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Abstract

We develop a new approach to tackle communication constraints in a distributed
learning problem with a central server. We propose and analyze a new algorithm
that performs bidirectional compression and achieves the same convergence rate
as algorithms using only uplink (from the local workers to the central server)
compression. To obtain this improvement, we design MCM, an algorithm such that
the downlink compression only impacts local models, while the global model is
preserved. As a result, and contrary to previous works, the gradients on local
servers are computed on perturbed models. Consequently, convergence proofs are
more challenging and require a precise control of this perturbation. To ensure it,
MCM additionally combines model compression with a memory mechanism. This
analysis opens new doors, e.g. incorporating worker dependent randomized-models
and partial participation.

1 Introduction
Large scale distributed machine learning is widely used in many modern applications [1, 8, 40]. The
training is distributed over a potentially large number N of workers that communicate either with a
central server [see 23, 33, on federated learning], or using peer-to-peer communication [11, 46, 44].

In this work, we consider a setting using a central server that aggregates updates from remote
nodes. Formally, we have a number of features d ∈ N∗, and a convex cost function F : Rd → R.
We want to solve the following distributed convex optimization problem using stochastic gradient
algorithms [37, 7]: minw∈Rd F (w) with F (w) = 1

N

∑N
i=1 Fi(w), where (Fi)

N
i=1 is a local risk

function (empirical risk or expected risk in a streaming framework). This applies to both instances of
distributed and federated learning.

An important issue of those frameworks is the high communication cost between the workers
and the central server [21, Sec. 3.5]. This cost is a concern from several points of view. First,
exchanging information can be the bottleneck in terms of speed. Second, the data consumption
and the bandwidth usage of training large distributed models can be problematic; and furthermore,
the energetic and environmental impact of those exchanges is a growing concern. Over the last
few years, new algorithms were introduced, compressing messages in the upload communications
(i.e., from remote devices to the central server) in order to reduce the size of those exchanges
[41, 3, 49, 2, 47, 43, 42, 34, 28]. More recently, a new trend has emerged to also compress the
downlink communication: this is bidirectional compression.

The necessity for bidirectional compression can depend on the situation. For example, a single
uplink compression could be sufficient in asymmetric regimes in which broadcasting a message to
N workers (“one to N”) is faster than aggregating the information coming from each node (“N
to one”). However, in other regimes, e.g. with few machines, where the bottleneck is the transfer
time of a heavy model (up to several GB in modern Deep Learning architectures) the downlink
communication cannot be disregarded, as the upload and download speed are of the same order [36].
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Furthermore, in a situation in which participants have to systematically download an update (e.g.,
on their smartphones) to participate in the training, participants would prefer to receive a small size
update (compressed) rather than a heavier one. To encompass all situations, we consider algorithms
for which the information exchanged is compressed in both directions.

To perform downlink communication, existing bidirectional algorithms [45, 52, 38, 29, 36, 17, 51, 14]
first aggregate all the information they have received, compress them and then carry out the broadcast.
Both the main “global” model and the “local” ones perform the same update with this compressed
information. Consequently, the model hold on the central server and the one used on the local workers
(to query the gradient oracle) are identical. However, this means that the model on the central server
has been artificially degraded: instead of using all the information it has received, it is updated with
the compressed information.

Here, we focus on preserving (instead of degrading) the central model: the update made on its side
does not depend on the downlink compression. This implies that the local models are different from
the central model. The local gradients are thus measured on a “perturbed model” (or “perturbed
iterate”): such an approach requires a more involved analysis and the algorithm must be carefully
designed to control the deviation between the local and global models [31]. For example, algorithms
directly compressing the model or the update would simply not converge.

We propose MCM - Model Compression with Memory - a new algorithm that 1) preserves the central
model, and 2) uses a memory scheme to reduce the variance of the local model. We prove that the
convergence of this method is similar to the one of algorithms using only unidirectional compression.
Potential Impact. Proposing an analysis that handles perturbed iterates is the key to unlock three
major challenges of distributed learning run with bidirectionally compressed gradients. First, we show
that it is possible to improve the convergence rate by sending different randomized models to the
different workers, this is Rand-MCM. Secondly, this analysis also paves the way to deal with partially
participating machines: the adaptation of Rand-MCM to this framework is straightforward; while adapt-
ing existing algorithms [38] to partial participation is not practical. Thirdly, this framework is also
promising in terms of business applications, e.g., in the situation of learning with privacy guarantees
and with a trusted central server. We detail those three possible extensions in Subsection 4.1.

Broader impact. This work is aligned with a global effort to make the usage of large scale
Federated Learning sustainable by minimizing its environmental impact. Though the impact of such
algorithms is expected to be positive, at least on environmental concerns, cautiousness is still required,
as a rebound effect may be observed [15]: having energetically cheaper and faster algorithms may
result in an increase of such applications, annihilating the gain made by algorithmic progress.

Contributions. We make the following contributions:
1. We propose a new algorithm MCM, combining a memory process to the “preserved” update. To

convey the key steps of the proof, we also introduce an auxiliary hypothetical algorithm, Ghost.
2. For those algorithms, we carefully control the variance of the local models w.r.t. the global one.

We provide a contraction equation involving the control on the local model’s variance and show
that MCM achieves the same rate of convergence as single compression in strongly-convex, convex
and non-convex regimes. We give a comparisons of MCM’s rates with existing algorithms in Table 2.

3. We propose a variant, Rand-MCM incorporating diversity into models shared with the local workers
and show that it improves convergence for quadratic functions.

This is the first algorithm for double compression to focus on a preserved central model. We
underline, both theoretically and in practice, that we get the same asymptotic convergence rate for
simple and double compression - which is a major improvement. Our approach is one of the first to
allow for worker dependent model, and to naturally adapt to worker dependent compression levels.

The rest of the paper is organized as follows: in Section 2 we present the problem statement and
introduce MCM and Rand-MCM. Theoretical results on these algorithms are successively presented in
Sections 3 and 4. Finally, we present experiments supporting the theory in Section 5.

2 Problem statement
We consider the minimization problem described in Section 1. In the convex case, we assume there
exists an optimal parameter w∗, and denote F∗ = F (w∗). We use ‖·‖ to denote the Euclidean
norm. To solve this problem, we rely on a stochastic gradient descent (SGD) algorithm. A stochastic
gradient gik+1 is provided at iteration k in N to the device i in J1, NK. This gradient oracle can be
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Table 1: Features of the main existing algorithms performing compression. eik (resp. Ek) denotes
the use of error-feedback at uplink (resp. downlink). hik (resp. Hk) denotes the use of a memory
at uplink (resp. downlink). Note that Dist-EF-SGD is identical to Double-Squeeze but has been
developed simultaneously and independently.

Compr. eik hik Ek Hk Rand. update point

Qsgd [3] one-way
ECQ-sgd [49] one-way 3
Diana [34] one-way 3
Dore [29] two-way 3 3 degraded
Double-Squeeze [45], Dist-EF-SGD [52] two-way 3 3 degraded
Artemis [36] two-way 3 degraded

MCM two-way 3 3 non-degraded
Rand-MCM two-way 3 3 3 non-degraded

computed on a mini-batch of size b. This function is then evaluated at point wk. In the classical
centralized framework (without compression), for a learning rate γ, SGD corresponds to:

wk+1 = wk − γ
1

N

N∑
i=1

gik+1(wk) . (1)

We now describe the framework used for compression.
2.1 Bidirectional compression framework
Bidirectional compression consists in compressing communications in both directions between the
central server and remote devices. We use two different compression operators, respectively Cup and
Cdwn to compress the message in each direction. Roughly speaking, the update in eq. (1) becomes:

wk+1 = wk − γCdwn

(
1

N

N∑
i=1

Cup(gik+1(wk))

)
.

However, this approach has a major drawback. The central server receives and aggregates information
1
N

∑N
i=1 Cup(gik+1(wk)). But in order to be able to broadcast it back, it compresses it, before

applying the update. We refer to this strategy as the “degraded update” approach. Its major advantage
is simplicity, and it was used in all previous papers performing double compression. Yet, it appears to
be a waste of valuable information. In this paper, we update the global model wk+1 independently of
the downlink compression:{

wk+1 = wk − γ 1
N

∑N
i=1 Cup

(
gik+1(ŵk)

)
.

ŵk+1 = Cdwn(wk+1)
(2)

However, bluntly compressing wk+1 in eq. (2) hinders convergence, thus the second part of the update
needs to be refined by adding a memory mechanism. We now describe both communication stages
of the real MCM, which is entirely defined by the following uplink and downlink equations.

Downlink Uplink{
Ωk+1 = wk+1 −Hk ,
ŵk+1 = Hk + Cdwn(Ωk+1)
Hk+1 = Hk + αdwnCdwn(Ωk+1).


∀i ∈ J1, NK,∆i

k = gik+1(ŵk)− hik
wk+1 = wk − γ

N
∑N
i=1 Cup(∆i

k) + hik
hik+1 = hik + αupCup(∆i

k).

(3)

Downlink Communication. We introduce a downlink memory term (Hk)k, which is available
on both workers and central server. The difference Ωk+1 between the model and this memory is
compressed and exchanged, then the local model is reconstructed from this information. The memory
is then updated as defined on left part of eq. (3), with a learning rate αdwn.

Introducing this memory mechanism is crucial to control the variance of the local model ŵk+1. To
the best of our knowledge MCM is the first algorithm that uses such a memory mechanism for downlink
compression. This mechanism was introduced by Mishchenko et al. [34] for the uplink compression
but with the other purpose of mitigating the impact of heterogeneity, while we use it here to avoid
divergence of the local model’s variance.
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Uplink Communication. The motivation to introduce an uplink memory term hik for each device
i ∈ J1, NK is different, and better understood. Indeed, for the uplink direction, this mechanism is only
necessary (and then crucial) to handle heterogeneous workers [i.e., with different data distributions,
see e.g. 36]. Here, the difference ∆i

k between the stochastic gradient gik+1 at the local model ŵk (as
defined in eq. (3)) and the memory term is compressed and exchanged. The memory is then updated
as defined on right part of eq. (3) with a rate αdwn.
Remark 1 (Rate αdwn). It is necessary to use αdwn < 1. Otherwise, the compression noise tends to
propagate and is amplified, because of the multiplicative nature of the compression. In Figure 1 we
compare MCM, with 3 other strategies: compressing only the update, compressing wk − ŵk−1, (i.e.,
αdwn = 1), and compressing the model (i.e., Hk = 0), showing that only MCM converges.
Remark 2 (Memory vs Error Feedback). Error feedback is another technique, introduced by Seide
et al. [41]. In the context of double compression, it has been shown to improve convergence for a
restrictive class of contracting compression operators (which are generally biased) by Zheng et al.
[52], Tang et al. [45]. However, we note several differences to our approach. (1) For unbiased
operators - as considered in Dore, it did not lead to any theoretical improvement [Remark 2 in Sec.
4.1., 29]. (2) Moreover, only a fraction (namely (1 + ωdwn)−1) of the “error” wk+1 − ŵk+1 can
be preserved in the EF term (see line 18 in algo 1 in Liu et al.). It is thus impossible to recover the
central preserved model as a function of the degraded model and the EF term. (3) [52] consider a
biased operator and the same compression level for uplink and downlink compression. They also rely
on stronger assumptions on the gradient (uniformly bounded) and only tackle the homogeneous case.

In Table 1 we summarize the main algorithms for compression in distributed training. As downlink
communication can be more efficient than uplink, we consider distinct operators Cdwn, Cup and allow
the corresponding compressions levels to be distinct: those quantities are defined in Assumption 1.
Assumption 1. There exists constants ωup , ωdwn ∈ R∗+, such that the compression operators
Cup and Cdwn satisfy the two following properties for all w in Rd: E[Cup/dwn(w)] = w, and
E[‖Cup/dwn(w)− w‖2] ≤ ωup/dwn‖w‖2. The higher is ω, the more aggressive the compression is.
We only consider unbiased operators, that encompass sparsification, quantization and sketching.
References and a discussion on those operators, and possible extensions of our results to biased
operators are provided in Appendix A.1.
Remark 3 (Related work on Perturbed iterate analysis). The theory of perturbed iterate analysis was
introduced by Mania et al. [31] to deal with asynchronous SGD. More recently, it was used by Stich
and Karimireddy [42], Gorbunov et al. [14] to analyze the convergence of algorithms with uplink
compressions, error feedback and asynchrony. Using gradients at randomly perturbed points can
also be seen as a form of randomized smoothing [39], a point we discuss in Appendix A.2.

2.2 The randomization mechanism, Rand-MCM
In this subsection, we describe the key feature introduced in Rand-MCM: randomization. It consists
in performing an independent compression for each device instead of performing a single one for
all of them. As a consequence, each worker holds a different model centered around the global one.
This introduces some supplementary randomness that stabilizes the algorithm. Formally, we will
consider N mutually independent compression operators Cdwn,i instead of a single one Cdwn, and the
central server will send to the device i at iteration k + 1 the compression of the difference between
its model and the local memory on worker i: Cdwn,i(wk+1 −Hi

k). The tradeoffs associated with this
modification are discussed in Section 4.

The pseudocode of Rand-MCM is given in Algorithm 1 in Appendix A. It incorporates all components
described above: 1) the bidirectional compression, 2) the model update using the non-degraded point,
3) the two memories, 4) the up and down compression operators, 5) the randomization mechanism.

3 Assumptions and Theoretical analysis
We make standard assumptions on F : Rd → R. We first assume that the loss function F is smooth.
Assumption 2 (Smoothness). F is twice continuously differentiable, and is L-smooth, that is for all
vectors w1, w2 in Rd: ‖∇F (w1)−∇F (w2)‖ ≤ L‖w1 − w2‖.
Results in Section 3 are provided in a convex, strongly-convex and non-convex setting.
Assumption 3 (Strong convexity). F is µ-strongly convex (or convex if µ = 0), that is for all vectors
w1, w2 in Rd: F (w2) ≥ F (w1) + (w2 − w1)T∇F (w1) + µ

2 ‖w2 − w1‖22 .
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Next, we present the assumption on the stochastic gradients.

Assumption 4 (Noise over stochastic gradients computation). The noise over stochastic gradients
for a mini-batch of size b, is uniformly bounded: there exists a constant σ ∈ R+, such that for all k
in N, for all i in J1, NK and for all w in Rd we have: E[‖gik(w)−∇F (w)‖2] ≤ σ2/b.

We here provide guarantees of convergence for MCM. MCM incorporates an uplink memory term,
designed to handle heterogeneous workers. To highlight our main contributions, that concerns the
downlink compression, we present the results in the homogeneous setting, that is with Fi = Fj and
αup = 0. Similar results (almost identical, up to constant numerical factors) in to the heterogeneous
setting are described in Appendix G. Experiments are also performed on heterogeneous workers. We
provide here convergence results in the strongly-convex, then convex case.
Notations and settings. For k in N, we denote Υk = ‖wk −Hk−1‖2, and define Vk =

E[‖wk − w∗‖2] + 32γLω2
dwnE[Υk], which serves as Lyapunov function. Vk is composed of two

terms: the first one controls the quadratic distance to the optimal model, and the second controls
the variance of the local models ŵk. For both theorems, we choose αdwn = (8ωdwn)−1. We denote
Φ(γ) := (1 + ωup)

(
1 + 64γLω2

dwn

)
.

Limit learning rate: There exists a maximal learning rate to ensure convergence. More specif-
ically, we define γmax := min(γup

max, γ
dwn
max , γ

Υ
max), where γup

max := (2L (1 + ωup/N))−1 corre-
sponds to the classical constraint on the learning rate in the unidirectional regime [see 34, 36],
γdwn

max := (8Lωdwn)−1 is a similar constraint coming from the downlink compression, and
γΥ

max :=
(
8
√

2Lωdwn

√
8ωdwn + ωup/N

)−1
is a combined constraint that arises when control-

ling the variance term Υ.1 Overall, this constraints are weaker than in the “degraded” framework
[29, 36], in which γDore

max ≤
(
8L(1 + ωdwn)(1 + ωup/N)

)−1
. Especially, in the regime in which

ωup,dwn → ∞ and ωdwn ' ωup ': ω, the maximal learning rate for MCM is (Lω3/2)−1, while it is
(Lω2)−1 in [29, 36]. Our γmax is thus larger by a factor

√
ω, see Table 2. We define L̃ such that

γmax = (2L̃)−1.

Theorem 1 (Convergence of MCM in the homogeneous and strongly-convex case). Under Assump-
tions 1 to 4 with µ > 0, for k in N, for any sequence (γk)k≥0 ≤ γmax we have:

Vk ≤ (1− γkµ)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +
γ2
kσ

2Φ(γk)

Nb
, (4)

Consequently, (1) if σ2 = 0 (noiseless case), for γk ≡ γmax we recover a linear convergence rate:
E[‖wk − w∗‖2] ≤ (1− γmaxµ)kV0; (2) if σ2 > 0, taking for all K in N, γK = 2/(µ(K + 1) + L̃),
for the weighted Polyak-Ruppert average w̄K =

∑K
k=1 λkwk−1/

∑K
k=1 λk, with λk := (γk−1)−1,

E [F (w̄K)− F (w∗)] ≤
µ+ 2L̃

4µK2 ‖w0 − w∗‖2 +
4σ2(1 + ωup)

µKNb

(
1 +

64Lω2
dwn

µK
ln(µK + L̃)

)
.

(5)

Limit Variance (Equation (4)). For a constant γ, the variance term (i.e., term proportional to σ2)
in Equation (4) is upper bounded by γ2σ2

Nb (1 + ωup)(1 + 64γLω2
dwn). The impact of the downlink

compression is attenuated by a factor γ. As γ decreases, this makes the limit variance similar to the
one of Diana, i.e., without downlink compression [34, Eq. 16 in Th. 2] and much lower than the
variance for previous algorithms using double compression for which the variance scales quadratically
with the compression constants as γ2σ2(1 + ωup)(1 + ωdwn)/N : (1) for Dore, see Corollary 1 in
Liu et al. [29] (who indicate (1− ρ)−1 ≥ (1 +ωup/N)(1 +ωdwn)), (2) for Artemis see Table 2 and
Th. 3 point 2 in [36], (3) for [14], see Theorem I.1. (with γD′1 ∝ γ2σ2(1 + ωup)(1 + ωdwn)/N ).

Bound 5 has a quadratic dependence on ωdwn, but the corresponding term is divided by an extra factor
K, the number of iterations. For example in experiments, for w8a using quantization with s = 20,
we have ωdwn ' 17, and after only 50 epoch with a batch size b = 12, we have K ' 2500. Hence,
the term ω2/K is vanishing through iterations and we asymptotically recover a rate of convergence
equivalent to algorithms using unidirectional compression.

