ) +MK

(
3M
√

3 ln(T )√
2− 1

+
8KM2

3

)]

= Õ

 ∑
(k,m)∈[K]×[M ]

M log(T )

∆k,m
min

+M2K log(T )


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= Õ

(
M2K log(T )

∆min
+M2K log(T )

)
.

Proof for Theorems 1 and 5. Similar to the previous proof, the overall regret Rlinear(T ) can be de-
composed into three parts: the exploration regret Re,linear(T ), the communication regret Rc,linear(T ),
and the other regret Ro,linear(T ), i.e.,

Rlinear(T ) = Re,linear(T ) +Rc,linear(T ) +Ro,linear(T ).

The last component can be similarly bounded as

Ro,linear(T ) ≤
(
K2M

K −M
+ 2K

)
∆c +K∆max,

The communication regret and exploration regret are bounded Lemmas 4 and 5 that are presented in
the subsequent subsections. Putting them all together completes the proof.

F.1 Communication Regret

Lemma 4. For BEACON, under time horizon T , the communication loss Rc,linear(T ) is upper
bounded as

Rc,linear(T ) ≤M2K + (22M + 2M log2(K))

[
2MK

ln 2
ln(T ) +MK

(
3M
√

3 ln(T )√
2− 1

+
8KM2

3

)]
.

Proof for Lemma 4. From the proof for Lemma 2, we can draw the following facts:

(i) For epoch 1, communicating δ̃1
k,m takes 1 time step;

(ii) For epoch r > 1, if prk,m > pr−1
k,m , δ̃rk,m is communicated and the communication in

expectation takes 2 + 2× (1 + E[Lrk,m]) ≤ 18 time steps;
(iii) For epoch r > 1, the communication of the chosen matching and the batch size parameter

takes less than M(3 + 2 log2(K)) +M time steps.

These facts hold for the general reward functions, thus naturally hold for the linear reward function.

However, with the linear reward function, the loss caused by communication can be characterized
more carefully as

Rc,linear(T )
(a)

≤ MK ×M

+ E

∑
r

(2 + Vµ,∗ − Vµ,Sr
)1 {Er}

∑
(k,m)

181
{
prk,m ≥ pr−1

k,m

}
+M(3 + 2 log2(K)) +M


+ E

∑
r

M1
{
Ēr
}∑

(k,m)

181
{
prk,m ≥ pr−1

k,m

}
+M(3 + 2 log2(K)) +M


(b)

≤ M2K +
∑
r

E
[
(2 + Vµ,∗ − Vµ,Sr

)1 {Er}+M1
{
Ēr
}]

(22M + 2M log2(K))

(c)

≤ M2K +
∑
r

(
2 + 3M

√
3 ln(T )

2pr+1
+ 2M

KM

(2pr )2

)
(22M + 2M log2(K))

≤M2K + (22M + 2M log2(K))

2MK log2(T ) +MK

dlog2 Te∑
pr=0

(
3M

√
3 ln(T )

2pr+1
+ 2

KM2

(2pr )2

)
≤M2K + (22M + 2M log2(K))

[
2MK log2(T ) +MK

(
3M
√

3 ln(T )
1√

2− 1
+

8KM2

3

)]
where inequality (a) is from that there are at most 2 players colliding with each other (leader and one
follower) under the nice event Er. Specifically, with arms in Sr used for communications in epoch r,
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one communication step leads to a loss at most 2 + Vµ,∗ − Vµ,Sr . Inequality (b) is from that in each
epoch r > 1, at most M arms statistics need to be communicated. Inequality (c) holds because if the
nice event Er happens

∀S ∈ S∗\Sc, v(µ̄rSr
) ≥ v(µ̄rS)

⇒∀S ∈ S∗\Sc, Vµ,Sr
+M

(
2

√
3 ln tr
2pr+1

+

√
1

2pr

)
≥ v(µ̄rSr

) ≥ v(µ̄rS) > v(µS) = Vµ,∗

⇒Vµ,∗ − Vµ,Sr ≤M

(
2

√
3 ln tr
2pr+1

+

√
1

2pr

)
≤ 3M

√
3 ln(T )

2pr+1
;

otherwise, the nice event does not happen with P(Ēr) ≤ 2KM
(2pr )2 proved in the Eqn. (12),

E[M1
{
Ēr
}

] ≤ 2M KM
(2pr )2 .

