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SUPPLEMENTARY MATERIAL FOR
LARGE-VOCABULARY 3D DIFFUSION MODEL WITH
TRANSFORMER

A APPENDIX

In this supplementary material, we report the implementation details about 1) training, i.e., triplane
fitting and diffusion training; 2) related setting

A.1 IMPLEMENTATION DETAILS

A.1.1 TRAINING DETAILS

Diffusion. We adopt the cross-plane attention layer in the 3D-aware encoder when the feature
resolution is 64, 32, and 16. We adopt 8, 4, and 2 as the patch size in the encoder/decoder. The patch
size and number of the 3D-aware transformer layers are set to 2 and 4, respectively. Following the
prior work (Müller et al., 2022; Shue et al., 2022), we adopt T=1000 during training and T=250 for
inference. Our diffusion model is trained using an Adam optimizer with a learning rate of 1e-4 which
will decrease from 1e-4 to 1e-5 in linear space. We apply a linear beta scheduling from 0.0001 to
0.01 at 1000 timesteps. Besides, we adopt the ϵ as the objective of our diffusion model. We train our
model for about 3 days on 32 NVIDIA A100 GPUs.

Triplane fitting. Our implementation is based on the PyTorch framework. The dimension of the
triplane is 18× 256× 256. Note that λ1 and λ2 are set to 1e-4 and 5e-5 for training the share-weight
decoder. We train our shared decoder using 8 GPUs for 24 hours. After getting the decoder, λ1 and
λ2 are set to 0.5 and 0.1 for triplane fitting. To improve the robustness of the shared decoder, we
adopt the one-tenth learning rate (1e-2) during the training while the learning rate of the triplane
feature is set to 1e-1.

A.1.2 DETAILED WORKFLOW OF DIFFTF

Training: The training process consists of two steps illustrated in Fig. 1. In the step I, i.e., triplane
fitting, the objective is to obtain the diverse triplane features and robust triplane decoder. Therefore,
for clarification, we divide step I into two subtasks: step I-I training shared decoder and step I-II
optimizing triplanes from diverse 3D objects. To maintain the robustness of the decoder, we adopt
around 20 percent diverse and high-quality objects for optimizing the shared decoder in the step I-I.
Then, in step I-II, we adopt the trained decoder with frozen parameters to merely fit the triplanes.
After obtaining the fitted triplanes, we can use them as the ground truth to train the 3D-aware
transformer-based diffusion model.

Sampling: Similar to the training process, sampling the 3D content from DiffTF has two individual
steps: 1) using a trained diffusion model to denoise latent noise into triplane features, and 2) adopting
the trained triplane decoder to decode the implicit features into the final 3D content.

A.2 DATA

Training data To train the triplane and shared decoder on ShapeNet, we use the blender to render the
multi-view images from 195 viewpoints. Those points sample from the surface of a ball with a 1.2
radius. Similarly, we use the blender to render the 5900+ objects from 100 different viewpoints to fit
the triplane and decoder on OmniObject3D following (Wu et al., 2023).

Evaluation The 2D metrics are calculated between 50k generated images and all available real
images. Furthermore, For comparison of the geometrical quality, we sample 2048 points from the
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Figure 1: An overview of our training process. It is composed of two steps: Step I) training the
share-weight decoder (Step I-I) and fitting the triplane features (Step I-II), and Step II) optimizing
our 3D-aware transformer diffusion using the trained triplanes in Step I-II.

surface of 5000 objects and apply the Coverage Score (COV) and Minimum Matching Distance
(MMD) using Chamfer Distance (CD) as follows:

CD(X,Y ) =
∑
x∈X

min
y∈Y

||x− y||22 +
∑
y∈Y

min
x∈X

||x− y||22,

COV (Sg, Sr) =
|{arg minY ∈Sr

CD(X,Y )|X ∈ Sg}|
|Sr|

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

CD(X,Y )

, (1)

where X ∈ Sg and Y ∈ Sr represent the generated shape and reference shape.

Note that we use 5k generated objects Sg and all available real shapes Sr to calculate COV and MMD.
For fairness, we normalize all point clouds by centering in the original and recalling the extent to
[-1,1]. Coverage Score aims to evaluate the diversity of the generated samples, MMD is used for
measuring the quality of the generated samples. 2D metrics are evaluated at a resolution of 128 ×
128. For the Car in ShapeNet, since the GT data contains intern structures, we thus only sample the
points from the outer surface of the object for results of all methods and ground truth.

Details about SOTA methods Since the official NFD merely generates the 3D shape without texture,
we reproduce the NFD w/ texture as our baseline. Besides, we use the official code and the same
rendering images to train the EG3D and GET3D while the DiffRF and NFD adopt our reproduced
code. Note that because of adopting pose condition, official EG3D doesn’t support class-conditional
generation. Therefore, to maintain the fairness of our evaluations, other class-conditional generative
models including DiffTF adopt a random class-conditional input.