1The dependency in ω3/2 is similar to the one obtained by Horváth et al. [18] in unidirectional compression
in the non-convex case (Theorem 4).
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Convergence and complexity: With a decaying sequence of steps, we obtain a convergence rate
scaling as O(K−1) in Equation (5), without dependency on the ωdwn in the dominating term, which
only appears in faster decaying terms scaling as K−2. The iteration complexity (i.e., number of
iterations to achieve ε expected error) is thus at first order Oε→0(

σ2(1+ωup)
µεNb ). Again, this matches the

complexity of Diana [18, see Theorem 1 and Corollary 1] and is smaller by a factor 1 + ωdwn than
the one of Artemis, Dore, DIANAsr-DQ (see Corollary I.1. in [14]). Next, we give a convergence
result in the convex case.

Theorem 2 (Convergence of MCM, convex case). Under Assumptions 1 to 4 with µ = 0. For all
k > 0, for any γ ≤ γmax, we have, for w̄k = 1

k

∑k−1
i=0 wi,

γE [F (wk−1)− F (w∗)] ≤ Vk−1 − Vk +
γ2σ2Φ(γ)

Nb
=⇒ E[F (w̄k)− F∗] ≤

V0

γk
+
γσ2Φ(γ)

Nb
. (6)

Consequently, for K in N large enough, a step-size γ =
√
‖w0−w∗‖2Nb
(1+ωup)σ2K , we have:

E[F (w̄K)− F∗] ≤ 2

√
‖w0 − w∗‖2 (1 + ωup)σ2

NbK
+O(K−1). (7)

Moreover if σ2 = 0 (noiseless case), we recover a faster convergence: E[F (w̄K)− F∗] = O(K−1).

Limit Variance (Eq. (6)). The variance term is identical to the strongly-convex case.

Convergence and complexity (Equation (7)). The downlink compression constant only appears
in the second-order term, scaling as 1/K. In other words, the convergence rate is equivalent to the
convergence rate of Diana, in the non-strongly-convex. As K increases, this complexity scales as
(1+ωup)
nε2 independently of the downlink compression. Again, for previous algorithms with double

compression the complexity is at least O
(

(1+ωup)(1+ωdwn)
nε2

)
(see Corollary I.2 in [14]).

Control of the variance of the local model.
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Figure 1: Comparing MCM on two datasets with
three other algorithms using a non-degraded
update, γ = 1/L. Artemis-ND stands for
Artemis with a non-degraded update.

We here present the backbone Lemma of MCM’s
proof. It allows to control the variance of the
local model E[‖ŵk − wk‖2 |wk] (which is upper-
bounded by ωdwnE[‖Υk‖2 |wk]) and to build the
Lyapunov function defined in Theorems 1 and 2.

This result highlights the impact of the downlink
memory term. Without memory, i.e., with αdwn =
0, the variance of the local model ‖ŵk − wk‖2
increases with the number of iterations. On the
other hand, if αdwn is too large (close to 1), this
variance diverges. This behavior is illustrated on
two real datasets on Figure 1. This phenomenon is similar to the divergence observed in frameworks
involving error feedback, when the compression operator is not contractive.

Theorem 3. Consider the MCM update as in eq. (2). Under Assumptions 1, 2 and 4 with µ = 0, if
γ ≤ (8ωdwnL)−1 and α ≤ (4ωdwn)−1, then for all k in N:

E [Υk] ≤
(

1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ2σ2(1 + ωup)

Nb
.

This bound provides a recursive control on Υk. Beyond the (1 − αdwn) contraction, the bound
comprises the squared-norm of the gradient at the previous perturbed iterate, and a noise term.

Summary of rates. In Table 2, we summarize the rates and complexities, and maximal learning
rate for Diana, Artemis, Dore and MCM. For simplicity, we ignore absolute constants, and provide
asymptotic values for large ωup, ωdwn, and complexities for ε→ 0.

Proof in the heterogeneous case. To extend Theorems 1 to 3 in the heterogeneous setting
for a convex objective (Appendix G), we assume that there exists a constant B in R+, s.t.:
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Table 2: Summary of rates on the initial condition, limit variance, asympt. complexities and γmax.
Problem Diana Artemis, Dore MCM, Rand-MCM

Lγmax ∝ 1/(1 + ωup) 1/(1 + ωup)(1 + ωdwn) 1/(1 + ωdwn)
√

1 + ωup ∧ 1/(1 + ωup)
Lim. var. ∝ γ2σ2/n× (1 + ωup) (1 + ωup)(1 + ωdwn) (1 + ωup)(1 + γLω2

dwn)

Str.-convex Rate on init. cond. (SC) (1− γµ)k (1− γµ)k (1− γµ)k

Complexity (1 + ωup)/µεN (1 + ωdwn)(1 + ωup)/µεN (1 + ωup)/µεN

Convex Complexity (ωup + 1)/ε2 (1 + ωup)(1 + ωdwn)/ε2 (ωup + 1)/ε2

1
N

∑N
i=0 ‖∇Fi(w∗)‖2 = B2 . We further define Ξk = 1

N2

∑N
i=1

∥∥hik −∇Fi(w∗)∥∥2
, where for

all i in J1, NK. This term is recursively controled [34, 36] and combined into the Lyapunov function.

Proofs. To convey the best understanding of the theorems and the spirit of the proof, we introduce a
Ghost algorithm (impossible to implement) in Appendix D.1. A sketch of the proof describes the
main steps in the case of Ghost, those steps are similar for MCM. Fundamentally, our proof relies on
a tight analysis, related to perturbed iterate analysis [31]. Proofs of Theorems 1 to 3 are given in
Appendix E. Th. S11 in Appendix E.4 ensures convergence for a non-convex F . Note that the proof
for non-convex follows a different approach than the one in Theorems 1 and 2.

As mentioned in the introduction, our analysis of perturbed iterate in the context of double com-
pression opens new directions: in particular, it opens the door to handling a different model for
each worker. In the next section, we detail those possibilities, and provide theoretical guarantees
for Rand-MCM, the variant of MCM in which instead of sending the same model to all workers, the
compression noises are mutually independent.
Remark 4 (Communication budget). How to split a given communication budget between uplink and
downlink to optimize the convergence is an open question which is intrinsically related to the situation.
Indeed it depends on many factors like the selected operators of compression, the upload/downlink
speed or the number of participating workers at each iteration. However, our approach provides
some insights on this question. Because asymptotically the impact of double compression is marginal,
for a fixed budget, Theorem 2 suggests to strongly compress on the downlink direction (which leads
to a large ωdwn), but to perform a weaker compression in the uplink direction.

4 Extension to Rand-MCM

4.1 Communication and convergence trade-offs
In Rand-MCM, we leverage the fact that the compressions used for each worker need not to be identical.
On the contrary, it is possible to consider independent compressions. By doing so, we reduce the
impact of the downlink compression.

The relevance of such a modification depends on the framework: while the convergence rate will
be improved, the computational time can be slightly increased. Indeed, N compressions need to be
computed instead of one: however, this computational time is typically not a bottleneck w.r.t. the
communication time. A more important aspect is the communication cost. While the size of each
message will remain identical, a different message needs to be sent to each worker. That is, we go
from a “one to N” configuration to N “one to one” communications. While this is a drawback, it is
not an issue when the bandwidth/transfer time are the bottlenecks, as Rand-MCM will result in a better
convergence with almost no cost. Furthermore, we argue that handling worker dependent models is
essential for several major applications. Rand-MCM can directly be adapted to those frameworks.

1. Worker dependent compression. A first simple situation is the case in which workers are allowed
to choose the size (or equivalently the compression level) of their updates.

2. Partial participation (PP). Similarly, having N different messages to send to each worker may
be unavoidable in the case of partial participation of the workers. This is a key feature in Federated
Learning frameworks [33]. In the classical distributed framework (without downlink constraints) it is
easy to deal with it, as each available worker just queries the global model to compute its gradient on
it [see for example 17]. On the other hand, for bidirectional compression, to ensure that all the local
models match the central model, the adaptation to partial participation relies on a synchronization
step. During this step, each worker that has not participated in the last S steps receives the last S
corresponding messages as long as it costs less to send this sequence than a full uncompressed model.
This is described in the description of the adaptation to partial participation in [36], in the remark
preceding Eq. (20) in [38] and by Tang et al. [45, v2 on arxiv for the distributed case], who use
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a buffer. On the contrary, Rand-MCM naturally handles a different model, memory and update per
worker. The adaptation to partial participation is thus straightforward. Though theoretical results are
out of the scope of this paper, we provide experiments on PP in Appendix B.1.1 and fig. 4.

One drawback is the necessity to store the N memories (Hi
k)i∈[N ] instead of one, which results in an

additional memory cost. To circumvent this issue we propose two independent solutions. 1) Keep and
use a single memory H̄k = N−1

∑N
i=1H

i
k (as suggested in [36]). It is then necessary to periodically

reset the local memories Hi
k on all workers to the averaged value H̄k (rarely enough not to impact

the communication budget). This is illustrated in fig. 4. 2) Use Rand-MCM with an arbitrary number
of groups G� N of workers. In each group Gg , g ∈ [G], all workers share the same memory (Hg

k )
and receive the same update Cdwn,g(wk+1 −Hg

k ). We call this algorithm Rand-MCM-G.

Remark 5 (Protecting the global model from honest-but-curious clients). Another business advantage
of MCM and Rand-MCM is that providing degraded models to the participants can be used to guarantee
privacy, or to ensure the workers participate in good faith, and not only to obtain the model. This
issue of detecting ill-intentioned clients (free-riders) that want to obtain the model without actually
contributing has been studied by Fraboni et al. [13].

4.2 Theoretical results
In this Section, we provide two main theoretical results for Rand-MCM. First Theorem 4 ensures that
the theoretical guarantees are at least as good for Rand-MCM as for MCM. Then, in Theorem 5, we
provide convergence result for both MCM and Rand-MCM in the case of quadratic functions.

Theorem 4. Theorems 1 to 3 are valid for Rand-MCM and Rand-MCM-G.

The improvement in Rand-MCM comes from the fact that we are ultimately averaging the gradients at
several random points, reducing the variance coming from this aspect. The goal is obviously to reduce
the impact of ωdwn. Keeping in mind that the dominating term in the rate is independent of ωdwn, we
can thus only expect to reduce the second-order term. Next, the uplink compression noise increases
with the variance of the randomized model, which will not be directly reduced by Rand-MCM. As a
consequence, we only expect the improvement to be visible in the part of the second-order term that
does not depend on ωup (that is, the effect would be the most significant if ωup is small or 0).

This intuition is corroborated by the following result, in which we show that the convergence is im-
proved when adding the randomization process for a quadratic function. Extending the proof beyond
quadratic functions is possible, though it requires an assumption on third or higher order derivatives
of F (e.g., using self-concordance [5]) to control of E

[
||∇F (ŵk−1)− E[∇F (ŵk−1)]||2

∣∣ wk−1

]
.

Theorem 5 (Convergence in the quadratic case). Under Assumptions 1 to 4 with µ = 0, if the
function is quadratic, after running K > 0 iterations, for any γ ≤ γmax, and we have

E[F (w̄K)− F∗] ≤
V0

γK
+
γσ2ΦRd(γ)

Nb
,

with ΦRd(γ) = (1 + ωup)
(

1 + 4γ2L2ωdwn

K ( 1
C +

ωup

N )
)

and C = N for Rand-MCM, C = G

Rand-MCM-G, and C = 1 for MCM.

This result is derived in Appendix F. We can make the following comments: (1) The convergence rate
for quadratic functions is slightly better than for smooth functions. More specifically, the right hand
term in Φ is multiplied by an additional γ

(
1
C +

ωup

N

)
(w.r.t. Theorem 2), which is decaying at the same

rate as γ. Besides, the proof for Rand-MCM is substantially modified, as E[∇F (ŵk−1)] is an unbiased
estimator of∇F (wk−1). (2) Moreover, the randomization in Rand-MCM (resp. Rand-MCM-G) further
reduces by a factor N (resp. G) this term. Depending on the relative sizes of ωup and N , this can lead
to a significant improvement up to a factor of N . In practice the impact of Rand-MCM is noticeable,
as illustrated in the following experiments.

5 Experiments
In this section, we illustrate the validity of the theoretical results given in the previous section on both
synthetic and real datasets, on (1) least-squares linear regression (LSR), (2) logistic regression (LR),
and (3) non-convex deep learning. We compare MCM with classical algorithms used in distributed
settings: Diana, Artemis, Dore and of course the simplest setting - SGD, which is the baseline.
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Figure 2: Convergence on neural networks.

In these experiments, we provide results on the log of the excess loss F (wk)− F∗, averaged on 5
runs (resp. 2) in convex settings (resp. deep learning), with errors bars displayed on each figure
(but not in the “zoom square”), corresponding to the standard deviation of log10(F (wk)− F∗). On
Figure 3, the X-axis is respectively the number of iterations and the number of bits exchanged.

Each experiment has been run with N = 20 workers using stochastic scalar quantization [3], w.r.t.
2-norm. To maximize compression, we always quantize on a single level (s = 20), unless for PP
(s = 21) and neural network (the value of s depends on the dataset).

We used 9 different datasets.

• One toy dataset devoted to linear regression in an homogeneous setting. This toy dataset allows to
illustrate MCM properties in a simple framework, and in particular to ilustrate that when σ2 = 0, we
recover a linear convergence2, see Figure 2b.

• Five datasets commonly used in convex optimization (a9a, quantum, phishing, superconduct and
w8a); see Table S1 for more details. Experiments were conducted with heterogeneous workers
obtained by clustering (using TSNE [30]) the input points.

• Four dataset in a non-convex settings (CIFAR10, Fashion-MNIST, FE-MNIST, MNIST); see
Table S2 for more details.

All experiments are performed without any tuning of the algorithms, (e.g., with the same learning
rate for all algorithms and without reducing it after a certain number of epochs). Indeed, our goal is
to show that our method achieves a performance close to the unidirectional-compression framework
(Diana), while performing an important downlink compression. More details about experiments can
be found in Appendix B.

On Figure 3, we display the excess loss for quantum and a9a w.r.t. the number of iteration and number
of communicated bits. The plots of phising, superconduct and w8a are not provided but can be found
on our github repository. We only report their excess loss after 450 iterations in Table 3.

Table 3: MCM- convex experiments, b is the batch size

.

Excess loss after 450 epochs SGD Diana MCM Dore Ref
a9a (b = 50) −3.5 −2.7 −2.7 −1.8 [10]
quantum (b = 400) −3.4 −3.2 −3.2 −2.6 [9]
phishing (b = 50) −3.7 −3.5 −3.4 −2.7 [10]
superconduct (b = 50) −1.6 −1.6 −1.55 −1.45 [16]
w8a (b = 12) −3.5 −3.0 −2.5 −1.75 [10]
Compression no uni-dir bi-dir bi-dir

Saturation level. All experiments are performed with a constant learning rate γ to observe the
bias (initial reduction) and the variance (saturation level) independently. Stochastic gradient descent
results in a fast convergence during the first iterations, and then reaches a saturation at a given
level proportional to σ2. Theorem 2 states that the variance of MCM is proportional to ωup, this is
experimentally observed on Tables 3 and 4 and figs. 2 and 3: MCM meets Diana while Artemis and
Dore saturate at a higher level (scaling as ωup×ωdwn). These trade-offs are preserved with optimized
learning rates.

2Even stronger, we show in experiments that we recover a linear rate if we have σ∗ = 0 (the noise over
stochastic gradient computation at the optimum point w?).

9

https://github.com/philipco/mcm-bidirectional-compression/notebook


0 150 300 450 600
Number of passes on data

−3

−2

−1

lo
g 1

0(
F
(w

k
)
−
F
(w

∗)
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) Quantum in #iter.

105 107

Communicated bits

−3

−2

−1

lo
g 1

0(
F
(w

k
)
−
F
(w

∗)
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) Quantum in #bits

0 150 300 450 600
Number of passes on data

−3

−2

−1

lo
g 1

0(
F
(w

k
)
−
F
(w

∗)
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(c) A9A in #iter.

105 107

Communicated bits

−3

−2

−1

lo
g 1

0(
F
(w

k
)
−
F
(w

∗)
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(d) A9A in #bits

Figure 3: Experiments on real dataset with γ = 1/L, quantization with s = 1, LSR (a,b), LR (c,d).
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Linear convergence when σ2 = 0. The six algorithms present a linear
convergence when σ2 = 0. This is illustrated by Figure 2b: we ran
experiments with a full gradient descent. Note that in these settings
MCM has a slightly worse performance than other methods; however, this
slow-down is compensated by Rand-MCM.

Impact of randomization. The impact of randomization is noticeable on
Figures 2b and S5b. Randomization helps to stabilise convergence of it
reduces the variance of the runs and when σ2 = 0, it performs identically
to SGD. Figure 4 illustrates the impact of using a single memory, instead
of N , to alleviate the memory cost in the PP setting (Subsection 4.1),
with or without periodic reset. Without reset, performance are slightly
degraded, but with it, we recover previous results.

Deep learning. Table 4 and figs. 2c and 2d illustrate experiments with neural networks, details on
dataset settings and networks architecture are given in Appendix B.2. Again, MCM meets Diana rates
as stated by Theorem S11 (theorem in the non-convex case).

Table 4: Accuracy and train loss in non-convex experiments, detailed settings can be found in
Table S2.

Algorithm MNIST Fashion MNIST FE-MNIST CIFAR-10

Accuracy after SGD: 99.0% 92.4% 99.0% 69.1%
300 epochs Diana: 98.9% 92.4% 98.9% 64.0%

MCM: 98.8% 90.6% 98.9% 63.5%
Artemis: 97.9% 86.7% 98.3% 54.8%
Dore: 97.9% 87.9% 98.5% 56.3%

Train loss after SGD: 0.025 0.093 0.026 0.909
300 epochs Diana: 0.034 0.141 0.031 1.047

MCM: 0.033 0.209 0.030 1.096
Artemis: 0.075 0.332 0.052 1.342
Dore: 0.072 0.300 0.048 1.292

Overall, these experiments show the benefits of MCM and Rand-MCM, that reach the saturation level of
Diana while exchanging at 10x to 100x fewer bits. More experiments with partial participation for
Rand-MCM are given in Appendix B.1.1. All the code is provided on our github repository.

6 Conclusion

In this work, we propose a new algorithm to perform bidirectional compression while achieving the
convergence rate of algorithms using compression in a single direction. One of the main application
of this framework is Federated Learning. With MCM we stress the importance of not degrading the
global model. In addition, we add the concept of randomization which allows to reduce the variance
associated with the downlink compression. The analysis of MCM is challenging as the algorithm
involves perturbed iterates. Proposing such an analysis is the key to unlocking numerous challenges
in distributed learning, e.g., proposing practical algorithms for partial participation, incorporating
privacy-preserving schemes after the global update is performed, dealing with local steps, etc. This
approach could also be pivotal in non-smooth frameworks, as it can be considered as a weak form of
randomized smoothing.

10

https://github.com/philipco/mcm-bidirectional-compression/


Acknowledgments

We would like to thank Richard Vidal, Laeticia Kameni from Accenture Labs (Sophia Antipolis,
France) and Eric Moulines from École Polytechnique for insightful discussions. This research was
supported by the SCAI: Statistics and Computation for AI ANR Chair of research and teaching in
artificial intelligence, by Hi!Paris, and by Accenture Labs (Sophia Antipolis, France).