F.2 Exploration Regret

Lemma 5. For BEACON, under time horizon T , the exploration loss Re,linear(T ) is upper bounded
as

Re,linear(T ) ≤
∑

(k,m)

3727M

∆k,m
min

ln(T ) + 4K2M2∆max.

Proof for Lemma 5. The following proof is based on the proof for CUCB with a linear reward
function in Kveton et al. (2015c), but is carefully designed for the complicated batched exploration.
In the following proof, we introduce the following notations:

S∗ = [s∗1, ..., s
∗
M ] ∈ S∗\Sc: one particular collision-free optimal matching;

∆Sr
:= Vµ,∗ − Vµ,Sr

;

[M̃r] := {m|m ∈ [M ], srm 6= s∗m}.

Step I: Regret decomposition. First, we can decompose the exploration regret Re,linear(T ) as

Re,linear(T ) = E

[∑
r

2pr (Vµ,∗ − Vµ,Sr
)

]

= E

[∑
r

2pr∆Sr
1 {Er,∆Sr

> 0}

]
+ E

[∑
r

2pr∆Sr
1
{
Ēr,∆Sr

> 0
}]

(14)

(a)

≤ E

∑
r

2pr∆Sr
1

 ∑
m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ ∆Sr

,∆Sr
> 0




︸ ︷︷ ︸
term (C)

+ E

[∑
r

2pr∆Sr1
{
Ēr
}]

︸ ︷︷ ︸
term (D)

,

where inequality (a) is because when the nice event Er happens, choosing a sub-optimal matching Sr,
i.e., ∆Sr

> 0, implies

∀S ∈ S∗, v(µ̄rSr
) ≥ v(µ̄rS)

⇒v(µ̄rSr
) ≥ v(µ̄rS∗)

⇒
∑

m∈[M̃r]

µ̄rsrm,m ≥
∑

m∈[M̃r]

µ̄rs∗m,m

⇒
∑

m∈[M̃r]

µsrm,m +
∑

m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥

∑
m∈[M̃r]

µs∗m,m
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⇒
∑

m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ Vµ,∗ − Vµ,Sr

= ∆Sr
.

Step II: Bounding term (D). With essentially the same approach of bounding term (B) in the proof
of Lemma 3, especially Eqn. (12), we can directly bound term (D) as

term (D) = E

[∑
r

2pr∆Sr
1
{
Ēr
}]
≤ 4K2M2∆max.

Step III: Bounding term (C). First, we denote event

Fr =

 ∑
m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ ∆Sr

,∆Sr
> 0

 ,

thus

term (C) = E

∑
r

2pr∆Sr
1

 ∑
m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ ∆Sr ,∆Sr > 0




= E

[∑
r

2pr∆Sr
1 {Fr}

]
.

Following the ideas in Kveton et al. (2015c), we introduce two decreasing sequences of constants:

1 = b0 >b1 > b2 > · · · > bi > · · ·
a1 > a2 > · · · > ai > · · ·

such that limi→∞ ai = limi→∞ bi = 0. Furthermore, we specify qi,Sr as the integer satisfying

2qi,Sr−1 ≤ ai
M2

(∆Sr
)2

ln(T ) < 2qi,Sr ≤ 2ai
M2

(∆Sr
)2

ln(T ).

For convenience, we denote q0,Sr = 0 and q∞,Sr =∞. Also, set Hr
i is defined as

∀i ≥ 1, Hr
i =

{
m|m ∈ [M̃r], p

r
srm,m

< qi,Sr

}
,

which represents the arms that are not sufficiently sampled compared with qi,Sr
, and Hr

0 := [M̃r].

With the above introduce notations, we define the following infinitely-many events at epoch r as

Gr1 = {|Hr
1 | ≥ b1M} ;

Gr2 = {|Hr
1 | < b1M} ∩ {|Hr

2 | ≥ b2M} ;

· · ·
Gri = {|Hr

1 | < b1M} ∩ {|Hr
2 | < b2M} ∩ · · · ∩

{∣∣Hr
i−1

∣∣ < bi−1M
}
∩ {|Hr

i | ≥ biM} ;

· · ·
Clearly, these events are mutually exclusive. We have the following proposition.