Details about Interpolation Song et al. (2020) proves smooth interpolation in the latent space of
diffusion models can be achieved by interpolation between noise tensors before they are iteratively
denoised by the model. Therefore, we sample from our model using the DDIM method. To guarantee
the same distribution of the interpolation samples, we adopt spherical interpolation.

A.3 ADDITIONAL DETAILS IN METHODOLOGY

The detailed structure of our shared decoder in triplane fitting is shown in Fig 2 while Figure 3
illustrates the structure of our 3D-aware modules.

2



Published as a conference paper at ICLR 2024

FC+ReLU

FC+ReLU

Sampled features

Density

FC+Channel-wise Concatenate

FC+ReLU

Views direction

FC+Sigmoid

RGB

FC+SoftPlus

𝐶𝑖𝑛 = 18, 𝐶𝑜𝑢𝑡 = 128

𝐶𝑖𝑛 = 128, 𝐶𝑜𝑢𝑡 = 128

𝐶𝑖𝑛 = 128, 𝐶𝑜𝑢𝑡 = 1

𝐶𝑖𝑛 = 128, 𝐶𝑜𝑢𝑡 = 128

𝐶𝑖𝑛 = 191, 𝐶𝑜𝑢𝑡 = 128

𝐶𝑖𝑛 = 128, 𝐶𝑜𝑢𝑡 = 3

Figure 2: The MLP structure of shared decoder.
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Figure 3: The detailed structure of our proposed 3D-aware modules. We take the feature from the
xy plane as an example. The left module (a) aims to extract the global 3D prior knowledge across
planes. The right one (b) tries to efficiently encode the triplanes while maintaining the 3D-related
information via a single cross-plane attention module.

A.3.1 REVISIT MULTI-HEAD ATTENTION AND DDPMS ON 3D GENERATION

Multi-Head Attention: Multi-Head Attention is a fundamental component in transformer struc-
ture (Vaswani et al., 2017) which can be formulated by:

MultiHead(Q,K, V ) =
(
Cat(H1

att, ...,H
N
att)

)
W

Hn
att = Attention(QWn

q ,KWn
k , V Wn

v )

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V

, (2)

where Q,K, and V represent the query, key, and value in the attention operation, W ∈ RCi×Ci ,
Wn

q ∈ RCi×Ch , Wn
k ∈ RCi×Ch , and Wn

v ∈ RCi×Ch are learnable weights, and
√
d is the scaling

factor to avoid gradient vanishing.

DDPM: To solve the generation problem, denoising diffusion probabilistic models (DDPMs) de-
fine the forward and reverse process which transfers the generation problem into predicting noise.
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Figure 4: Visualization of triplane. Top: triplane fitting without TVloss and L2 regularization. Bottom:
triplane fitting with TVloss and L2 regularization. It illustrates that by effective regularization, the
triplane features are smooth and clear which is helpful for the next training.
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Figure 5: Nearest Neighbor Check on OmniObject3D. We compare our generated results and the
most similar top 3 objects from the training set.

The forward process represents the process of applying noise to real data x0 as q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI), where βt and I represents the forward process variances and unit matrix.

For clarification, we assume there are T steps in the forward process. Thus, the features with different
noised levels can be denoted as xT , xT−1, ..., x0, where xT is sampled from a standard Gaussian noise.
Based on the relationship between two continuous steps, we have xt(x0, ϵ) =

√
αtx0 +

√
1− αtϵ,

where ϵ ∼ N (0, I), αt = 1− βt and αt =
∏t

i=1 αi

During the reverse process, the diffusion model aims to predict the pθ(xt−1|xt), θ represents the
learnable parameters of the diffusion network. Based on Bayes’ theorem and specific parameteri-
zation, the p(xt−1|xt) can be formulated as: pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), where

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) and Σθ(xt, t) = σ2
t I, where σ2

t =
1− αt−1

1− αt
βt. In the

end, the objective of the reverse process is transferred to predict ϵ. Thus the objective of the training
is to minimize the loss function as Ldiff = Et,x0,ϵ

[
||ϵ− ϵθ(xt, t)||2

]
.

Note that the symbols mentioned in Sec. A.3.1 hold distinct meanings compared to the ones in the
main paper.

A.4 ADDITIONAL RESULTS

Nearest Neighbor Check using CLIP To validate the generative capability of our method, we
perform the nearest neighbor check on OmniObject3D. As shown in Fig. 5, our method can generate
some novel objects. We achieve the nearest neighbor check via the CLIP model. After obtaining the
CLIP features, we chose the top 3 results by measuring cosine distances.