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: a system for
large-scale machine learning. In Proceedings of the 12th USENIX conference on Operating
Systems Design and Implementation, OSDI’16, pages 265–283, USA, November 2016. USENIX
Association. ISBN 978-1-931971-33-1.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan
McMahan. cpSGD: Communication-efficient and differentially-private distributed SGD. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 7564–7575. Curran Associates,
Inc., 2018.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-Efficient SGD via Gradient Quantization and Encoding. Advances in Neural
Information Processing Systems, 30:1709–1720, 2017.

[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and
Cedric Renggli. The Convergence of Sparsified Gradient Methods. Advances in Neural
Information Processing Systems, 31:5973–5983, 2018.

[5] Francis Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics,
4(none):384–414, January 2010. ISSN 1935-7524, 1935-7524. doi: 10.1214/09-EJS521.
Publisher: Institute of Mathematical Statistics and Bernoulli Society.

[6] Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On Biased
Compression for Distributed Learning. arXiv:2002.12410 [cs, math, stat], February 2020.
arXiv: 2002.12410.

[7] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In Yves
Lechevallier and Gilbert Saporta, editors, Proceedings of COMPSTAT’2010, pages 177–
186, Heidelberg, 2010. Physica-Verlag HD. ISBN 978-3-7908-2604-3. doi: 10.1007/
978-3-7908-2604-3_16.

[8] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
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[23] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated
Optimization: Distributed Machine Learning for On-Device Intelligence. arXiv:1610.02527
[cs], October 2016. arXiv: 1610.02527.

[24] Alex Krizhevsky, Geoffrey Hinton, and others. Learning multiple layers of features from tiny
images. 2009. Publisher: Citeseer.

[25] Loïc Lannelongue, Jason Grealey, and Michael Inouye. Green algorithms: Quantifying the
carbon footprint of computation. Advanced Science, page 2100707, 2021. Publisher: Wiley
Online Library.

12



[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. ISSN 1558-2256.
doi: 10.1109/5.726791. Conference Name: Proceedings of the IEEE.

[27] Tian Li, Zaoxing Liu, Vyas Sekar, and Virginia Smith. Privacy for Free: Communication-
Efficient Learning with Differential Privacy Using Sketches. arXiv:1911.00972 [cs, stat],
December 2019. arXiv: 1911.00972 version: 2.

[28] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik. Acceleration for Compressed
Gradient Descent in Distributed and Federated Optimization. In International Conference on
Machine Learning, pages 5895–5904. PMLR, November 2020. ISSN: 2640-3498.

[29] Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A Double Residual Compression Algorithm
for Efficient Distributed Learning. In International Conference on Artificial Intelligence and
Statistics, pages 133–143, June 2020. ISSN: 1938-7228 Section: Machine Learning.

[30] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008. ISSN ISSN 1533-7928.

[31] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran,
and Michael I. Jordan. Perturbed Iterate Analysis for Asynchronous Stochastic Optimization.
arXiv:1507.06970 [cs, math, stat], March 2016. arXiv: 1507.06970.

[32] Prathamesh Mayekar and Himanshu Tyagi. RATQ: A Universal Fixed-Length Quantizer for
Stochastic Optimization. In International Conference on Artificial Intelligence and Statistics,
pages 1399–1409. PMLR, June 2020. ISSN: 2640-3498.

[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Artificial
Intelligence and Statistics, pages 1273–1282. PMLR, April 2017. ISSN: 2640-3498.

[34] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed
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Supplementary material
In this appendix, we provide additional details about our work. First, in Appendix A we give
complementary references on operators of compression and on perturbed iterate analysis. We also
give the pseudo-code of Rand-MCM. Secondly, in Appendix B we enlarge figures provided in Section 5
and complete them with experiments on partial participation and with a comparison between MCM and
other algorithms using non-degraded updates. The next sections are all devoted to theoretical
results. In Appendix C we detail some technical results required to demonstrate Theorems 1 to 5,
in Appendix D we highlight the key stages of the demonstration in the easier case of Ghost, in
Appendix E we completely prove the given guarantees of convergence in three regimes: convex,
strongly-convex and non-convex. In Appendix F we show the benefit of Rand-MCM compared to
MCM in the context of quadratic functions. In Appendix G we adapt the proof to the heterogeneous
scenario. And finally, in Appendix H we answer to the Neurips checklist.
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A Complementary discussions and references

We give the pseudo-code of Rand-MCM in Algorithm 1. It summarizes the algorithm’s description
given in Section 1.

A.1 Compression Operators



Algorithm 1 Pseudocode of Rand-MCM

Input: Mini-batch size b, learning rates αup, αdwn, γ >
0, initial model w0 ∈ Rd (on all devices), operators C

up

and C
dwn

, S = J1, NK the set of devices.
Init.: Memories: ∀i ∈ S, hi0 = gi1(w0) and Hi

−1 = w0

Output: Model wK
for k = 1, 2, . . . ,K do

for each device i = 1, 2, 3, . . . , N do
Receive Ω̂ik−1, and set: wik−1 = Ω̂ik−1 +Hi

k−2

Compute gik(wik−1) (with mini-batch)
Update down memory: Hi

k−1 = Hi
k−2 +

αdwnΩ̂ik−1

Up compr.: ∆̂i
k−1 = C

up
(gik(wik−1)− hik−1)

Update uplink memory: hik = hik−1 +αup∆̂i
k−1

Send ∆̂i
k−1 to central server

end for
Receive (∆̂i

k−1)Ni=1 from all remote servers
Compute ĝk = 1

N
∑N
i=1 ∆̂i

k−1 + hik−1

Update up memory: ∀i ∈ S, hik = hik−1 + αup∆̂i
k−1

Non-degraded update: wk = wk−1 − γĝk
Down compr.: ∀i ∈ S, Ω̂ik = C

dwn,i(wk −Hi
k−1)

Update downlink memory: Hi
k = Hi

k−1 +αdwnΩ̂ik

Send (Ω̂ik)Ni=1 to all remote servers
end for

In this section, we give additional details
on compression operators (see Assump-
tion 1).

Operators of compression can be biased
or unbiased and they may have drasti-
cally different impacts on convergence.
For instance, if the operator is not con-
tracting, algorithms with error-feedback
may diverge. Horváth and Richtárik
[17] propose a method to unbiase a bi-
ased operator and a general study of bi-
ased operator has been carried out by
Beznosikov et al. [6]. But in this work,
as stated by Assumption 1, we consider
only unbiased operators: for instance
s-quantization.

The choice of the operator of compres-
sion is crucial when compressing data.
Operators of compression may be clas-
sified into three mains categories: 1)
sparsification [43, 19, 22, 4, 22, 32] 2)
quantization [41, 53, 3, 18, 48] and 3)
sketching [20, 27].

Possible Extensions Our analysis
could be extended to biased uplink op-
erators, following similar lines of proof
as [6].

The extension for the downlink opera-
tor seems more difficult as our analysis
relies on numerous occurrences on the fact that the expectation of ŵk−1 knowing wk−1 is wk−1.

A.2 Relation to Randomized Smoothing

Our approach can also be related to randomized smoothing. Formally, ∇F (ŵk−1) can be considered
as an unbiased gradient of the smoothed function Fρ at point wk−1, with Fρ : w 7→ E[F (w+ ŵk−1−
wk−1)]. Then E 〈 ∇F (ŵk−1), wk−1 − w∗ 〉 = E 〈 ∇Fρ(wk−1), wk−1 − w∗ 〉. One key aspect is
that the condition number µρ/Lρ of Fρ is always larger (better) than the one for F . However, the
minimum of Fρ is different and moving, thus the proof techniques from Randomized smoothing are
not adapted to a varying noise which distribution is unknown. Providing a theoretical result that
quantifies the smoothing impact of MCM is an interesting open direction.

Randomized smoothing has been applied to non-smooth problems by Duchi et al. [12]. The aim is
to transform a non-smooth function into a smooth function, before computing the gradient. This is
achieved by adding a Gaussian noise to the point where the gradient is computed. This mechanism
has been applied by Scaman et al. [39] to convex problems. We consider in this work a randomized
version of compression: at iteration k in N each worker i in J1, NK receives a noisy estimate ŵik of
the global model wk kept on central server. Thus, we compute the local gradient at a perturbed point
wk + δik. Unlike the randomization process as defined by Duchi et al. [12], the noise here is not
chosen to improve the function’s regularity but results from the compression.

B Experiments

In this section we provide additional details about our experiments. We first give the settings of our
experiments in Tables S1 and S2. Next, we describe the numerical results obtained on our 9 datasets.
Thirdly, we add some explanation concerning the wall clock time. Finally, we provide an estimation
of the carbon footprint required by this paper.
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We use the same operator of compression for uplink and downlink, thus we consider that ωup = ωdwn.
In addition, we choose αup = αdwn = 1

2(1 + ωup/dwn)
.

Convex settings are given in Table S1. We obtain non-i.i.d. data distributions by computing a TSNE
representation [defined in 30] followed by a clustering. Experiments have been performed with 600
epochs. Apart from the case of partial participation, we use quantization [defined in 3] with s = 20.

Table S1: Settings of experiment in the convex mode.
Settings a9a quantum phishing superconduct w8a
references [10] [9] [10] [16] [10]
model LR LR LSR LR LR
dimension d 124 66 69 82 301
training dataset size 32, 561 50, 000 11, 055 21, 200 49, 749
batch size b 50 400 50 50 12
compression rate s 20 (i.e. two levels)
norm quantization ‖ · ‖2
momentum m no momentum
step size γ 1/L

Deep-learning settings are provided in Table S2. All experiments have been performed with 300
epochs

Table S2: Settings of experiments in the non-convex mode.
Settings MNIST Fashion-MNIST FE-MNIST CIFAR10
references [26] [50] [8] [24]
model CNN Fashion CNN CNN LeNet
trainable parameters d 20× 103 400× 103 20× 103 62× 103

training dataset size 60, 000 60, 000 805, 263 60, 000
compression rate s 22 22 22 24

momentum m 0 0 0 0.9
norm quantization ‖ · ‖2
batch size b 128
step size γ 0.1
loss Cross Entropy

B.1 Convex settings

In this section, we provide the plot of excess loss for the toy dataset, for quantum and for a9a datasets.
For results on superconduct, phishing and w8a, see our github repository. For these last three datasets,
we give only the excess loss w.r.t. number of iteration in the basic settings of full participation on
Figure S5. We detail experiments in the PP settings in Appendix B.1.1. At the left side (resp. right
side) we display the result w.r.t. the number of iterations (resp. number of communicated bits).

We provide results on the log of the excess loss F (wk) − F∗, with error bars displayed on each
figure, corresponding to the standard deviation of log10(F (wk)− F∗). Figures S1b, S2b, S3 and S4
correspond to Figures 2a, 2b and 3 given in Section 5. Additionally, we provide results for the
synthetic dataset (Figures 2a and 2b) w.r.t to the number of iterations in Figure S1 (stochastic
gradient) and Figure S2 (full batch gradient). As predicted by Theorem 2, when σ = 0, we observe a
linear convergence.

On Figure S6, we present a9a, quantum and w8a with a different operator of compression than in all
other experiments. We use random unbiased sparsification: each coordinate has a likelihood p = 0.1
to be selected.

B.1.1 Experiments on partial participation

In this subsection, we run the experiments in a setting where only half of devices (independently
picked at each iteration) are available at each iteration, thus simulating a setting of partial participation.
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Figure S1: Least-square regression, toy dataset: γ = (L
√
k)−1, σ 6= 0.
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Figure S2: Least-square regression, toy dataset: γ = 1/L, σ2
∗ = 0.
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Figure S3: quantum with b = 400, γ = 1/L.
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Figure S4: A9A with b = 50, γ = 1/L.
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Figure S5: X axis in # iterations.

Figures S7 and S8 present the results for respectively quantum and A9A. For these experiments,
we used a 2-quantization compression. We do not plot MCM on these figures because in a context
of partial participation, Rand-MCM is the natural thing to do. Indeed in this context, we must hold a
memory for each worker, and thus the compressed vector sent to each worker is unique.

We observe that partial participation leads to an increase of the variance for all algorithms. Fur-
thermore, we can observe on both Figures S7b and S8b that Rand-MCM outperforms Artemis and
Dore not only in term of convergence but also in term of communication cost. This is because
Rand-MCM does not require the synchronization step, at which any active nodes receive any update
it has missed. This saves a few communication rounds. In these settings, the level of saturation of
SGD, Diana and Rand-MCM seems to be almost identical, this fact stresses again the benefit of our
designed algorithm.

Additionally, we present on Figures S9 and S10 the impact of only using a single averaged downlink
memory term instead of N distinct memories. More details about update equations are given in
Equation (S1). We display three versions of Rand-MCM that we compare to the SGD-baseline and to
Artemis:
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(b) Quantum.
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Figure S6: X axis in # iterations using random sparsification with p = 0.1.
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Figure S7: quantum with b = 400, γ = 1/L and a 2-quantization. Only half of the devices are
participating at each round.
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Figure S8: A9A with b = 50, γ = 1/L and a 2-quantization. Only half of the devices are participating
at each round.

1. The standard Rand-MCM, using N downlink memories,

2. Rand-MCM with a single memory, without any periodically reset.

3. Rand-MCM with both a single memory and a reset of the downlink memory every 4
√
d

iterations, where d is the dimension of the optimization problem. This allows to limit
the increase of communicated bits. Indeed as we use quantization with s = 1, each
communication costs 32×

√
d log(d) bits instead of 32× d. Because every 4

√
d iterations

we send the uncompressed downlink memory term, there is an additional cost of 32d
4
√
d

. At

the end, the memory reset leads to send 32×
√
d(log(d) + 1/4) bits by iterations instead of

32×
√
d log(d) bits for Rand-MCM(without reset). The increase is thus marginal.

For sake of clarity, we present below the two versions of Rand-MCM. In the first version, the central
server holds N memories that exactly correspond to those kept on the N remote devices. In the
second version, the central server holds a single memory H̄k = 1

N

∑N
i=1H

i
k and each worker i holds

there own memory Hi
k.

N memories 1 memories Ωik+1 = wk+1 −Hi
k ,

ŵik+1 = Hi
k + Cdwn,i(Ω

i
k+1)

Hi
k+1 = Hi

k + αdwnCdwn,i(Ω
i
k+1).


Ωk+1 = wk+1 − H̄k ,
ŵik+1 = Hi

k + Cdwn,i(Ωk+1)
Hi
k+1 = Hi

k + αdwnCdwn,i(Ωk+1)

H̄k+1 = H̄k + αdwn
N

∑N
i=1 Cdwn,i(Ωk+1).

(S1)
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Figure S9: quantum with b = 400, γ = 1/L and a 2-quantization. Only half of the devices are
participating at each round.
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Figure S10: A9A with b = 50, γ = 1/L and a 2-quantization. Only half of the devices are
participating at each round.

In this experiments, it is noticeable that using single-downlink-memory-Rand-MCM without periodic
reset makes the algorithms saturate at a high level with an important variance. But as soon as we
introduce the reset, we recover previous rates.

B.1.2 Comparing MCM with other algorithm using non-degraded update

The aim of this section is to show the importance to set α < 1, for this purpose we compare MCM with
three other algorithms:

1. Artemis with a non-degraded update i.e. unlike the version proposed by Philippenko and
Dieuleveut [36], we do not update the global model with the compression sent to all remote
nodes. It means that we compress only the update that has already been performed on the
global server. It corresponds to:

∀i ∈ J1, NK,∆i
k = gik+1(ŵk)− hik

wk+1 = wk − γ
N
∑N
i=1 Cup(∆i

k) + hik

ŵk+1 = ŵk − γCdwn

(
1
N
∑N
i=1 Cup(∆i

k) + hik

)
hik+1 = hik + αupCup(∆i

k).

2. MCM with α = 0, thus without memory.
3. MCM with α = 1, in other words, for k in N∗ it corresponds to the case Hk+1 = ŵk+1.

Indeed by definition we have Hk+1 = Hk + αΩ̂k+1, and furthermore, when we rebuild the
compressed model on remote device, we have: ŵk+1 = Ω̂k+1 +Hk. In this case, we use
the compressed model as memory.
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Figure S11: Comparing MCM with three other algorithms using a non-degraded update, γ = 1/L.
Artemis-ND stands for Artemis with a non-degraded update.
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Figure S12: On X axis is displayed different values of 1
α(ωdwn + 1)

. On Y axis is given the excess

loss after 250 epochs. In all other experiments, we choose αdwn = 1
2(ωdwn + 1)

(= αup).

Figures S11a and S11b clearly show the superiority of MCM over the three other variants. Some
conclusions can be drawn from the observation of these figures.

• MCM without downlink memory (orange curve, α = 0) does not converge. As stressed in
Subsection 2.1, this mechanism is crucial to control the variance of the local model wk+1,
for k in N.

• Intuitively, while it appears reasonable to consider as memory the model that has been
compressed at the previous step, experiments (green curves) show that this is not the case in
practice and that α must be small enough to ensure convergence. This is the noise explosion
phenomenon that was mentioned earlier in the paper.

• Compressing only the update gives reasonable results (blue curve). However, the conver-
gence saturates at a higher level than for MCM.

B.1.3 Impact of the learning rate α

On Figure S12, we plot the value of the excess loss obtained after 250 epochs w.r.t. to the value of
1

2(1+ωup/dwn) . We observe that if α is too big, MCM converges slowly; but after reaching a threshold,
the value of α does not impact anymore the rate of convergence. This confirms theory that suggests
to use the largest possible αdwn but smaller than a given value. The condition αdwn ≤ 1

4(ωdwn+1)

results from the proofs of Theorems S8 and S14. But because the constant 4 is partially an artifact of
the proof, in experiments we used αdwn = 1

2(ωdwn+1) as in [36] (see condition S19 in Theorem S7),
and this choice is confirmed by Figure S12.
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Figure S13: Convergence on MNIST using a CNN.
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Figure S14: Convergence on Fashion-MNIST.

B.2 Experiments in deep learning

In this section, we show the robustness of MCM in high dimension using more complex data and
applying the algorithm to non-convex problems (see Theorem S11 for a guarantee of convergence in
this scenario). We carried out experiments on MNIST/FE-MNIST/Fashion-MNIST using a CNN
(Figures S13 to S15), and on CIFAR using the LeNet model (Figure S16). We plot the logarithm
of the train loss w.r.t the number of iterations and the number of communicated bits. The accuracy
has been given in Section 5, see Table 4. Settings of the experiments can be found in Table S2, all
experiments are averaged over 2 runs.

As for experiments in convex case, MCM presents identical rates of convergence than Diana but with a
small shift that makes Artemis better during the first iterations.

B.3 Wall clock time

We verified in our experiments that the downlink compression of wk −Hk−1 on the central server
does not lead to a noticeable overhead w.r.t. gradients computation and communications. Here, as
experiments are performed in a simulated environment there is no communication cost. In Table S3
we report the computation time when training on FE-MNIST, this allows to highlight that compression
only marginally increases the computation cost.