Proposition 1. Let

√
14

∞∑
i=1

bi−1 − bi√
ai

≤ 1. (15)

If event Fr happens at epoch r, then there exists i such that Gri happens.

This proposition can be proved by assuming that Fr happens while none of Gri happens. Denoting
Ḡr = ∪iGri , we can get

Ḡr = ∪∞i=1G
r
i
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= ∩∞i=1Ḡ
r
i

= ∩∞i=1

[(
∩i−1
j=1

{∣∣Hr
j

∣∣ < bjM
})
∪ {|Hr

i | ≥ biM}
]

= ∩∞i=1

[(
∪i−1
j=1

{∣∣Hr
j

∣∣ < bjM
})
∪ {|Hr

i | ≥ biM}
]

= ∩∞i=1

[(
∪i−1
j=1

{∣∣Hr
j

∣∣ ≥ bjM}) ∪ {|Hr
i | < biM}

]
= ∩∞i=1 {|Hr

i | < biM} .

If Ḡr happens, denoting H̃r
i = [M̃r]\Hr

i , which implies H̃r
i−1 ⊆ H̃r

i and [M̃r] = ∪i(H̃r
i \H̃r

i−1),
then it holds that ∑

m∈[M̃r]

(
2

√
3 lnT

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)

≤3
√

3 lnT
∑

m∈[M̃r]

1√
2
pr
srm,m

+1

=3
√

3 lnT
∞∑
i=1

∑
m∈H̃r

i \H̃r
i−1

1√
2
pr
srm,m

+1

=3
√

3 lnT

∞∑
i=1

|H̃r
i \H̃r

i−1|√
2qi−1,Sr+1

≤3
√

3 lnT

∞∑
i=1

|H̃r
i \H̃r

i−1|√
2ai

M2

(∆Sr )2 ln(T )

≤3
√

3/2
∆Sr

M

∞∑
i=1

(
|Hr

i−1| − |Hr
i |
) 1
√
ai

=3
√

3/2
∆Sr

M
|Hr

0 |
1
√
a1

+ 3
√

3/2
∆Sr

M

∞∑
i=1

|Hr
i |
(

1
√
ai+1

− 1
√
ai

)
(a)

≤3
√

3/2
∆Sr

M
b0M

1
√
a1

+ 3
√

3/2
∆Sr

M

∞∑
i=1

biM

(
1

√
ai+1

− 1
√
ai

)

<
√

14

∞∑
i=1

bi−1 − bi√
ai

∆Sr

≤∆Sr
,

where inequality is because |Hr
i < biM with Ḡr happening. This result contradicts with the definition

of Fr as

Fr =

 ∑
m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ ∆Sr

,∆Sr
> 0

 .

With Proposition 1, when Eqn. (15) holds, we can further decompose term (C) as

term (C) = E

[∑
r

2pr∆Sr1 {Fr}

]
= E

[∑
r

∞∑
i=1

2pr∆Sr1 {Gri ,∆Sr > 0}

]
.

Then, the following events are defined

Gri,k,m = Gri ∩
{
m ∈ [M̃r], s

r
m = k, prk,m < qi,Sr

}
,

which imply that

1 {Gri ,∆Sr
> 0} ≤ 1

biM

∑
(k,m)

1
{
Gri,srm,m,∆Sr

> 0
}
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since at least biM arms with event Gri,k,m happening are required to make Gri happen.