More qualitative results Additional qualitative results are shown in Fig 8, Fig 9, and Fig. 10. Our
generated results contain more detailed semantic information which makes our generated results
more realistic. Furthermore, the performance of other methods on class-conditional generation is
shown in Fig. 11. It clearly i

Ablations about triplane fitting As shown in Fig. 4, we provide additional comparison between w/
and w/o strong regularization. Besides, we report the distribution of triplane before the normalization
shown in Fig. 13. It illustrates that the values of triplanes are from -10 to 10 if we adopt no
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Figure 6: Ablations on sampling strategy.
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Figure 7: Different architectures in ablation stud-
ies.

Figure 8: Qualitative results on ShapeNet Car.

normalization, blocking the optimization of the diffusion model. Therefore, it is essential to scale to
the range of -1 to 1 to achieve a better convergence of the diffusion model. In addition, we study the
effectiveness of the new sampling strategy in triplane fitting. Notably, the PSNR in Fig. 6 is measured
merely in the foreground area. With the new sampling strategy, the speed of our triplane fitting is
raised further.

Figure 13: Distribution of triplane values
before normalization.

Studies of 3D-aware transformer modules. To intu-
itively demonstrate the superiority of our proposed mod-
ules, we release the performance comparison between
different structures illustrated in Fig 12. It strongly
verifies the effectiveness of our modules. To clarify, the
comparison of different network architectures is shown
in Fig 7. Furthermore, we also compare our methods
with other 3D-aware modules, i.e., 3D-aware convolu-
tion Wang et al. (2022). Experiment results in Table. 1
demonstrate the impressive generative performance of
our novel 3D-aware modules compared with 3D-aware
convolution in large-vocabulary 3D geenration.
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Figure 9: Qualitative results on ShapeNet Plane.

Figure 10: Qualitative results on ShapeNet Chair.

Comparison of single-category and multi-category
models We also compare the performance of different setting models. As shown in Fig. 4, our
model trained on multi-category objects (class-conditional) can maintain an impressive generative
performance.

User studies In addition to the 2D and 3D metrics mentioned above, we also perform a user study
and report human’s preference on rendered images. We analyze the generated results from three
aspects, i.e., overall performance, texture, and geometry. The results in Table 2 prove the superior
performance of our method. Our method gains a significant improvement in three aspects against the
SOTA methods.

Comparison of parameters and FLOPs Additionally, we compare DiffTF against other diffusion-
based methods in parameters and FLOPs. Since the NFD merely involves the 2D CNN, the archi-
tecture is more efficient than DiffRF (using 3D CNN on mesh) and our DiffTF (using 3D-aware
modules). Without the most efficient structure, our DiffTF is capable of generating a 3D object within
30 seconds. Additionally, to accelerate the speed of sampling further, we can adopt the DDIM with
50 diffusion steps. Adopting this setting, DiffTF can generate a 3D object within 9s without the
obvious drop in performance.
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Methods FID↓ KID(%)↓ COV(%)↑ MMD(‰)↓
Rodin (Wang et al., 2022) 84.55 4.5 33.79 11.47
DiffTF (Ours) 25.36 0.8 43.57 6.64

Table 1: Comparison of different 3D-aware modules.

Methods Overall Score↑ Texture Score↑ Geometry Score↑
EG3D (Chan et al., 2022) 8.66 11.79 10.77
GET3D (Gao et al., 2022) 20.68 22.05 22.06
NFD w/ texture (Shue et al., 2022) 0.48 1.02 0.51
DiffTF (Ours) 70.18 65.64 67.17

Table 2: User study of top 4 methods on ShapeNet and OmniObject3D.
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Methods FLOPs Parameters

NFD w/ texture (Shue et al., 2022) 250.78 G 124.01 M
DiffRF (Gao et al., 2022) 778.54 G 251.29 M
DiffTF (Ours) 514.84 G 734.40 M

Table 3: Comparison of parameters and FLOPs of diffusion-based methods.

Category Training Setting Method FID↓ KID(%)↓ COV(%)↑ MMD(‰)↓

Car Single-category DiffTF 36.68 1.6 53.25 2.57
Multi-category DiffTF 42.40 1.9 48.27 3.07

Plane Single-category DiffTF 14.46 0.8 45.68 2.58
Multi-category DiffTF 19.92 1.1 41.02 2.91

Chair Single-category DiffTF 35.16 1.1 39.42 5.97
Multi-category DiffTF 39.74 1.3 35.14 6.38

Table 4: Quantitative comparison of single-category model and multi-category model on the ShapeNet.
Single-category represents the model only generate 3D objects of one category. Multi-category repre-
sents the unified generative model for multi-category 3D objects. It proves that our multi-category
model can maintain a promising performance without obvious drop in generation performance.
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Figure 11: Comparison against other methods on class-conditional generation.
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Figure 12: Additional comparisons with different structures.
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