B.4 Hardware and Carbon footprint

As part as a community effort to report the carbon footprint of experiments, we describe in this
subsection the hardware used and the total computation time.
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Figure S15: Convergence on FE-MNIST.
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Figure S16: Convergence on CIFAR10.

Table S3: Wall clock time on FE-MNIST with b = 128 and s = 22.
Compression regime Computation time for 150 epoch
No compression (SGD) 15421s
Compression on uplink 16773s, ratio: 1.08
Compression on uplink and downlink 16769s, ratio: 1.08

We have two kind of experiments : for deep learning models we ran experiments on a GPU, and for
linear/logistic regression on a CPU. We used an Intel(R) Xeon(R) CPU E5-2667 processor with 16
cores; and we used an Nvidia Tesla V100 GPU with 4 nodes.

To generate all figures in this paper, our code ran (if run in a sequential mode) for 150 hours on
a CPU. In overall, we consider that the whole paper writing process required (code development,
debugging, exploring settings ...) at least 6000 hours end to end on the CPU. The carbon emissions
caused by this work were subsequently evaluated with the Green Algorithm, built by Lannelongue
et al. [25]. It estimates our computations to generate around 100kg of CO2, requiring 2.5MWh. To
compare, this corresponds to about 570km by car.

On the GPU, experiments require to be ran for around 140 hours (if run in a sequential mode). In
overall, we consider that the full paper writing process required at least 2800 hours end to end on
the GPU. The Green Algorithm estimates our computations to generate 220kg of CO2, requiring
5.7MWh. To compare, this corresponds to about 1, 270km by car.
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C Technical results

In this section, we provide some technical results required by our demonstration. In Appendix C.1
we recall classical inequalities and in Appendix C.2 we present two preliminary lemmas.

In Appendices C to E, for ease of notation we denote, for k in N∗, g̃k = 1
N
∑N
i=1 ĝik(ŵk−1).

Furthermore we use the convention∇F (w−1) = 0.

C.1 Basic inequalities

In this subsection, we recall some very classical inequalities, for all a, b ∈ Rd, β > 0 we have:

〈 a, b 〉 ≤ ‖a‖
2

2β
+
β ‖b‖2

2
, (S2)

‖a+ b‖2 ≤ (1 +
1

β
) ‖a‖2 + (1 + β) ‖a‖2 , (S3)

‖a+ b‖2 ≤ 2
(
‖a‖2 + ‖b‖2

)
, (S4)

| 〈 a, b 〉 | ≤ ‖a‖ · ‖b‖ (Cauchy-Schwarz inequality) , (S5)

〈 a, b 〉 ≤ 1

2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
(Polarization identity). (S6)

Below, we recall Jensen’s inequality.

Jensen inequality Let a probability space (Ω,A,P) with Ω a sample space, A an event space, and
P a probability measure. Suppose that X : Ω −→ Rd is a random variable, then for any convex
function f : Rd −→ R we have:

f (E(X)) ≤ Ef(X) . (S7)

The next lemma will be used several times in the proofs.
Lemma S1. Let a probability space (Ω,A,P) with Ω a sample space, A an event space, P a
probability measure, and F a σ−algebra. For any a ∈ Rd and for any random vector in Rd we have:

E
[
‖X − EX‖2

]
≤ E

[
‖X − a‖2

]
indeed E[X] = arg mina∈Rd E

[
‖X − a‖2

]
. Similarly, for any random vector Y in Rd which is

F-measurable, we have:

E
[
‖X − E [X | F ]‖2

∣∣∣ F] ≤ E
[
‖X − Y ‖2

∣∣∣ F] .
Assumption 5 (Cocoercivity). We suppose that for all k in N, stochastic gradients functions
(gik)i∈J1,NK are L-cocoercive in quadratic mean. That is, for k in N, i in J1, NK and for all vectors
w1, w2 in Rd, we have:

E[‖gik(w1)− gik(w2)‖2] ≤ L 〈 ∇Fi(w1)−∇Fi(w2), w1 − w2 〉 .
This assumption is stronger than supposing convexity and L-smoothness of F .

The final proposition of this subsection presents two inequalities used in our demonstrations when
invoking convexity or strong-convexity. They follow from Assumption 3 and can be found in [35].
Proposition S1. If a function F is convex, then it satisfies for all w in Rd:

〈 ∇F (x), w − w∗ 〉 ≥
1

2
(F (w)− F (w∗)) +

1

2L
‖∇F (w)‖2 . (S8)

If a function F is strongly-convex, then it satisfies for all w in Rd:

〈 ∇F (x), w − w∗ 〉 ≥
1

2
(F (w)− F (w∗)) +

1

2

(
µ ‖w − w∗‖2 +

1

L
‖∇F (w)‖2

)
. (S9)
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C.2 Two lemmas

In this subsection, we give two lemmas required to prove the convergences of Ghost3, MCM and
Rand-MCM.

The first lemma will be used to show that MCM indeed satisfies Theorem 3. The proof is straightforward
from the definition of wk and Hk−1.
Lemma S2 (Expectation of wk −Hk−1). For any k in N∗, the expectation of (wk −Hk−1) condi-
tionally to wk−1 can be decomposed as follows:

E [wk −Hk−1 | wk−1] = (1− αdwn)(wk−1 −Hk−2)− γE [∇F (ŵk−1) | wk−1] .

Proof. Let k in N∗, by definition and with Assumption 1:

E [wk −Hk−1 | wk−1] = E [wk−1 − γĝk(ŵk−1)− (Hk−2 + αdwnC(wk−1 −Hk−2)) | wk−1]

= (wk−1 −Hk−2)− αdwnE [C (wk−1 −Hk−2) | wk−1]− γE [g̃k | wk−1] ,

from which the result follows.

The following lemma provides a control of the impact of the uplink compression. It decomposes
the squared-norm of stochastic gradients into two terms: 1) the true gradient 2) the variance of the
stochastic gradient σ2.
Lemma S3 (Squared-norm of stochastic gradients). For any k in N∗, the second moment and
variance of the compressed gradients can be bounded a.s.:

E
[
‖g̃k‖2

∣∣∣ ŵk−1

]
≤
(

1 +
ωup

N

)
‖∇F (ŵk−1)‖2 +

σ2(1 + ωup)

Nb
,

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
≤ ωup

N
‖∇F (ŵk−1)‖2 +

σ2(1 + ωup)

Nb
.

Interpretation:

• If ωup = 0 (i.e. no up compression), the variance corresponds to a mini-batch.

• If σ = 0 and N = 1 (i.e. full batch descent with a single device), it becomes:
E
[
‖C(∇F (wk−1))−∇F (wk−1)‖2

]
≤ ωup ‖∇F (wk−1)‖2 which is consistent with As-

sumption 1.

Proof. Let k in N∗, then E
[
‖g̃k‖2

∣∣∣ ŵk−1

]
= ‖∇F (ŵk−1)‖2 + E

[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
.

Secondly:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵk−1)−∇F (ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1


= E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵk−1)− gik(ŵk−1) + gik(ŵk−1)−∇F (ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1


= E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵk−1)− gik(ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1


+ E

∥∥∥∥∥ 1

N

N∑
i=1

(
gik(ŵk−1)−∇F (ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1

 ,
3Ghost is defined in Appendix D.1.
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the inner product being null.

Next expanding the squared norm again, and because the two sums of inner products are null as the
stochastic oracle and uplink compressions are independent:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
=

1

N2

N∑
i=1

E
[∥∥∥ĝik(ŵk−1)− gik(ŵk−1)

∥∥∥2
∣∣∣∣ ŵk−1

]

+
1

N2

N∑
i=1

E
[∥∥gik(ŵk−1)−∇F (ŵk−1)

∥∥2
∣∣∣ ŵk−1

]
.

Then, for any i in J1, NK as E
[∥∥∥ĝik(ŵk−1)− gik(ŵk−1)

∥∥∥2
∣∣∣∣ ŵk−1

]
=

E
[
E
[∥∥∥ĝik(ŵk−1)− gik(ŵk−1)

∥∥∥2
∣∣∣∣ gik

] ∣∣∣∣ ŵk−1

]
, and using Assumption 1 we have:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
=
ωup

N2

N∑
i=1

E
[∥∥gik(ŵk−1)

∥∥2
∣∣∣ ŵk−1

]
+

1

N2

N∑
i=1

E
[∥∥gik(ŵk−1)−∇F (ŵk−1)

∥∥2
∣∣∣ ŵk−1

]
.

Furthermore E
[∥∥gik(ŵk−1)

∥∥2
∣∣∣ ŵk−1

]
= E

[∥∥gik(ŵk−1)−∇F (ŵk−1)
∥∥2
∣∣∣ ŵk−1

]
+

‖∇F (ŵk−1)‖2, and using Assumption 4:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
=
ωup

N
‖∇F (ŵk−1)‖2 +

σ2(1 + ωup)

Nb
,

from which we derive the two inequalities of the lemma.

D The Ghost algorithm

D.1 Motivation, definition of Ghost and proof sketch
In this section, to convey the best understanding of the theorems and the spirit of the proof, we define
a ghost algorithm (that is impossible to implement in practice). Ghost is introduced only to get some
intuition of the theoretical insight.

Definition 1 (Ghost algorithm). The Ghost algorithm is defined as follows, for k ∈ N, for all
i ∈ J1, NK we have:

wk+1 = wk − γ
1

N

N∑
i=1

ĝik+1(ŵk) and ŵk+1 = wk − γCdwn

(
1

N

N∑
i=1

ĝik+1(ŵk)

)
. (S10)

While the global model is unchanged (1st line), the local model ŵk+1 (2nd line) is updated using the
global model wk at the previous step, which is not available locally.

In the following, we give the main results for Ghost and complete them with a sketch of proof.
Demonstrations are all in the next subsection.

The following Proposition, provides the control of the variance of the local model for Ghost.

Proposition S2. Consider the Ghost update in eq. (S10), under Assumptions 1, 2 and 4, for all k in
N with the convention∇F (w−1) = 0:

E
[
‖wk − ŵk‖2

∣∣∣ ŵk−1

]
≤ γ2ωdwn

(
1 +

ωup

N

)
‖∇F (ŵk−1)‖2 +

γ2ωdwn(1 + ωup)σ2

Nb
.
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Proof. The proof of Proposition S2 is straightforward using Definition 1. Let k in N, by Definition 1
we have:

‖wk − ŵk‖2 =

∥∥∥∥∥
(
wk−1 − γCdwn

(
1

N

N∑
i=1

ĝik(ŵk−1)

))
−
(
wk−1 − γ

1

N

N∑
i=1

ĝik(ŵk−1)

)∥∥∥∥∥
2

= γ2

∥∥∥∥∥Cdwn

(
1

N

N∑
i=1

ĝik(ŵk−1)

)
− 1

N

N∑
i=1

ĝik(ŵk−1)

∥∥∥∥∥
2

.

Taking expectation w.r.t. down compression, as 1
N

∑N
i=1 ĝik(ŵk−1) is wk-measurable:

E
[
‖wk − ŵk‖2

∣∣∣ wk] = γ2ωdwnE

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk

 = γ2ωdwn ‖g̃k‖2 ,

and Lemma S3 gives the upper bound E
[
‖g̃k‖2

∣∣∣ ŵk−1

]
.

The takeaway from this Proposition is that we are able to bound the variance of the local model by an
affine function of the squared norm of the previous stochastic gradients ∇F (ŵk−1). For Ghost only
the previous gradient is involved, while for MCM, we obtain an additional recursive process.

To obtain the convergence, we then follow the classical approach [31], expanding E ‖wk − w∗‖2 as
E ‖wk−1 − w∗‖2 − 2γE 〈 ∇F (ŵk−1), wk−1 − w∗ 〉+ γ2E

[
‖ĝk(ŵk−1)‖2

]
. The critical aspect is

that the inner product does not directly result in a contraction, as the support point of the gradient
differs from wk−1. Using the fact that E [ŵk−1 | wk−1] = wk−1, we further decompose it as

−2γE 〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉+ 2γE 〈 ∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1 〉 . (S11)

The first part of eq. (S11), corresponds to a “strong contraction”: by (strong-)convexity, we can
upper bound it by −2γ(µ ‖ŵk−1 − w∗‖2 + F (ŵk−1) − F∗), which is on average larger than
−2γ(µ ‖wk−1 − w∗‖2 + F (wk−1)− F∗) (Jensen’s inequality). Moreover, as the function is smooth
and convex, it can also be upper bounded by−2γ ‖∇F (ŵk−1)‖2 /L. This is a crucial term: we “gain”
something of the order of a squared norm of the gradient at ŵk−1, which will in fine compensate the
variance of the local model. The second part of eq. (S11), corresponds to a positive residual term,
proportional to the variance of the compressed model, that can be controlled thanks to Proposition S2
(at wk−1!). Putting things together, we get, in the convex case (µ = 0):
Theorem S6 (Contraction for Ghost, convex case). Under Assumptions 1 to 4, with µ = 0, if
γL(1 + ωup/N) ≤ 1

2 .

E‖wk − w∗‖2 ≤ E ‖wk−1 − w∗‖2 − γE(F (wk−1)− F∗)−
γ

2L
E
[
‖∇F (ŵk−1)‖2

]
+ 2γ3ωdwnL

(
1 +

ωup

N

)
E ‖∇F (ŵk−2)‖2 + γ2 (1 + ωup)σ2

Nb
(1 + 2γLωdwn) .

We can make the following observations:

1. At step k, the residual can be upper bounded by a constant times squared norm of the gradient
at point ŵk−2. When using recursively this upper bound, if 2γ3ωdwnL(1 + ωup/N) ≤ γ/(2L),
then these terms cancel out. This is equivalent to 2γL

√
ωdwn (1 + ωup/N) ≤ 1. It is natural to

chose γ ≤ 1/(2Lmax(1 + ωup/N, 1 + ωdwn)).
2. The bound is in fact proved conditionally to wk−1, recursive conditioning is required to propagate

the inequality. We carefully handle conditioning in the proofs.

D.2 Convergence of Ghost, complete proof

In this subsection, we provide the complete proof of convergence for Ghost. Thus in the following
demonstration, we give the key concepts required to later prove the convergence of MCM.
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Theorem S7 (Convergence of Ghost, convex case). Under Assumptions 1 to 4 with µ = 0 (convex
case), for all k in N, defining Vk := E [wk − w∗] +

γ
2LE

[
‖∇F (ŵk−1)‖2

]
+ 2γLE

[
‖ŵk − wk‖2

]
,

we have:

Vk ≤ Vk−1 − γE [F (wk−1)− F (w∗)] +
γ2σ2ΦG(γ)

Nb
,

with ΦG(γ) := (1 + ωup)(1 + 2γLωdwn).

Remark 6. This result is similar to eq. (6) but with a different function ΦG that has a weaker
dependency on ωdwn.

Proof. Let k in N∗, by definition:

‖wk − w∗‖2 ≤ ‖wk−1 − w∗‖2 − 2γ 〈 g̃k, wk−1 − w∗ 〉+ γ2 ‖g̃k‖2 .
Next, we expend the inner product as following:

‖wk − w∗‖2 ≤ ‖wk−1 − w∗‖2 − 2γ 〈 g̃k, ŵk−1 − w∗ 〉 − 2γ 〈 g̃k, wk−1 − ŵk−1 〉+ γ2 ‖g̃k‖2 .

Taking expectation conditionally to wk−1, and using E [g̃k | wk−1] = E [E [g̃k | ŵk−1] | wk−1] =
E [∇F (ŵk−1) | wk−1], we obtain:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − E [2γ 〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

− 2γE [〈 ∇F (ŵk−1), wk−1 − ŵk−1 〉 | wk−1]

+ γ2E
[
‖g̃k‖2

∣∣∣ wk−1

]
.

Then invoking Lemma S3 to upper bound the squared norm of the stochastic gradients, and noticing
that E [〈 ∇F (wk−1), ŵk−1 − wk−1 〉 | wk−1] = 0 leads to:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − 2γE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

− 2γE [〈 ∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1 〉 | wk−1]
(S12)

+ γ2

((
1 +

ωup

Nb

)
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+
σ2 (1 + ωup)

Nb

)
.

In the upper inequality:

1. the term E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1] allows the “strong contraction”

2. the terms E [〈 ∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1 〉 | wk−1] and
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
are two positives terms that we treat as residuals.

3. the last term σ2 (1 + ωup) /(Nb) is due to the stochastic noise.

Now using Cauchy-Schwarz inequality (eq. (S5)) and smoothness:
− E [2γ 〈 ∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1 〉 | wk−1]

= 2γE [〈 ∇F (ŵk−1)−∇F (wk−1), ŵk−1 − wk−1 〉 | wk−1]

≤ 2γLE
[
‖ŵk−1 − wk−1‖2

∣∣∣ wk−1

]
,

and thus:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − 2γE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

+ 2γLE
[
‖ŵk−1 − wk−1‖2

∣∣∣ wk−1

]
+ γ2

(
1 +

ωup

N

)
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+
γ2σ2(1 + ωup)

Nb
.

(S13)
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Now, using convexity with Proposition S1:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2

− γE
[(
F (ŵk−1)− F (w∗) +

1

L
‖∇F (ŵk−1)‖2

) ∣∣∣∣ wk−1

]
+ 2γLE

[
‖ŵk−1 − wk−1‖2

∣∣∣ wk−1

]
+ γ2

(
1 +

ωup

N

)
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+
γ2σ2(1 + ωup)

Nb
.

Taking the full expectation (without conditioning over any random vectors), and because invoking
Jensen inequality (S7) leads to E [F (ŵk−1)] ≥ E [F (wk−1)], we finally obtain this intermediate
result:

E
[
‖wk − w∗‖2

]
≤ E

[
‖wk−1 − w∗‖2

]
− γ (E [F (wk−1)]− F (w∗))

− γ

2L
E
[
‖∇F (ŵk−1)‖2

]
+ 2γLE

[
‖ŵk−1 − wk−1‖2

]
+
γ2σ2(1 + ωup)

Nb
,

(S14)

where we considered that γL(1 + ωup/N) ≤ 1/2, which implies that γ
(

1− γL
(

1 +
ωup

N

))
≥ γ

2 .

Remark that eq. (S14) is valid for both Ghost and MCM, and that the proof of MCM will follow the
same initial line.

With Proposition S2:

E
[
‖wk − ŵk‖2

∣∣∣ ŵk−1

]
≤ γ2ωdwn

(
1 +

ωup

N

)
‖∇F (ŵk−1)‖2 +

γ2ωdwn(1 + ωup)σ2

Nb
. (S15)

Defining Vk := E [wk − w∗] +
γ

2LE
[
‖∇F (ŵk−1)‖2

]
+ CE

[
‖ŵk − wk‖2

]
with C = 2γL, and

combining this two equations as following (S14) + C(S15) leads to:

E
[
‖wk − w∗‖2

]
+ CE

[
‖ŵk−1 − wk−1‖2

]
+

γ

2L
E
[
‖∇F (ŵk−1)‖2

]
≤ E

[
‖wk−1 − w∗‖2

]
− γ (E [F (wk−1)]− F (w∗))

+ 2γLE
[
‖ŵk−1 − wk−1‖2

]
+
γ2σ2(1 + ωup)

Nb

+ 2γL× γ2ωdwn

(
1 +

ωup

N

)
‖∇F (ŵk−1)‖2 + 2γL× γ2ωdwn(1 + ωup)σ2

Nb
.