Thus, recall Sk,mb = {S|S ∈ Sb, sm = k} = {Sk,m1 , ..., Sk,mN(k,m)}, we can get

term (C) = E

[∑
r

∞∑
i=1

2pr∆Sr
1 {Gri ,∆Sr

> 0}

]

≤ E

∑
r

∞∑
i=1

2pr∆Sr

1

biM

∑
(k,m)

1
{
Gri,k,m,∆Sr > 0

}
≤ E

∑
r

∞∑
i=1

2pr∆Sr

1

biM

∑
(k,m)

1
{
m ∈ [M̃r], s

r
m = k, prk,m < qi,Sr ,∆Sr > 0

}
= E

∑
(k,m)

N(k,m)∑
n=1

∑
r

∞∑
i=1

2pr
1

biM
1
{
srm = k, prk,m < qi,Sk,m

n
, Sr = Sk,mn

}
∆k,m
n



= E


∑

(k,m)

∞∑
i=1

∑
r

N(k,m)∑
n=1

2pr
1

biM
1
{
srm = k, prk,m < qi,Sk,m

n
, Sr = Sk,mn

}
∆k,m
n︸ ︷︷ ︸

term (E)


(a)

≤ E

∑
(k,m)

[ ∞∑
i=1

6ai
bi

]
M

∆k,m
N(k,m)

ln(T )


where inequality (a) holds because term (E) can be bounded as

term (E) =
∑
r

N(k,m)∑
n=1

2pr
1

biM
1
{
srm = k, prk,m < qi,Sk,m

n
, Sr = Sk,mn

}
∆k,m
n

≤ 3× 2
q
i,S

k,m
1
−1 ∆k,m

1

biM
+

1

biM

N(k,m)∑
n=2

(
3× 2

q
i,S

k,m
n
−1 − 3× 2

q
i,S

k,m
n−1

−1
)

∆k,m
n

≤ 3aiM

bi∆
k,m
1

ln(T ) +
3aiM

bi

N(k,m)∑
n=2

(
1

(∆k,m
n )2

− 1

(∆k,m
n−1)2

)
∆k,m
n ln(T )

=
3aiM

bi
ln(T )

N(k,m)−1∑
n=1

∆k,m
n −∆k,m

n+1

(∆k,m
n )2

+
1

∆k,m
N(k,m)


≤ 3aiM

bi
ln(T )

N(k,m)−1∑
n=1

∆k,m
n −∆k,m

n+1

∆k,m
n ∆k,m

n+1

+
1

∆k,m
N(k,m)


≤ 3aiM

bi
ln(T )

2

∆k,m
N(k,m)

.

At last, we specify the choices of ai and bi, which resolve to the following optimization problem:

minimize
∞∑
i=1

6ai
bi

subject to lim
i→∞

ai = lim
i→∞

bi = 0

Monotonicity: 1 = b0 > b1 > b2 > · · · > bi > · · · ; a1 > a2 > · · · > ai > · · ·

Eqn. (15):
√

14

∞∑
i=1

bi−1 − bi√
ai

≤ 1.
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We choose ai and bi to be geometric sequences as in Kveton et al. (2015c), specifically ai = d(a)i

and bi = (b)i with 0 < a, b < 1 and d > 0. Moreover, if b ≤
√
a, to meed Eqn. (15), it needs

√
14

∞∑
i=1

bi−1 − bi√
ai

=
√

14

∞∑
i=1

(b)i−1 − (b)i√
d(a)i

=

√
14

d

1− b√
a− b

≤ 1⇒ d ≥ 14

(
1− b√
a− b

)2

.

Thus, the best choice for d is d = 14
(

1−b√
a−b

)2

and the problem is reformulated as

minimize
∞∑
i=1

6ai
bi

= 84

(
1− b√
a− b

)2
α

b− a

conditioned on 0 < a < b <
√
a < 1.

With numerically calculated a = 0.1459 and b = 0.2360 in Kveton et al. (2015c), we get
∑∞
i=1

6ai
bi
≤

3727. Thus, we conclude that

term (C) ≤ E

∑
(k,m)

[ ∞∑
i=1

6ai
bi

]
M

∆k,m
N(k,m)

ln(T )


≤
∑

(k,m)

3727M

∆k,m
N(k,m)

ln(T )

≤
∑

(k,m)

3727M

∆k,m
min

ln(T ).

Lemma 5 can be proved by combining term (C) and term (D).

G Proof for Theorem 2

Proof. This proof follows naturally from Theorem 5 by categorizing sub-optimal gaps with a thresh-
old ε.