To ensure a contraction of the Lyapunov function we require:

γ2ωdwn

(
1 +

ωup

N

)
≤ γ

2L
⇐⇒ γL ≤ 1

2

√
ωdwn

(
1 +

ωup

N

)
Under this condition, we obtain:

Vk ≤ Vk−1 − γE [F (wk−1)− F (w∗)] +
γ2σ2ΦG(γ)

Nb
,

with ΦG(γ) := (1 + ωup)(1 + 2γLωdwn).

By recurrence and for k = K:

VK ≤ V0 −
K∑
k=1

γE [F (wk−1)− F (w∗)] +

K∑
k=1

γ2σ2ΦG(γ)

Nb
,
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which leads to:

1

K

K∑
k=1

E [F (wk−1)− F (w∗)] ≤
V0 − Vk
γK

+
γσ2ΦG(γ)

Nb
.

Finally, for any K in N∗, with γL ≤ min

{
1

2
(

1 +
ωup

N

) , 1

2

√
ωdwn

(
1 +

ωup

N

)} we have:

γ

K

K∑
t=1

E [F (wt)− F (w∗)] ≤
‖w0 − w∗‖2

K
+
γσ2ΦG(γ)

Nb
.

Note that the bound of γL encompass the case ωdwn = 0 (i.e. no downlink compression), but in the
general case of bidirectional compression, we nearly always have ωdwn > 1, and thus the dominant
term is in fact 1

2

√
ωdwn

(
1 +

ωup

N

) .

And by Jensen, it implies that:

E [F (w̄K)− F (w∗)] ≤
‖w0 − w∗‖2

γK
+
γσ2Φ(γ)

Nb
with ΦG(γ) := (1 + ωup)(1 + 2ωdwnγL) .

E Proofs for MCM (and Rand-MCM)

In this section, we provide the proofs for MCM in the convex, strongly-convex, and non-convex cases
in respectively Theorems S9 to S11. The proofs for Rand-MCM (see Theorem 4) are identical and
only require to adapt notations as explained in appendix E.5.

We denote for γ in R, Φ(γ) := (1 + ωup)
(

1 + 8γLωdwn

αdwn

)
, for k in N, Υk = ‖wk −Hk−1‖2 and

we define γmax such that:

γmaxL ≤ min

{
1

8ωdwn
,

1

2
(

1 +
ωup

N

) , 1

4

√
ωdwn

αdwn

(
1

αdwn
+
ωup

N

)} .
Note that this is equivalent to notations given in Section 3 if we take αdwn = 1/8ωdwn.

E.1 Control of the Variance of the local model for MCM (Theorem 3)

In this section, we provide a control of the variance of the local model for MCM, as done previously
in Proposition S2 for Ghost: this corresponds to Theorem 3. The demonstration is more complex
than for Ghost and it highlights the trade-offs for the learning rate αdwn. The demonstration builds a
bias-variance decomposition of ‖Ωk‖2 = ‖wk −Hk‖2. The variance is then decomposed in three
terms, as a result we will need to compute four terms:

‖wk −Hk−1‖2 = Bias2 + 2γ2(Var11 + Var12) + 2α2
dwnVar2 . (S16)

Theorem S8. Consider the MCM update as in eq. (2). Under Assumptions 1, 2 and 4 with µ = 0, if
γ ≤ (8ωdwnL)−1 and αdwn ≤ (8ωdwn)−1, then for all k in N:

E [Υk] ≤
(

1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ2σ2(1 + ωup)

Nb
.
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Proof. Let k in N, we recall that by definition:
Ωk = wk −Hk−1

Ω̂k = Cdwn(Ωk)

ŵk = Ω̂k +Hk−1 .

We start the proof by introducing ‖Ωk‖2:

E
[
‖wk − ŵk‖2

∣∣∣ wk] = E
[∥∥∥Ω̂k − Ωk

∥∥∥2
∣∣∣∣ wk] ≤ ωdwn ‖Ωk‖2 .

Next, we perform a bias-variance decomposition:

‖Ωk‖2 = ‖wk −Hk−1‖2 = ‖wk −Hk−1 − E [wk −Hk−1 | wk−1]‖2

+ ‖E [wk −Hk−1 | wk−1]‖2
+ 2 〈 wk −Hk−1 − E [wk −Hk−1 | wk−1] , E [wk −Hk−1 | wk−1] 〉 ,

taking expectation w.r.t. wk−1:

E [Υk | wk−1] = E
[
‖wk −Hk−1 − E [wk −Hk−1 | wk−1]‖2

∣∣∣ wk−1

]
︸ ︷︷ ︸

Var

+ ‖E [wk −Hk−1 | wk−1]‖2︸ ︷︷ ︸
Bias2

.

The first term is the variance Var, and the second term corresponds to the squared bias Bias2.

Let’s handle first the variance, by definition:

Var = E
[
‖wk −Hk−1 − E [wk −Hk−1 | wk−1]‖2

∣∣∣ wk−1

]
= E [‖wk−1 − γg̃k −Hk−2 − αdwnC(wk−1 −Hk−2)

−wk−1 − γE [g̃k | wk−1]−Hk−2 − αdwnE [C(wk−1 −Hk−2 | wk−1])‖2
∣∣wk−1

]
.

After simplification and using eq. (S4):
Var = E [‖ − γ (g̃k + E [∇F (ŵk−1) | wk−1]) + αdwn (C(wk−1 −Hk−2))

−(wk−1 −Hk−2)‖2
∣∣wk−1

]
≤ 2γ2E

[
‖g̃k − E [∇F (ŵk−1) | wk−1]‖2

∣∣∣ wk−1

]
+ 2α2

dwnE
[
‖C(wk−1 −Hk−2)− (wk−1 −Hk−2)‖2

∣∣∣ wk−1

]
≤ 2γ2 E

[
‖g̃k − E [∇F (ŵk−1) | wk−1]‖2

∣∣∣ wk−1

]
︸ ︷︷ ︸

Var1

+2α2
dwn ωdwn ‖wk−1 −Hk−2‖2︸ ︷︷ ︸

Var2

≤ 2γ2Var1 + 2α2
dwnVar2 .

An interpretation of the above decomposition is that:

• Var1 is the part of the downlink compression caused by the increment g̃k, it is similar to Ghost.
• Var2 is the impact of the propagation of the previous noise.

We compute the first term by introducing∇F (ŵk−1), the second being kept as it is:

Var1 = E
[
‖g̃k − E [∇F (ŵk−1) | wk−1]‖2

∣∣∣ wk−1

]
= E

[
‖g̃k −∇F (ŵk−1) +∇F (ŵk−1)− E [∇F (ŵk−1) | wk−1]‖2

∣∣∣ wk−1

]
= E

[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ wk−1

]
︸ ︷︷ ︸

Var11

+E
[
‖∇F (ŵk−1)− E [∇F (ŵk−1) | wk−1]‖2

∣∣∣ wk−1

]
︸ ︷︷ ︸

Var12

= Var11 + Var12 ,
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the inner product is null given that E [∇F (ŵk−1)− E [∇F (ŵk−1) | wk−1] | wk−1] = 0.

Moreover:

Var11 = E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ wk−1

]
= E

[
E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

] ∣∣∣ wk−1

]
,

so, we can use Lemma S3: Var11 = E
[
σ2

Nb
(1 + ωup) +

ωup

N ‖∇F (ŵk−1)‖2
∣∣∣∣ wk−1

]
.

And now we use smoothness for the second term:

Var12 = E
[
‖∇F (ŵk−1)− E [∇F (ŵk−1) | wk−1]‖2

∣∣∣ wk−1

]
≤ E

[
‖∇F (ŵk−1)−∇F (wk−1)‖2

∣∣∣ wk−1

]
by Lemma S1,

≤ L2E
[
‖ŵk−1 − wk−1‖2

∣∣∣ wk−1

]
using smoothness,

≤ L2ωdwnΥk−1 with Assumption 1 .

At the end:

Var ≤ 2γ2

(
σ2(1 + ωup)

Nb
+
ωup

N
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+ L2ωdwnΥk−1

)
+ 2α2

dwnωdwnΥk−1 .

(S17)

Now we focus on the squared bias Bias2, with Lemma S2:

Bias2 = ‖E [wk −Hk−1 | wk−1]‖2

= ‖(1− αdwn)(wk−1 −Hk−2)− γE [∇F (ŵk−1) | wk−1]‖2 , and with Equation (S3) ,

≤ (1− αdwn)2 (1 + αdwn) Υk−1 + γ2(1 +
1

αdwn
) ‖E [∇F (ŵk−1) | wk−1]‖2 .

And because (1− αdwn)(1 + αdwn) < 1, we finally get that:

Bias2 ≤ (1− αdwn)Υk−1 + γ2

(
1 +

1

αdwn

)
‖E [∇F (ŵk−1) | wk−1]‖2 . (S18)

Combining all eqs. (S17) and (S18) into eq. (S16):

E [Υk | wk−1] ≤ (1− αdwn)Υk−1 + γ2

(
1 +

1

αdwn

)
‖E [∇F (ŵk−1) | wk−1]‖2

+ 2γ2

(
σ2(1 + ωup)

Nb
+
ωup

N
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

])
+ 2γ2

(
L2ωdwnΥk−1

)
+ 2α2

dwnωdwnΥk−1

≤
(
1− αdwn + 2γ2L2ωdwn + 2α2

dwnωdwn

)
‖wk−1 −Hk−2‖2

+ γ2

(
1 +

1

αdwn

)
‖E [∇F (ŵk−1) | wk−1]‖2

+
2γ2ωup

N
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+

2γ2σ2(1 + ωup)

Nb
.

Next, we require:
2α2

dwnωdwn ≤ 1
4αdwn ⇐⇒ αdwn ≤ 1

8ωdwn
,

2γ2L2ωdwn ≤ 1
4αdwn = 1

32ωdwn
, by taking αdwn = 1

8ωdwn
⇐⇒ γ ≤ 1

8ωdwnL
,

1 + 1
αdwn

≤ 2
αdwn

which is not restrictive if ωdwn ≥ 1.
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Thus, it leads to:

E [Υk | wk−1] ≤
(

1− αdwn

2

)
Υk−1 +

2γ2

αdwn
‖E [∇F (ŵk−1) | wk−1]‖2

+
2γ2ωup

N
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+

2γ2σ2(1 + ωup)

Nb
.

Next, we bound ‖E [∇F (ŵk−1) | wk−1]‖2 with E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
, and we obtain:

E [Υk | wk−1] ≤
(

1− αdwn

2

)
Υk−1

+ 2γ2

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+

2γ2σ2(1 + ωup)

Nb
.

Taking the unconditional expectation gives the result.

E.2 Convex case (Theorem 2)

In this section, we give the demonstration of MCM in the convex case (Theorem 2).

Theorem S9 (Convergence of MCM in the homogeneous and convex case). Under Assumptions 1
to 4 with µ = 0, for a learning rate αdwn ≤ 1

8ωdwn
, for all k > 0, for any γ ≤ γmax, defining

Vk := E[‖wk − w∗‖2] + 32γLω2
dwnE[Υk], for w̄k = 1

k

∑k−1
i=0 wi, we have:

γE [F (wk−1)− F (w∗)] ≤ Vk−1 − Vk +
γ2σ2Φ(γ)

Nb
=⇒ E[F (w̄k)− F∗] ≤

V0

γk
+
γσ2Φ(γ)

Nb
.

Consequently, for K in N large enough, a step-size γ =
√
‖w0−w∗‖2Nb
(1+ωup)σ2K and a learning

rate αdwn = 1
8ωdwn

, we have:

E[F (w̄K)− F∗] ≤ 2

√
‖w0 − w∗‖2 (1 + ωup)σ2

NbK
+O(K−1).

Moreover if σ2 = 0 (noiseless case), we recover a faster convergence: E[F (w̄K)− F∗] = O(K−1).

Proof. Let k in N∗, the proof follows the one for Ghost, and we start from eq. (S14):

E
[
‖wk − w∗‖2

]
≤ E

[
‖wk−1 − w∗‖2

]
− γ (E [F (wk−1)]− F (w∗))−

γ

2L
E
[
‖∇F (ŵk−1)‖2

]
+ 2γLE

[
‖ŵk−1 − wk−1‖2

]
+
γ2σ2(1 + ωup)

Nb
,

with Assumption 1, it easily becomes:

E
[
‖wk − w∗‖2

]
≤ E

[
‖wk−1 − w∗‖2

]
− γ (E [F (wk−1)]− F (w∗))−

γ

2L
E
[
‖∇F (ŵk−1)‖2

]
+ 2γLωdwnE [Υk−1] +

γ2σ2(1 + ωup)

Nb
.

Theorem 3 which is specific to MCM gives:

E [Υk] ≤
(

1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ2σ2(1 + ωup)

Nb
.
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Defining: Vk := E
[
‖wk − w∗‖2

]
+ γLCE [Υk] with C = 4ωdwn

αdwn
, and, combining the two last

equations:

E
[
‖wk − w∗‖2

]
+ γLCE [Υk] ≤ E

[
‖wk−1 − w∗‖2

]
− γE [F (wk−1)− F (w∗)]

+ 2γLωdwnE [Υk−1]

− γ

2L
E
[
‖∇F (ŵk−1)‖2

]
+
γ2σ2(1 + ωup)

Nb

+
(

1− αdwn

2

)
γLCE [Υk−1]

+ 2γ3LC

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ3Lσ2(1 + ωup)C

N
,

and reordering the terms gives:

Vk ≤ E
[
‖wk−1 − w∗‖2

]
+
(

2γLωdwn +
(

1− αdwn

2

)
γLC

)
E
[
‖wk−1 −Hk−1‖2

]
+

(
2γ3LC

(
1

αdwn
+
ωup

N

)
− γ

2L

)
E
[
‖∇F (ŵk−1)‖2

]
− γE [F (wk−1)− F (w∗)]

+ (2γLC + 1)
γ2σ2(1 + ωup)

Nb
.

We observe that:

2γLωdwn +
(

1− αdwn

2

)
γLC ≤ γLC ⇐⇒ C ≥ 4ωdwn

αdwn
which is true by definition of C.

Secondly, to get the contraction requires

2γ3LC

(
1

αdwn
+
ωup

N

)
− γ

2L
≤ 0⇐⇒ γ2L ≤ 1

4LC

(
1

αdwn
+
ωup

N

)
⇐⇒ γL ≤ 1

4

√
ωdwn

αdwn

(
1

αdwn
+
ωup

N

) ,

because C = 4ωdwn/α. Thus, we have that:

Vk ≤ Vk−1 − γE [F (wk−1)− F (w∗)] +
γ2σ2Φ(γ)

Nb
denoting Φ(γ) := (1 + ωup)

(
1 +

8γLωdwn

αdwn

)
,

and then for k = K ∈ N∗, by recurrence:

VK ≤ V0 − γ
K∑
k=1

E [F (wk−1)− F (w∗)] +
γ2σ2Φ(γ)

Nb
,

which implies:

1

K

K∑
k=1

E [F (wk−1)− F (w∗)] ≤
V0 − VK
γK

+
γ2σ2Φ(γ)

Nb
,
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Finally, by Jensen, for any K in N∗ such that γL ≤
min

{
1

8ωdwn
, 1

2
(

1 +
ωup

N

) , 1

4

√
ωdwn

αdwn

(
1

αdwn
+
ωup

N

)}, we have:

E [F (w̄K)− F (w∗)] ≤
V0

γK
+
γσ2Φ(γ)

Nb
,

which concludes the proof.

E.3 Strongly-convex case (Theorem 1)

In this section, we give the demonstration for MCM in the strongly-convex case (Theorem 1).

Theorem S10 (Convergence of MCM in the homogeneous and strongly-convex case). Under As-
sumptions 1 to 4 with µ > 0, for k in N, for a learning rate αdwn ≤ 1

8ωdwn
, for any sequence

(γk)k≥0 ≤ γmax, defining Vk := E[‖wk − w∗‖2] + 32γLω2
dwnE[Υk], we have:

Vk ≤ (1− γkµ)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +
γ2
kσ

2Φ(γk)

Nb
,

Consequently,

1. if σ2 = 0 (noiseless case), for γk ≡ γmax we recover a linear convergence rate:
E[‖wK)− w∗‖2] ≤ (1− γmaxµ)kV0;

2. if σ2 > 0, defining L̃ such that γmax = (2L̃)−1, taking for all k in N, γk = 2/(µ(k +

1) + L̃), for the weighted Polyak-Ruppert average w̄K =
∑K
k=1 λkwk−1/

∑K
k=1 λk,

with λk := 1
γ−1
k−1

, we have:

E [F (w̄K)− F (w∗)] ≤
µ+ 2L̃

4µK2 ‖w0 − w∗‖2+
4σ2(1 + ωup)

µKNb

(
1 +

64Lω2
dwn

µK
ln(µK + L̃)

)
.

Proof. Let k in N∗, the proof starts like the one for Ghost, and we start from eq. (S13) but we
consider a variable step size γk = 2/(µ(k + 1) + L̃) that depends of the iteration k in N.

E
[
‖wk − w∗‖2

]
≤ E

[
‖wk−1 − w∗‖2

]
− 2γkE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉]

+ 2γkLE
[
‖ŵk−1 − wk−1‖2

]
+ γ2

k

(
1 +

ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+
γ2
kσ

2(1 + ωup)

Nb
.

Now we apply strong-convexity (eq. (S9) of Proposition S1):

E
[
‖wk − w∗‖2

]
≤ E

[
‖wk−1 − w∗‖2

]
+ 2γkLE

[
‖ŵk−1 − wk−1‖2

]
− γkE [F (ŵk−1)− F (w∗)]− γk

(
µ ‖ŵk−1 − w∗‖2 +

1

L
‖∇F (ŵk−1)‖2

)
+ γ2

k

(
1 +

ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+
γ2
kσ

2(1 + ωup)

Nb
.
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As γk ≤ 2
L̃
≤ 1

2L
(

1 +
ωup

N

) , and thus
(

1− γkL
(

1 +
ωup

N

))
≥ 1/2; this allows to simplify the

coefficient of E
[
‖∇F (ŵk−1)‖2

]
:

E
[
‖wk − w∗‖2

]
≤ (1− γkµ) ‖wk−1 − w∗‖2 − γkE [F (ŵk−1)− F (w∗)]

− γk
2L

E
[
‖∇F (ŵk−1)‖2

]
+ 2γkLE

[
‖ŵk−1 − wk−1‖2

]
+
γ2
kσ

2(1 + ωup)

Nb

equivalent to:

E
[
‖wk − w∗‖2

]
≤ (1− γkµ) ‖wk−1 − w∗‖2 − γkE [F (ŵk−1)− F (w∗)]

− γk
2L

E
[
‖∇F (ŵk−1)‖2

]
+ 2γkLωdwnE

[
‖wk−1 −Hk−1‖2

]
+
γ2
kσ

2(1 + ωup)

Nb
.

(S19)

Theorem 3 adapted to the case of decaying steps gives:

E [Υk] ≤
(

1− αdwn

2

)
E [Υk−1] + 2γ2

k

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ2
kσ

2(1 + ωup)

Nb
.

(S20)

Defining Vk := E
[
‖wk − w∗‖2

]
+ γkLCE [Υk] with C = 4ωdwn/α, combining the two later

equations (S9) + γkLC (S20):

E
[
‖wk − w∗‖2

]
+ γkLCE [Υk]

≤ (1− γkµ) ‖wk−1 − w∗‖2 − γkE [F (ŵk−1)− F (w∗)]

− γk
2L

E
[
‖∇F (ŵk−1)‖2

]
+ 2γkLωdwnE

[
‖wk−1 −Hk−1‖2

]
+
γ2
kσ

2(1 + ωup)

Nb

+
(

1− αdwn

2

)
γkLCE [Υk−1] + 2γ3

kLC

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ3
kLσ

2(1 + ωup)C

Nb
,

and reordering the terms gives:

Vk ≤ (1− γkµ) ‖wk−1 − w∗‖2 − γkE [F (ŵk−1)− F (w∗)]

+

(
1− αdwn

2
+

2ωdwn

C

)
γkLCE

[
‖wk−1 −Hk−1‖2

]
+

(
2γ3
kLC

(
1

αdwn
+
ωup

N

)
− γk

2L

)
E
[
‖∇F (ŵk−1)‖2

]
+ (2γkLC + 1)

γ2
kσ

2(1 + ωup)

Nb
,

To reach a (1− γµ)-convergence we first need
(

1− αdwn
2 + 2ωdwn

C

)
γkLC ≤ (1− γkµ)γk−1LC

i.e 1− αdwn
2 + 2ωdwn

C ≤ (1− γkµ)γk−1
γk .
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We need that for all k ∈ N, 1− γkµ
γk ≤ 1

γk−1
i.e., 1− γkµ ≤ γk

γk−1
, but:

γk
γk−1

=
µk − µ+ L̃

µk + L̃
= 1− µ

µk + L̃
and 1− γkµ = 1− 2µ

µk + L̃
,

and so, the inequality is always true.

Thus we must have 2ωdwn/C ≤ αdwn/2 which is true by definition of C.

Secondly, it requires:

2γ2
kC

(
1

αdwn
+
ωup

N

)
− γk

2L
≤ 0⇐⇒ γkL ≤

1

4C

(
1

αdwn
+
ωup

N

)
⇐⇒ γkL ≤

1

4

√
ωdwn

αdwn

(
1

αdwn
+
ωup

N

) ,

by definition of C. And it follows that the first part of the theorem is proved:

Vk ≤ (1− γkµ)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +
γ2
kσ

2Φ(γk)

Nb
,

where Φ(γk) := (1 + ωup)
(

1 +
8γkLωdwn
αdwn

)
.

We now prove the second part, which requires to carefully handle the term of noise. By definition
γk = 2

µ(k + 1) + L
, we denote λk = 1

γk−1
and we sum the above equation weighted with the

sequence of (λk)Kk=1:

1∑K
k=1 λk

K∑
k=1

λkE [F (ŵk−1)− F (w∗)] ≤
1∑K

k=1 λk

K∑
k=1

(1− γkµ)λk
γk

Vk−1 −
λk
γk
Vk

+
1∑K

k=1 λk

K∑
k=1

λk
γkσ

2Φ(γk)

Nb
.

The weights are chosen to ensure that the sum of (Vk)Kk=1 is telescopic. Because (1− γkµ)/γk =

γ−1
k−2, we have:

1∑K
k=1 λk

K∑
k=1

λkE [F (ŵk−1)− F (w∗)] ≤
1∑K

k=1 λk

K∑
k=1

1

γk−2γk−1
Vk−1 −

1

γkγk−1
Vk

+
1∑K

k=1 λk

K∑
k=1

λk
γkσ

2Φ(γk)

Nb
,

and because for K ∈ N∗ big enough 1∑K
k=1 λk

= 1
µ(K + 1)K/4 + (L̃K)/2

≤ 4
µK2 , it results that:

1∑K
k=1 λk

K∑
k=1

λkE [F (ŵk−1)− F (w∗)] ≤
V0

γ0γ−1µK
2 +

4

µK2

K∑
k=1

λk
γkσ

2Φ(γk)

Nb
. (S21)
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At the end, using the Jensen inequality - E [E [F (ŵk−1) | wk−1]] ≤ E [F (wk−1)], see Equation (S7)
- we have for all K in N:

1∑K
k=1 λk

K∑
k=1

λkE [F (wk−1)− F (w∗)]

≤ V0

γ0γ−1µK
2 +

4

µK2

K∑
k=1

1

γk−1

(
1 +

8γkLωdwn

αdwn

)
γkσ

2(1 + ωup)

Nb

≤ V0

γ0γ−1µK
2 +

4

µK2

K∑
k=1

(
1 +

8γkLωdwn

αdwn

)
σ2(1 + ωup)

Nb
,

because for all k in N∗, γk ≤ γk−1. We need to compute the following classical sum:

K∑
k=1

1

µk + L̃
≤
∫ K

x=0

1

µx+ L̃
dx ≤ 1

µ
ln
(
µK + L̃

)
.

At the end, using again the Jensen inequality, defining L̃ =

max

{
4L

√
ωdwn
αdwn

(
1

αdwn
+
ωup

N

)
, 4L

(
1 +

ωup

N

)}
, taking for all k in N, γk = 2

µ(k + 1) + L̃
,

for all k in N∗, λk = 1
γk−1

and denoting w̄K =
∑K

k=1 λkwk−1∑K
k=1 λk

, then for any K in N∗, we have:

E [F (w̄K)− F (w∗)] ≤
µ+ 2L̃

4µK2 ‖w0 − w∗‖2 +

(
1 +

64Lω2
dwn

µK
ln
(
µK + L̃

))
· 4σ2(1 + ωup)

µKNb
,

and the demonstration is completed.

E.4 Non-convex case (extra theorem)

In this section, we detail the convergence guarantee given for MCM in the non-convex case. In this
scenario, the theorem will hold on the average of gradients after K in N∗ iterations. The structure
of the proof is different from the one used for Ghost and MCM in convex and strongly-convex case.
Instead, the demonstration starts from the equation resulting from smoothness and use the polarization
identity to handle the inner product of gradients taken at two different points.

Theorem S11 (Convergence of MCM in the non-convex case). Under Assumptions 1, 2 and 4 (non-
convex case), for a learning rate αdwn = 1

8ωdwn
, for any step size γ s.t.

γL ≤ min


1

8ωdwn
,

1

2
(

1 +
ωup

N

) , 1

8

√
ω2

dwn

(
8ωdwn +

ωup

N

)
 ,

after running K in N∗ iterations, we have:

1

K

K∑
k=1

E
[
‖∇F (wk−1)‖2

]
≤ 2 (F (w0)− F (w∗))

γK
+
γLσ2Φnon−cvx(γ)

Nb
,

with Φnon−cvx(γ) := (1 + ωup)
(
1 + 32γLω2

dwn

)
. Thus, for K in N∗ large enough, taking γ =√

2Nb (F (w0)− F (w∗))
σ2L(1 + ωup)K

:

1

K

K∑
k=1

E
[
‖∇F (wk−1)‖2

]
≤ 2

√
2Lσ2(1 + ωup) (F (w0)− F (w∗))

NbK
+O(K−1) .
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Proof. Let k in N∗, then smoothness (see Assumption 2) implies:

F (wk) ≤ F (wk−1) + 〈 ∇F (wk−1), wk − wk−1 〉+
L

2
‖wk − wk−1‖2

⇐⇒ F (wk) ≤ F (wk−1)− γ 〈 ∇F (wk−1), g̃k 〉+
γ2L

2
‖g̃k‖2 .

The inner product is not easy to handle because it implies two gradients computed at two different
points: wk−1 and ŵk−1. To turn around this difficulty, we use the polarization identity, and so we
have:

−E [〈 ∇F (wk−1), g̃k 〉 | wk−1] = −〈 ∇F (wk−1), E [∇F (ŵk−1) | wk−1] 〉

=
1

2

(
−‖∇F (wk−1)‖2 − E

[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+ E

[
‖∇F (wk−1)−∇F (ŵk−1)‖2

∣∣∣ wk−1

])
where we used the Polarization identity (eq. (S6)), and next with smoothness:

−E [〈 ∇F (wk−1), g̃k 〉 | wk−1] ≤ 1

2

(
−‖∇F (wk−1)‖2 − E

[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+L2E

[
‖wk−1 − ŵk−1‖2

∣∣∣ wk−1

])
,

Combining with Lemma S3, we obtain:

F (wk) ≤ F (wk−1)− γ

2
‖∇F (wk−1)‖2 − γ

2
E
[
‖∇F (ŵk−1)‖2

∣∣∣ wk−1

]
+
γL2

2
E
[
‖wk−1 − ŵk−1‖2

∣∣∣ wk−1

]
+
γ2L

2

((
1 +

ωup

N

)
‖∇F (ŵk−1)‖2 +

σ2(1 + ωup)

Nb

)
.

Taking the full expectation and re-ordering the terms gives:

E [F (wk)] ≤ E [F (wk−1)]− γ

2
E
[
‖∇F (wk−1)‖2

]
− γ

2

(
1− γL

(
1 +

ωup

N

))
E
[
‖∇F (ŵk−1)‖2

]
+
γL2

2
E
[
‖wk−1 − ŵk−1‖2

]
+
γ2L

2
× σ2(1 + ωup)

Nb
.

Exactly like the convex case, we consider that γL(1 + ωup/N) ≤ 1/2 and because

E
[
‖wk−1 − ŵk−1‖2

]
= E

[
E
[
‖wk−1 − ŵk−1‖2

∣∣∣ ŵk−2

]]
we can use Assumption 1:

E [F (wk)] ≤ E [F (wk−1)]− γ

2
E
[
‖∇F (wk−1)‖2

]
− γ

4
E
[
‖∇F (ŵk−1)‖2

]
+
ωdwnγL

2

2
E [Υk] +

γ2L

2
× σ2(1 + ωup)

Nb
.

(S22)

Next, Theorem 3 gives:

E [Υk] ≤
(

1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ2σ2(1 + ωup)

Nb
.

We iterate over k and compute the resulting geometric sum, it gives:

E [Υk] ≤
(

1− αdwn

2

)k
‖Υ0‖2 + 2γ2

(
1

αdwn
+
ωup

N

) k∑
t=1

(
1− α

2

)k−t
E
[
‖∇F (ŵt−1)‖2

]
+

4γ2σ2(1 + ωup)

αdwnNb
,
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where we considered for the last term of the above equation that
∑k
t=1

(
1− αdwn

2

)k
≤ 2
αdwn

. This
is equivalent to:

E [Υk] ≤ 2γ2

(
1

αdwn
+
ωup

N

) k∑
t=1

(
1− αdwn

2

)k−t
E
[
‖∇F (ŵt−1)‖2

]
+

4γ2σ2(1 + ωup)

αdwnNb
.

We apply this last result to eq. (S22):

γ

2
E
[
‖∇F (wk−1)‖2

]
≤ E [F (wk−1)− F (wk)]− γ

4
E
[
‖∇F (ŵk−1)‖2

]
+
γL2

2

(
4ωdwnγ

2σ2(1 + ωup)

Nbαdwn

+2ωdwnγ
2

(
1

αdwn
+
ωup

N

) k∑
t=1

(
1− αdwn

2

)k−t
E
[
‖∇F (ŵt−1)‖2

])

+
γ2L

2
× σ2(1 + ωup)

Nb

≤ E [F (wk−1)− F (wk)]− γ

4
E
[
‖∇F (ŵk−1)‖2

]
+ γ3L2ωdwn

(
1

αdwn
+
ωup

N

) k∑
t=1

(
1− αdwn

2

)k−t
E
[
‖∇F (ŵt−1)‖2

]
+
γ2σ2L(1 + ωup)

2Nb

(
1 +

4γLωdwn

αdwn

)
.

Summing this equation, for k in range 1 to K:

γ

2

K∑
k=1

E
[
‖∇F (wk−1)‖2

]
≤ E [F (w0)− F (wk)]− γ

4

K∑
k=1

E
[
‖∇F (ŵk−1)‖2

]
+ γ3L2ωdwn

(
1

αdwn
+
ωup

N

) K∑
k=1

k∑
t=1

(
1− αdwn

2

)k−t
E
[
‖∇F (ŵt−1)‖2

]
+
γ2σ2L(1 + ωup)

2Nb

(
1 +

4γLωdwn

αdwn

)
K .

We need to invert the double-sum and we obtain:

γ

2

K∑
k=1

E
[
‖∇F (wk−1)‖2

]
≤ γF (w0)− F (wk)− γ

4

K∑
i=1

E
[
‖∇F (ŵk−1)‖2

]
+

2

αdwn
× γ3L2ωdwn

(
1

αdwn
+
ωup

N

) K∑
k=1

E
[
‖∇F (ŵk−1)‖2

]
+
γ2σ2L(1 + ωup)

2Nb

(
1 +

4γLωdwn

αdwn

)
K

≤ E [F (w0)− F (wk)]

+

(
2γ3L2ωdwn

αdwn

(
1

αdwn
+
ωup

N

)
− γ

4

) K∑
k=1

E
[
‖∇F (ŵk−1)‖2

]
+
γ2σ2L(1 + ωup)

2Nb

(
1 +

4γLωdwn

αdwn

)
K .
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Now we consider that 2γ3L2ωdwn
αdwn

(
1

αdwn
+
ωup

N

)
≤ γ/4, and because for all k in N, F (w0) −

F (wk) ≤ F (w0)− F (w∗):

1

K

K∑
k=1

E
[
‖∇F (wk−1)‖2

]
≤ 2 (F (w0)− F (w∗))

γK
+
γσ2L(1 + ωup)

Nb

(
1 +

4γLωdwn

αdwn

)
.

Finally, for anyK in N∗, such that γL ≤ min


1

8ωdwn
, 1

2
(

1 +
ωup

N

) , 1

2

√
2
ωdwn

αdwn

(
1

αdwn
+
ωup

N

)


and αdwn ≤ 1
8ωdwn

, we have:

1

K

K∑
k=1

E
[
‖∇F (wk−1)‖2

]
≤ 2 (F (w0)− F (w∗))

γK
+
γLσ2Φnon−cvx(γ)

Nb
,

denoting Φnon−cvx(γ) := (1 + ωup)
(

1 +
4γLωdwn
αdwn

)
.

Thus, for K in N∗ large enough, taking γ =

√
2Nb (F (w0)− F (w∗))

σ2L(1 + ωup)K
and αdwn = 1/(8ωdwn):

1

K

K∑
k=1

E
[
‖∇F (wk−1)‖2

]
≤ 2

√
2Lσ2(1 + ωup) (F (w0)− F (w∗))

NbK
+O(K−1) .

E.5 Proof for Rand-MCM (Theorem 4)

The proof for Rand-MCM is almost identical to the MCM-scenario. It only requires to modify some
notations because each device i in J1, NK holds a unique model ŵik−1.

For k in N:

1. g̃k is now defined as g̃k = 1
N
∑N
i=1 ĝik(ŵik−1),

2. for all i in J1, NK, ĝik(ŵk−1) and ∇F (ŵk−1) must be replaced by ĝik(ŵik−1) and
∇F (ŵik−1),

3. instead of having a unique memory Hk, there is N memories (Hi
k)Ni=1 that keep track of the

updates done on each worker,
4. furthermore the notation wk−1−Hk−2 is no more correct as we have N different memories.

Thus, it must be replaced by 1
N
∑N
i=1 wk−1 −Hi

k−2.

F Proofs in the quadratic case for MCM and Rand-MCM

In this section, for ease of notation we denote for k in N∗, g̃k = 1
N
∑N
i=1 ĝik(ŵik−1).

MCM has a unique memory Hk, and Rand-MCM has N different memories (Hi
k)Ni=1. But for the

sake of factorization, we will consider that both algorithm have N memories, thus we will al-
ways consider the quantity 1

N
∑N
i=1

∥∥wk−1 −Hi
k−2

∥∥2
, while we should consider the quantity

1
N
∑N
i=1 ‖wk−1 −Hk−2‖2 for MCM. However this notation is correct considering that for MCM,

for all i in J1, NK, Hi
k = Hk. And it follows that we have 1

N
∑N
i=1

∥∥wk−1 −Hi
k−2

∥∥2
=

1
N
∑N
i=1

∥∥wk−1 −Hi
k−2

∥∥2
.
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Unlike the previous sections where the proofs for MCM and Rand-MCM do not require any distinc-
tion, here in the quadratic case, we will on the contrary stress on the difference between the
two. The difference appears in Lemma S4 and comes from the way we handle the expectation

of
∥∥∥ 1
N
∑N
i=1∇F (ŵik−1)−∇F (wk−1)

∥∥∥2

for k in N∗. For this purpose we define a constant C such
that C = 1 in the MCM-case and C = N in the Rand-MCM-case.

The proofs for quadratic functions relies on the fact that for any k in N∗, E [∇F (ŵk−1 | wk−1] =
∇F (wk−1).
Definition 2 (Quadratic function). A function f : Rd 7→ R is said to be quadratic if there exists a
symmetric matrix A inMd,d(R) such that for all x in Rd: f(x)− f(x∗) = 1

2(x− x∗)TA(x− x∗).
And then its gradient is defined for all x in Rd as: ∇f(x) = A(x− x∗).

F.1 Two other lemmas

In this section, we detail two lemmas required to prove the convergence of MCM and Rand-MCM in the
case of quadratic functions.

The first lemma allows to factorize all the results obtained for both MCM and Rand-MCM algorithms.
For k in N∗ and i in J1, NK, the difference between the MCM-case and the Rand-MCM-case results from

the tigher control of
∥∥∥∑N

i=1∇F (ŵik−1)−∇F (wk−1)
∥∥∥2

.

Lemma S4. We define C such that C = 1 in the MCM-case and C = N in the Rand-MCM-case. Then
for any k in N∗, we have:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ≤ L2ωdwn

C

1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
.

Proof. Let k in N∗, we apply smoothness (see Assumption 2), and then we upper bound the variance
of the quantization operator with Assumption 1. But we must distinguish MCM and Rand-MCM because
in the first case we have ŵik−1 equal to ŵk−1 for all i in J1, NK.

In the MCM-case:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 = E [∇F (ŵk−1)− F (wk−1) | wk−1]

≤ L2E
[
‖ŵk−1 − wk−1‖2

∣∣∣ wk−1

]
≤ L2ωdwn ‖Ωk−1‖2

≤ L2ωdwn
1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
,

because we consider that ‖Ωk−1‖2 = ‖wk−1 −Hk−2‖2 = 1
N
∑N
i=1

∥∥wk−1 −Hi
k−2

∥∥2
.