Specifically, we can modify Eqn. (14) as

Re,linear(T ) = E

[∑
r

2pr (Vµ,∗ − Vµ,Sr )

]

= E

[∑
r

2pr∆Sr
1 {Er,∆Sr

> 0}

]
+ E

[∑
r

2pr∆Sr
1
{
Ēr,∆Sr

> 0
}]

≤ Tε+ E

[∑
r

2pr∆Sr
1 {Er,∆Sr

> ε}

]
+ E

[∑
r

2pr∆Sr
1
{
Ēr,∆Sr

> ε
}]

(a)

≤ Tε+
∑

(k,m)

3727M

ε
ln(T ) + 4K2M2∆max,

where inequality (a) follows the same proof for Lemma 5. For the overall regret, we can further get

Rlinear(T ) ≤Tε+
3727M2K

ε
ln(T ) + terms of order O(ln(T )) and independent with ε

(a)

≤124M
√
KT ln(T ) + terms of order O(ln(T )) and independent with ε

=O
(
M
√
KT log(T )

)
,

where ε is taken as 62M
√

K ln(T )
T in inequality (a). Theorem 2 is then proved.
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H (α, β)-Approximation Oracle and Regret

In this section, we discuss how to extend from exact oracles to (α, β)-approximation oracles, and the
corresponding performance guarantees. With the definition given in Section 5.2, it is straightforward
to use (α, β)-approximation oracles to replace the original exact oracles in BEACON. To facilitate the
discussion, we further assume that this approximation oracle always outputs collision-free matchings,
which naturally holds for most of approximate optimization solvers (Vazirani, 2013).

With an (α, β)-approximation oracle, as stated in Section 5.2, a regret bound similar to Theorem 3 can
be obtained regarding the (α, β)-approximation regret. First, the following notations are redefined and
slightly abused to accommodate the (α, β)-approximation regret: S∗ = {S|S ∈ S, Vµ,S ≥ αVµ,∗}:
the set of matchings with rewards larger than αVµ,∗; ∆k,m

min = αVµ,∗−max{Vµ,S |S ∈ Sb, sm = k};
∆k,m

max = αVµ,∗ −min{Vµ,S |S ∈ Sb, sm = k}. With these notations, BEACON’s performance with
an approximate oracle is established in the following.
Theorem 6 ((α, β)-approximation regret). Under Assumptions 1, 2, and 3, with an (α, β)-
approximation oracle, the (α, β)-approximation regret of BEACON is upper bounded as

R(T ) = Õ

 ∑
(k,m)∈[K]×[M ]

[
∆k,m

min

(f−1(∆k,m
min))2

+

∫ ∆k,m
max

∆k,m
min

1

(f−1(x))2
dx

]
log(T ) +M2K∆c log(T )

 .

Proof. The proof for Theorem 6 closely follows the proof for Theorem 3. To avoid unnecessarily
redundant exposition, we here only highlight the key steps and major differences.

The communication regret and the other regret can be obtained with the same approach in the
proof for Theorem 3. The main difference lies in the exploration regret. In the following proof,
unless specified explicitly before, the adopted notations share the same definition as in the proof for
Theorem 3. Similar to Eqn. (11), we can decompose the exploration regret w.r.t. the definition of the
(α, β)-approximation regret as

Re(T ) = E

[∑
r

2pr (αβVµ,∗ − Vµ,Sr
)

]

= E

[∑
r

2pr (αVµ,∗ − Vµ,Sr )

]
+ α(β − 1)Vµ,∗E[Te]

= E

[∑
r

2pr (αVµ,∗ − Vµ,Sr
)(1{Gr}+ 1{Ḡr})

]
+ α(β − 1)Vµ,∗Te

≤ E

[∑
r

2pr (αVµ,∗ − Vµ,Sr
)(1{Gr}+ 1− β)

]
+ α(β − 1)Vµ,∗Te

≤ E

[∑
r

2pr (αVµ,∗ − Vµ,Sr )1{Gr}

]
where Te is the length of overall exploration phases. Notation Gr := {Vµ,Sr

≥ αVµ,∗} denotes
the event that the oracle successfully outputs a good matching at epoch r, which happens with a
probability at least β. Then, conditioned on event Gr, the remaining analysis follows the same process
in the proof for Lemma 3, and Theorem 6 can be obtained.
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