In the Rand-MCM-case, by independence of the compressions on the downlink direction:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 =
1

N2

N∑
i=1

E
[∥∥∇F (ŵik−1)−∇F (wk−1)

∥∥2
∣∣∣ wk−1

]

≤ L2

N2

N∑
i=1

∥∥ŵik−1 − wk−1

∥∥2

≤ L2ωdwn

N
× 1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2

≤ L2ωdwn

N

1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
.
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We factorize the two results and define C such that C = 1 in the MCM-case and C = N in the
Rand-MCM-case, and the result follows.

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ≤ L2ωdwn

C

1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
.

The next lemma replaces Lemma S3 in the context of randomization and quadratic functions. Note
that the conditioning in Lemma S3 is w.r.t. to ŵk−1 while here we take the expectation w.r.t. wk−1.
This is because we remove ŵk−1 from the gradient and give a result which depends of ‖∇F (wk−1)‖2
instead of ‖∇F (ŵk−1)‖2. This is made possible by the fact that for all k in N, for quadratic functions,
we have E [∇F (ŵk−1)] = ∇F (wk−1).

Lemma S5 (Squared-norm of stochastic gradients). For any k in N∗, the squared-norm of gradients
can be bounded a.s.:

E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)−∇F (ŵik−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ≤ ωup

N
‖∇F (wk−1)‖2 +

σ2(1 + ωup)

Nb

+
ωupωdwnL

2

N

1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
,

(S23)

E
[
‖g̃k‖2

∣∣∣ wk−1

]
≤
(

1 +
ωup

N

)
‖∇F (wk−1)‖2 +

σ2(1 + ωup)

Nb

+ L2ωdwn

(
1

C
+
ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
.

(S24)

The demonstration will be in two stages. We first show eq. (S23), and in a second time, we show
eq. (S24).

Proof. Let k in N∗.

First part (eq. (S23)). We can decompose the squared-norm in two terms:

E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵik−1)−∇F (ŵik−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


= E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵik−1)− gik(ŵik−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


+ E

∥∥∥∥∥ 1

N

N∑
i=1

(
gik(ŵik−1)−∇F (ŵik−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ,
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the first term is bounded by Assumption 1 and the last term by Assumption 4:

E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵik−1)−∇F (ŵik−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


≤ ωup

N2

N∑
i=1

E
[∥∥gik(ŵik−1)

∥∥2
∣∣∣ wk−1

]
+
σ2

Nb

≤ ωup

N2

N∑
i=1

E
[∥∥gik(ŵik−1)−∇F (ŵik−1)

∥∥2
∣∣∣ wk−1

]
+
ωup

N2

N∑
i=1

E
[∥∥∇F (ŵik−1)

∥∥2
∣∣∣ wk−1

]
+
σ2

Nb
.

And again applying Assumption 4 on E
[∥∥gik(ŵik−1)−∇F (ŵik−1)

∥∥2
∣∣∣ wk−1

]
for i in {1, · · ·N}:

E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵik−1)−∇F (ŵik−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 =
ωup

N2

N∑
i=1

E
[∥∥∇F (ŵik−1)

∥∥2
∣∣∣ wk−1

]
+
σ2(1 + ωup)

Nb
.

Now, we have:

ωup

N2

N∑
i=1

E
[∥∥∇F (ŵik−1)

∥∥2
∣∣∣ wk−1

]
=
ωup

N2

N∑
i=1

E
[∥∥∇F (ŵik−1)−∇F (wk−1)

∥∥2
∣∣∣ wk−1

]
+
ωup

N2

N∑
i=1

E
[
‖∇F (wk−1)‖2

∣∣∣ wk−1

]
,

using smoothness (Assumption 2) gives:

ωup

N2

N∑
i=1

E
[∥∥∇F (ŵik−1)

∥∥2
∣∣∣ wk−1

]
=
ωupωdwnL

2

N

1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
+
ωup

N
‖∇F (wk−1)‖2 ,

and putting everythings together allows to conclude for eq. (S23).

Second part (eq. (S24)). We start by introducing ‖∇F (wk−1)‖2:

E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 = E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


+ ‖∇F (wk−1)‖2

= E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)−∇F (ŵik−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


+ E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


+ ‖∇F (wk−1)‖2 .

The second term of the previous line is controlled by Lemma S4 which distinguish the MCM and
Rand-MCM-cases by defining a constant C such that C = 1 for MCM and C = N for Rand-MCM:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ≤ L2ωdwn

C

1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
.
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Thus, we have:

E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 = E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)−∇F (ŵik−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


+
ωdwnL

2

C

1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
+ ‖∇F (wk−1)‖2 ,

and eq. (S23) allows to conclude.

F.2 Control of the Variance of the local model for quadratic function (both MCM and
Rand-MCM)

The next theorem replaces the Theorem 3 in the case of quadratic functions. The results are almost
identical except that in these settings we control the variance using non-degraded points (wt)t∈N.
This is necessary because, for quadratic functions, the analysis is slightly different. Previously, we
upper-bounded the inner product in the decomposition (eq. (S12)) by a “strong contraction” that was
allowing to subtract ‖∇F (ŵk−1)‖2 and an extra residual term. Here we instead directly get a smaller
contraction proportional to ‖∇F (wk−1)‖2 (but without any residual!). Indeed for all k in N, we have
E [∇F (ŵk−1)] = ∇F (wk−1). This difference will appear in Appendix F.3.

As a consequence, we need to also control the variance of the local iterates that will appear when
expanding the expected squared gradient E‖g̃k‖2 by an affine function of the squared norms of the
gradients at the non perturbed points. This is what Theorem S12 provides.

Theorem S12. Consider the MCM update as in eq. (2) or the Rand-MCM update as described in
Subsection 2.2. Under Assumptions 1 to 4 with µ = 0, if γ ≤ 1

8Lωdwn

√
(1/C + ωup/N)

and

αdwn ≤ 1/(8ωdwn), then for all k in N:

1

N

N∑
i=1

E
[∥∥wk −Hi

k−1

∥∥2
∣∣∣ wk−1

]
≤ 2γ2

(
1

αdwn
+
ωup

N

) k∑
t=1

(1− αdwn

2
)k−tE

[
‖∇F (wt−1)‖2

∣∣∣ wt−1

]
+

4γ2σ2(1 + ωup)

αdwnNb
.

Proof. Let k in N∗ and i in {1, . . . N}, from Theorem S8 we have:

E
[∥∥wk −Hi

k−1

∥∥2
∣∣∣ wk−1

]
= Var + Bias2 = 2γ2Var1 + 2α2

dwnVar2 + Bias2 ,

with 
Var1 = E

[∥∥∥ 1
N
∑N
i=1 ĝik(ŵik−1) + E

[
∇F (ŵik−1)

∣∣ wk−1

]∥∥∥2
∣∣∣∣ wk−1

]
Var2 = ωdwn

1
N
∑N
i=1

∥∥wk−1 −Hi
k−2

∥∥2

Bias2 = ‖E [wk −Hk−1 | wk−1]‖2 .
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Recall that in the case of quadratic functions, we have for all i in J1, NK: E
[
∇F (ŵik−1)

∣∣ wk−1

]
=

∇F (wk−1). And so for the first term of variance we can decompose as following:

Var1 = E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)− E
[
∇F (ŵik−1)

∣∣ wk−1

]∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


= E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


= E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)−∇F (ŵik−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1


+ E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵik−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 .
The first part is handled by eq. (S23) of Lemma S5:

E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵik−1)−∇F (ŵik−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 =
ωupωdwnL

2

N

1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2

+
ωup

N
‖∇F (wk−1)‖2

+
σ2(1 + ωup)

Nb
,

and the second part is tackled by Lemma S4 where is defined a constant C such that C = 1 in the MCM-

case, and C = N in the Rand-MCM-case: E
[∥∥∥ 1

N

∑N
i=1∇F (ŵik−1)−∇F (wk−1)

∥∥∥2
∣∣∣∣ wk−1

]
≤

L2ωdwn

C
1
N
∑N
i=1

∥∥wk−1 −Hi
k−2

∥∥2
.

Finally, given that Var = 2γ2Var1 + 2α2
dwnVar2 we have:

Var ≤ 2γ2L2ωdwn

(
1

C
+
ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2
+ 2α2

dwnωdwn

∥∥wk−1 −Hi
k−2

∥∥2

+
2γ2ωup

N
‖∇F (wk−1)‖2 +

2γ2σ2(1 + ωup)

Nb
.

Now we focus on the squared bias Bias2 exactly like in Theorem S8 and we obtain:

Bias2 ≤ (1− αdwn)
∥∥wk−1 −Hi

k−2

∥∥2
+ γ2(1 +

1

αdwn
) ‖∇F (wk−1)‖2 .

At the end:

E
[∥∥wk −Hi

k−1

∥∥2
∣∣∣ wk−1

]
≤ 2γ2L2ωdwn

(
1

C
+
ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2

+ γ2(1 +
1

αdwn
+

2ωup

N
) ‖∇F (wk−1)‖2

+
(
(1− αdwn) + 2α2

dwnωdwn

) ∥∥wk−1 −Hi
k−2

∥∥2

+
2γ2σ2(1 + ωup)

Nb
.
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Summing this last equation over the N devices gives:

1

N

N∑
i=1

E
[∥∥wk −Hi

k−1

∥∥2
∣∣∣ wk−1

]
≤
(

1− αdwn + 2α2
dwnωdwn + γ2L2ωdwn

(
1

C
+
ωup

N

))
1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2

+ γ2(1 +
1

αdwn
+

2ωup

N
) ‖∇F (wk−1)‖2

+
2γ2σ2(1 + ωup)

Nb
.

Exactly like in Theorem S8, we need and by taking αdwn = 1/(8ωdwn):
2α2

dwnωdwn ≤ 1
4αdwn ⇐⇒ αdwn ≤ 1

8ωdwn
,

2γ2L2ωdwn

(
1
C +

ωup

N

)
≤ 1

4αdwn = 1
32ωdwn

⇐⇒ γ ≤ 1

8Lωdwn

√
(1/C + ωup/N)

,

1 + 1
αdwn

≤ 2
αdwn

which is not restrictive.

Thus, we can write:

1

N

N∑
i=1

E
[∥∥wk −Hi

k−1

∥∥2
∣∣∣ wk−1

]
≤
(

1− αdwn

2

) 1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2

+ 2γ2(
1

αdwn
+
ωup

N
) ‖∇F (wk−1)‖2

+
2γ2σ2(1 + ωup)

Nb
.

Finally, we take the full expectation without any conditioning, we iterate over k and compute the
geometric sums:

1

N

N∑
i=1

E
[∥∥wk −Hi

k−1

∥∥2
]
≤ (1− αdwn

2
)k ‖w0 −H−1‖2 +

4γ2σ2(1 + ωup)

αdwnNb

+ 2γ2(
1

αdwn
+
ωup

N
)

k∑
t=1

(1− αdwn

2
)k−tE

[
‖∇F (wt−1)‖2

]
.

and the result follows.

F.3 Proof for quadratic function (Theorem 5)

Theorem S13. Under Assumptions 1 to 4 with µ = 0, if the function is quadratic, for γ = 1/(L
√
K)

and a given learning rate αdwn = 1/(8ωdwn), after running K iterations:

E [F (w̄K)− F∗] ≤
‖w0 − w∗‖2 L√

K
+

σ2Φ(γ)

NbL
√
K
.

with Φ = (1 + ωup)
(

1 + 32
ω2

dwn√
K
× 1√

K

(
1
C +

ωup

N

))
and C = N for Rand-MCM, and 1 for MCM.

The structure of the proof is different from the one used in Appendices D and E.

Proof. Let k in N, by definition:

‖wk − w∗‖2 ≤ ‖wk−1 − w∗‖2 − 2γ 〈 g̃k, wk−1 − w∗ 〉+ γ2 ‖g̃k‖2 .

48



Because F is quadratic, we have E [∇F (ŵk−1) | wk−1] = ∇F (wk−1), thus taking expectation
gives:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − 2γ 〈 ∇F (wk−1), wk−1 − w∗ 〉+ γ2E

[
‖g̃k‖2

∣∣∣ wk−1

]
.

We can directly apply convexity with eq. (S8) from Proposition S1:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − γ

(
F (wk−1)− F (w∗) +

1

L
‖∇F (wk−1)‖2

)
+ γ2E

[
‖g̃k‖2

∣∣∣ wk−1

]
.

Now, with eq. (S24) of Lemma S5:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − γ(F (wk−1)− F (w∗))−

γ

L
‖∇F (wk−1)‖2

+ γ2
((

1 +
ωup

N

)
‖∇F (wk−1)‖2

+ L2ωdwn

(
1

C
+
ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2

+
σ2(1 + ωup)

Nb

)
,

which gives:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − γ(F (wk−1)− F (w∗))−

γ

L
‖∇F (wk−1)‖2

+ γ2
(

1 +
ωup

N

)
‖∇F (wk−1)‖2

+ γ2L2ωdwn

(
1

C
+
ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −Hi
k−2

∥∥2

+
σ2γ2(1 + ωup)

Nb
.

Taking full expectation, and because for all i in {1, · · · , N}, E
[∥∥wk−1 −Hi

k−2

∥∥2
]

=

E
[
E
[∥∥wk−1 −Hi

k−2

∥∥2
∣∣∣ ŵk−2

]]
, we can use the inequality controlling

1
N
∑N
i=1

∥∥wk−1 −Hi
k−2

∥∥2
(see Theorem S12):

E
[
‖wk − w∗‖2

]
≤ E

[
‖wk−1 − w∗‖2

]
− γE [F (wk−1)− F (w∗)]

− γ

L

(
1− γL

(
1 +

ωup

N

))
E
[
‖∇F (wk−1)‖2

]
+ γ2L2ωdwn

(
1

C
+
ωup

N

)
× 2γ2

(
1

αdwn
+
ωup

N

) k∑
t=1

(1− αdwn

2
)k−tE

[
‖∇F (wt−1)‖2

]
+
σ2γ2(1 + ωup)

Nb
+ γ2L2ωdwn

(
1

C
+
ωup

N

)
× 4σ2γ2(1 + ωup)

αdwnNb
.
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Next, we consider - as in previous proofs - that γL(1 + ωup/N) ≤ 1/2, and thus
γ
L

(
1− γL

(
1 +

ωup

N

))
≥ γ

2 . Next we carry out the “top-down recurrence”:

E
[
‖wk − w∗‖2

]
≤ ‖w0 − w∗‖2 − γ

k∑
j=1

E [F (wk−j)− F (w∗)]

− γ

2L

k∑
j=1

E
[
‖∇F (wk−j−1)‖2

]

+

k∑
j=1

2γ4L2ωdwn

(
1

C
+
ωup

N

)(
1

αdwn
+
ωup

N

) k−j∑
t=1

(
1− αdwn

2

)k−j−t
E
[
‖∇F (wt−1)‖2

]

+

k∑
j=1

γ2σ2(1 + ωup)

Nb

(
1 +

4γ2L2ωdwn

αdwn

(
1

C
+
ωup

N

))
.

We invert the double-sum, it leads to:

E
[
‖wk − w∗‖2

]
≤ ‖w0 − w∗‖2 − γ

k∑
j=1

E [F (wj−1)− F (w∗)]

− γ

2L
E
[
‖∇F (wk−1)‖2

]
+

2

αdwn
× 2γ4L2ωdwn

(
1

C
+
ωup

N

)(
1

αdwn
+
ωup

N

)
E
[
‖∇F (w−1)‖2

]
+

k−1∑
j=1

(
2

αdwn
× 2γ4L2ωdwn

(
1

C
+
ωup

N

)(
1

αdwn
+
ωup

N

)
− γ

2L

)
E
[
‖∇F (wj−1)‖2

]
+
γ2σ2(1 + ωup)

Nb

(
1 +

4γ2L2ωdwn

αdwn

(
1

C
+
ωup

N

))
× k .

Now, we consider that 4ωdwnγ
4L2

αdwn

(
1
C +

ωup

N

)(
1

αdwn
+
ωup

N

)
<

γ
2L , thus we have:

γ

k

k∑
t=1

E [F (wt−1)− F (w∗)] ≤
‖w0 − w∗‖2

k
+
γ2σ2(1 + ωup)

Nb

(
1 +

4γ2L2ωdwn

αdwn

(
1

C
+
ωup

N

))
.

Finally, by Jensen, for any K in N∗, taking γ such that:

γL ≤ min


1

8ωdwn

√
1

C
+
ωup

N

,
1

2
(

1 +
ωup

N

) , 1

3

√
8ωdwn

αdwn

(
1

C
+
ωup

N

)(
1

αdwn
+
ωup

N

)


and with αdwn ≤ 1
8ωdwn

, we recover Theorem 5:

E [F (w̄K)− F (w∗)] ≤
‖w0 − w∗‖2

γK
+
γσ2ΦRd(γ)

Nb
,

denoting ΦRd(γ) = (1 + ωup)

(
1 +

4γ2L2ωdwn
K

(
1
C +

ωup

N

))
.
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G Adataptation to the heterogeneous scenario

In this section, we give the complete proof of Theorems 1 and 2 in the case of heterogeneous workers.

We choose to not merge the proofs in the homogeneous and heterogeneous cases. This is to
avoid the technicalities associated with the heterogeneity and the uplink compression (that have
been extensively studied in previous works [34, 18, 28, 36]) in the proof of our main results
which aim at alleviating the impact of downlink compression. We thus propose two proofs that
can be read almost independently in order to make proof-checking easier. We stress that the
result in the homogeneous setting is not exactly a consequence of the heterogeneous case (the
constants are degraded in the heterogeneous framework) but merging the proofs is ultimately
possible.

Appendix G.1 first presents some lemmas from [36] required to handle the additional uplink memory.
Lemma S6 (resp. Lemma S7) corresponds to Lemma S5 (resp. Lemma S7) evaluated at point ŵk−1;
and Lemma S8 corresponds to Lemma S13. Secondly, Appendix G.2 gives the demonstration of MCM.
We denote ΦHeterog(γ) := (1 + 8ωup)

(
1 +

8γLωdwn
αdwn

)
and γHeterog

max such that:

γHeterog
max L ≤ min

{
γmax,

1

16
ωup

N

,
1

8

√
2
ωdwn

αdwn
· ωup

N

}
.

We make the following assumption on the heterogeneity.

Assumption 6 (Bounded gradient atw∗). There is a constantB in R+, s.t.: 1
N

∑N
i=0 ‖∇Fi(w∗)‖2 =

B2 . And we denote for all i in J1, NK, hi∗ = ∇Fi(w∗).

G.1 Control of the uplink memory

In this section we give the theorems that are required by the uplink memory.
Lemma S6 (Bounding the compressed term). The squared norm of the compressed term sent by
each node to the central server can be bounded as following:

∀k ∈ N , ∀i ∈ J1, NK ,
∥∥∆i

k

∥∥2 ≤ 2
(∥∥gik(ŵk−1)− hi∗

∥∥2
+
∥∥hik − hi∗∥∥2

)
.

Lemma S7 (Noise over local gradients). Let k ∈ N∗ and i ∈ J1, NK. The noise in the stochastic
gradients as defined in Assumptions 4 and 6 can be controlled as following:

1

N2

N∑
i=1

E
[∥∥gik(ŵk−1)− hi∗

∥∥2
∣∣∣ wk−1

]
≤ 2L

N
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1] +

2σ2

Nb
.

Lemma S8 (Recursive inequalities over memory term). Let k ∈ N and let i ∈ J1, NK. The memory
term used in the uplink broadcasting can be bounded using a recursion:

E [Ξk | wk−1] ≤ (1− αup)E [Ξk−1 | wk−1]

+
2αupL

N
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

+
2

N

σ2

b
αup .

Lemma S9 (Squared-norm of stochastic gradients). For any k in N∗, the squared-norm of gradients
can be bounded a.s.:

E
[
‖g̃k‖2

∣∣∣ ŵk−1

]
≤
(

1 +
4ωup

N

)
LE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+ 2ωupE [Ξk−1 | ŵk−1] +
σ2

Nb
(1 + 4ωup) ,

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
≤ 4ωupL

N
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+ 2ωupE [Ξk−1 | ŵk−1] +
σ2

Nb
(1 + 4ωup) ,
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Lemma S9 extends Lemma S3.

Proof. Let k in N∗, then:

E
[
‖g̃k‖2

∣∣∣ ŵk−1

]
= ‖∇F (ŵk−1)‖2 + E

[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
≤ LE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1] + E

[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
Secondly:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

(
∆̂i
k−1 + hik−1 −∇Fi(ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1


= E

∥∥∥∥∥ 1

N

N∑
i=1

(
∆̂i
k−1 + hik−1 − gik(ŵk−1) + gik(ŵk−1)−∇Fi(ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1


= E

∥∥∥∥∥ 1

N

N∑
i=1

∆̂i
k−1 −∆i

k−1

∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1

+ E

∥∥∥∥∥ 1

N

N∑
i=1

gik(ŵk−1)−∇Fi(ŵk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1

 ,
the inner product being null.

Next, expanding the squared norm again, and because the two sums of inner products are null as the
stochastic oracle and uplink compressions are independent:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
=

1

N2

N∑
i=1

E
[∥∥∥∆̂i

k−1 −∆i
k−1

∥∥∥2
∣∣∣∣ ŵk−1

]

+
1

N2

N∑
i=1

E
[∥∥gik(ŵk−1)−∇Fi(ŵk−1)

∥∥2
∣∣∣ ŵk−1

]
.

Then, for any i in J1, NK as E
[∥∥∥∆̂i

k−1 −∆i
k−1

∥∥∥2
∣∣∣∣ ŵk−1

]
=

E
[
E
[∥∥∥∆̂i

k−1 −∆i
k−1

∥∥∥2
∣∣∣∣ gik

] ∣∣∣∣ ŵk−1

]
, and using Assumption 1 we have:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
≤ ωup

N2

N∑
i=1

E
[∥∥∆i

k−1

∥∥2
∣∣∣ ŵk−1

]
+

1

N2

N∑
i=1

E
[∥∥gik(ŵk−1)−∇Fi(ŵk−1)

∥∥2
∣∣∣ ŵk−1

]
.

Furthermore with Lemma S6 and Assumption 4:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
≤ 2ωup

N2

N∑
i=1

E
[∥∥gk(ŵk−1)− hi∗

∥∥2
∣∣∣ ŵk−1

]
+ 2ωupE [Ξk−1 | ŵk−1] +

σ2

Nb
.

And finally with Lemma S7:

E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

]
≤ 4ωupL

N
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1] +

4ωupσ
2

Nb

+ 2ωupE [Ξk−1 | ŵk−1] +
σ2

Nb
,

from which we derive the two inequalities of the lemma.
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G.2 Proofs for MCM

In this section, we provide the demonstration of Theorems 1 and 2 in the convex and strongly-convex
cases with heterogeneous workers.

G.2.1 Control of the Variance of the local model for MCM

In this section, the aim is to control the variance of the local model for MCM but in the setting of
heterogeneous worker, as done previously in Theorem S8.

Theorem S14. Consider the MCM update as in eq. (2). Under Assumptions 1, 2 and 4, if γ ≤
1/(8ωdwnL) and αdwn ≤ 1/(8ωdwn), then for all k in N:

E [Υk | wk−1] ≤
(

1− αdwn

2

)
Υk−1

+ 2γ2L

(
1

αdwn
+

4ωup

N

)
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+ 4γ2ωupE [Ξk−1 | ŵk−1] +
2γ2σ2(1 + 4ωup)

Nb
.

Proof. Let k in N, we recall that by definition:
Ωk = wk −Hk−1

Ω̂k = Cdwn(Ωk)

ŵk = Ω̂k +Hk−1 .

We start the proof by performing a bias-variance decomposition, and exactly like in the proof of
Theorem S8, we obtain:

‖Ωk‖2 = Bias2 + 2γ2Var12 + 2γ2Var12 + 2α2
dwnVar2

We first have:

Var11 = E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ wk−1

]
= E

[
E
[
‖g̃k −∇F (ŵk−1)‖2

∣∣∣ ŵk−1

] ∣∣∣ wk−1

]
,

so, we can use Lemma S9:

Var11 =
4ωupL

N
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1] + 2ωupE [Ξk−1 | ŵk−1] +

σ2

Nb
(1 + 4ωup) .

The other terms are exactly as before in Theorem S8:


Var12 ≤ L2ωdwnΥk−1

Var2 ≤ ωdwnΥk−1

Bias2 ≤ (1− αdwn)Υk−1 + γ2L(1 + 1
αdwn

)E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1] .

At the end:

E [Υk | wk−1] ≤ (1− αdwn)Υk−1 + γ2L(1 +
1

αdwn
)E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+
8ωupγ

2L

N
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+ 4γ2ωupE [Ξk−1 | ŵk−1] +
2γ2σ2

Nb
(1 + 4ωup)

+ 2γ2L2ωdwnΥk−1 + 2α2
dwnωdwnΥk−1 ,
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which is equivalent to:

E [Υk | wk−1] ≤
(
1− αdwn + 2γ2L2ωdwn + 2α2

dwnωdwn

)
‖wk−1 − Ξk−2‖2

+ γ2L

(
1 +

1

αdwn
+

8ωup

N

)
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+ 4γ2ωupE [Ξk−1 | ŵk−1] +
2γ2σ2(1 + 4ωup)

Nb
.

Next, we require as in Theorem S8:
2α2

dwnωdwn ≤ 1
4αdwn ⇐⇒ αdwn ≤ 1

8ωdwn
,

2γ2L2ωdwn ≤ 1
4αdwn = 1

32ωdwn
, by taking αdwn = 1

8ωdwn
⇐⇒ γ ≤ 1

8ωdwnL
,

1 + 1
αdwn

≤ 2
αdwn

which is not restrictive if ωdwn ≥ 1,

and it leads to the final result taking unconditional expectation.

G.2.2 Convex case

Theorem S15 (Convergence of MCM in the heterogeneous and convex case). Under Assumptions 1
to 4 with µ = 0 (convex case), for learning rates αdwn ≤ 1

8ωdwn
and αup(1 + ωup) ≤ 1, taking a

step size s.t. γ ≤ γHeterog
max , for any k in N, defining:

Vk := E
[
‖wk − w∗‖2

]
+ γ2C1E [Ξk] + γLC2E [Υk] ,

with C1 = 2ωup(1 + 8γLωdwn/αdwn)/αup, C2 = 4γLωdwn/αdwn, we have:

Vk ≤ Vk−1 − γE [F (ŵk−1)− F (w∗)] +
γ2σ2ΦHeterog(γ)

Nb
.

Proof. We denote for k in N∗ g̃k = 1
N
∑N
i=1 ∆̂i

k−1 + hik−1 with ∆i
k−1 = gik(ŵk−1) − hik−1, and

Ξk = 1
N2

∑N
i=1 E

[∥∥hik −∇Fi(w∗)∥∥2
∣∣∣ ŵk−1

]
.

Let k in N∗, by definition:

‖wk − w∗‖2 ≤ ‖wk−1 − w∗‖2 − 2γ 〈 g̃k, wk−1 − w∗ 〉+ γ2 ‖g̃k‖2 .
Next, we expend the inner product as following:

‖wk − w∗‖2 ≤ ‖wk−1 − w∗‖2 − 2γ 〈 g̃k, ŵk−1 − w∗ 〉 − 2γ 〈 g̃k, wk−1 − ŵk−1 〉+ γ2 ‖g̃k‖2 .

Taking expectation conditionally to wk−1, and using E [g̃k | wk−1] = E [E [g̃k | ŵk−1] | wk−1] =
E [∇F (ŵk−1) | wk−1], we obtain:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − E [2γ 〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

− 2γE [〈 ∇F (ŵk−1), wk−1 − ŵk−1 〉 | wk−1]

+ γ2E
[
‖g̃k‖2

∣∣∣ wk−1

]
.

Then invoking Lemma S3 to upper bound the squared norm of the stochastic gradients, and noticing
that E [〈 ∇F (wk−1), ŵk−1 − wk−1 〉 | wk−1] = 0 leads to:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − 2γE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

− 2γE [〈 ∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1 〉 | wk−1] (S25)

+ γ2

((
1 +

4ωup

N

)
LE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+2ωupE [Ξk−1 | ŵk−1] +
σ2

Nb
(1 + 4ωup)

)
.
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Now using Cauchy-Schwarz inequality (eq. (S5)) and smoothness:

− E [2γ 〈 ∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1 〉 | wk−1]

= 2γE [〈 ∇F (ŵk−1)−∇F (wk−1), ŵk−1 − wk−1 〉 | wk−1]

≤ 2γLE
[
‖ŵk−1 − wk−1‖2

∣∣∣ wk−1

]
,

and thus:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − 2γE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

+ 2γLE
[
‖ŵk−1 − wk−1‖2

∣∣∣ wk−1

]
+

(
1 +

4ωup

N

)
γ2LE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+ 2ωupγ
2E [Ξk−1 | ŵk−1] +

σ2γ2

Nb
(1 + 4ωup) .

As γ ≤ 1

2L
(

1 +
ωup

N

) , and thus
(

1− γL
2

(
1 +

4ωup

N

))
≥ 1/2; this allows to simplify the

coefficient of the scalar product:

E
[
‖wk − w∗‖2

∣∣∣ wk−1

]
≤ ‖wk−1 − w∗‖2 − γE [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

+ 2γLE
[
‖ŵk−1 − wk−1‖2

∣∣∣ wk−1

]
+ 2ωupγ

2E [Ξk−1 | ŵk−1] +
σ2γ2

Nb
(1 + 4ωup) .

(S26)

With Lemma S8, we have :

E [Ξk | wk−1] ≤ (1− αup)E [Ξk−1 | wk−1]

+
2αupL

N
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | wk−1]

+
2

N

σ2

b
αup .

(S27)

and Theorem S14 gives:

E [Υk | wk−1] ≤
(

1− αdwn

2

)
Υk−1

+ 2γ2L

(
1

αdwn
+

4ωup

N

)
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉 | ŵk−1]

+ 4γ2ωupE [Ξk−1 | ŵk−1] +
2γ2σ2(1 + 4ωup)

Nb
.

(S28)

We take the full expectation (without conditioning) and we set:

Vk := E
[
‖wk − w∗‖2

]
+ γ2C1E [Ξk] + γLC2E [Υk] ,

with C1 = 2ωup(1 + 8γLωdwn/αdwn)/αup and C2 = 4ωdwn/αdwn.
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We combine previous equations as follows (S26) + γ2C1(S27) + C2(S28):

E
[
‖wk − w∗‖2

]
+ γ2C1E [Ξk] + γLC2E [Υk] ≤ ‖wk−1 − w∗‖2

− γ
(

1− γL
((

1

αdwn
+

4ωup

N

)
γLC2 +

αupC1

N

))
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉]

+ (2ωup(1 + 2γLC2) + (1− αup)C1) γ2E [Ξk−1]

+
(

2γLωdwn +
(

1− αdwn

2

)
γLC2

)
E [Υk−1]

+
γ2σ2

Nb
((1 + 4ωup)(1 + 2γLC2) + 2αupC1) ,

(S29)

We first observe that:

2γLωdwn +
(

1− αdwn

2

)
γLC2 ≤ γLC2 ⇐⇒ C2 ≥

4ωdwn

αdwn
, which is true by definition of C2.

Secondly, ensuring that the factor multiplying E [Ξk−1] on the right hand side is smaller than γ2C1

requires:

2ωup(1 + 2γLC2) + (1− αup)C1 ≤ C1

=⇒ C1 ≥
2ωup(1 + 8γLωdwn/αdwn)

αup
because C2 = 4ωdwn/αdwn.

Finally, we have that 1− γL
((

1
αdwn

+
4ωup

N

)
γLC2 +

αupC1

N

)
≥ 1

2 , if we take γ such that:


(

1
αdwn

+
4ωup

N

)
(γL)2C2 ≤ 1/4 =⇒ γ ≤ 1

4L

√
ωdwn

αdwn

(
1

αdwn
+

4ωup

N

)
γLαupC1

N ≤ 1/4⇐⇒ 2γLωup

N (1 + 8γLωdwn/αdwn) ≤ 1/4

We rewrite the second condition as follows:
16(γL)2ωupωdwn

αdwnN
≤ 1/8⇐⇒ γ ≤ 1

8L

√
2
ωdwn

αdwn
· ωup

N
2γLωup

Nαup
≤ 1/8⇐⇒ γ ≤ N

16Lωup
.

Applying convexity, we derive:

Vk ≤ Vk−1 − γE [F (ŵk−1)− F (w∗)] +
γ2σ2ΦHeterog(γ)

Nb
,

with ΦHeterog(γ) = (1 + 8ωup)
(

1 +
8γLωdwn
αdwn

)
. Invoking Jensen inequality (S7) leads to

E [F (ŵk−1)] ≥ E [F (wk−1)], and we finally obtain:

Vk ≤ Vk−1 − γE [F (wk−1)− F (w∗)] +
γ2σ2ΦHeterog(γ)

Nb
.
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G.2.3 Strongly-convex case

Theorem S16 (Convergence of MCM in the heterogeneous and strongly-convex case). Under Assump-
tions 1 to 4 with µ = 0 (convex case), for learning rates αdwn ≤ 1

8ωdwn
and αup(1 + ωup) ≤ 1,

for any sequence (γk)k∈N ≤ γHeterog
max , for any k in N, defining:

Vk := E
[
‖wk − w∗‖2

]
+ γ2

kC1E [Ξk] + γkLC2E [Υk] ,

with C1 = 2ωup(1 + 8γLωdwn/αdwn)/αup, C2 = 4γLωdwn/αdwn, we have:

Vk ≤ (1− γkµ)Vk−1 − γE [F (ŵk−1)− F (w∗)] +
γ2σ2ΦHeterog(γ)

Nb
.

Proof. Let k in N∗, the proof starts like the one for MCM in the convex case with heterogeneous
worker, and we start from eq. (S26) but we consider a variable step size γk = 2/(µ(k + 1) + L̃) that
depends of the iteration k in N.

We consider this following Lyapunov function:

Vk = E
[
‖wk − w∗‖2

]
+ γ2

kC1E [Ξk] + γkLC2E [Υk] ,

with C1 = 2ωup(1 + 8γkLωdwn/αdwn)/αup and C2 = 4ωdwn/αdwn.

E
[
‖wk − w∗‖2

]
+ γ2

kC1E [Ξk] + γkLC2E [Υk] ≤ ‖wk−1 − w∗‖2

− γk
(

1− γkL
((

1

αdwn
+

4ωup

N

)
γkLC2 +

αupC1

N

))
E [〈 ∇F (ŵk−1), ŵk−1 − w∗ 〉]

+ (2ωup(1 + 2γkLC2) + (1− αup)C1) γ2
kE [Ξk−1]

+
(

2γkLωdwn +
(

1− αdwn

2

)
γkLC2

)
E [Υk−1]

+
γ2
kσ

2

Nb
((1 + 4ωup)(1 + 2γkLC2) + 2αupC1) ,

To ensure a (1 − γµ)-convergence we first choose
(

1− αdwn
2 + 2ωdwn

C2

)
γkLC2 ≤ (1 −

γkµ)γk−1LC2 i.e 1− αdwn
2 + 2ωdwn

C2
≤ (1− γkµ)γk−1

γk .

We need that for all k ∈ N, 1− γkµ
γk ≤ 1

γk−1
i.e., 1− γkµ ≤ γk

γk−1
, but:

γk
γk−1

=
µk − µ+ L̃

µk + L̃
= 1− µ

µk + L̃
and 1− γkµ = 1− 2µ

µk + L̃
,

and so, the inequality is always true.

Thus we must have 2ωdwn/C2 ≤ αdwn/2 which is true by definition of C2.

Secondly, we need:
(2ωup(1 + 2γkLC2) + (1− αup)C1) γ2

k ≤ (1− γkµ)γ2
k−1C1

⇐⇒ 2ωup(1 + 2γkLC2) + (1− αup)C1 ≤
γk−1

γk
C1 because

1− γkµ
γk

≤ 1

γk−1
,

because γk/γk ≤ γk−1/γk, it is true if we verify the following stronger condition:

2ωup(1 + 2γkLC2) + (1− αup)C1 ≤
γk
γk
C1

C1 ≥
2ωup (1 + 8γkLωdwn)/αdwn)

αup
because C2 = 4ωdwn/αdwn .
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Finally, in order to apply convexity we must verify: 1− γL
((

1
αdwn

+
4ωup

N

)
C2 +

αupC1

N

)
≥ 1

2 .

We take γk such that:
(

1
αdwn

+
4ωup

N

)
γkLC2 ≤ 1/4 =⇒ γk ≤ 1

4L

√
ωdwn

αdwn

(
1

αdwn
+

4ωup

N

)
γLαupC1

N ≤ 1/4⇐⇒ 2γkLωup

N (1 + 8γkLωdwn/αdwn) ≤ 1/4

We rewrite the second condition as following:
16(γkL)2 ωdwn

αdwnN
≤ 1/8⇐⇒ γk ≤ 1

8L

√
2
ωdwn

αdwn
· ωup

N
2γkLωup

N ≤ 1/8⇐⇒ γk ≤ 1

16L
ωup

N

.

Now, we can apply strong-convexity:

Vk ≤ (1− γkµ)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +
γ2
kσ

2ΦHeterog(γk)

Nb
,

with ΦHeterog(γ) = (1 + 8ωup)
(

1 +
8γkLωdwn
αdwn

)
.

Invoking Jensen inequality (S7) leads to E [F (ŵk−1)] ≥ E [F (wk−1)], we finally obtain:

Vk ≤ (1− γkµ)Vk−1 − γkE [F (wk−1)− F (w∗)] +
γ2
kσ

2ΦHeterog(γk)

Nb
.
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