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TimeNeRF: Building Generalizable Neural Radiance Fields across
Time from Few-Shot Input Views

Anonymous Authors

ABSTRACT
We present TimeNeRF, a generalizable neural rendering approach
for rendering novel views at arbitrary viewpoints and at arbitrary
times, even with few input views. For real-world applications, it is
expensive to collect multiple views and inefficient to re-optimize
for unseen scenes. Moreover, as the digital realm, particularly the
metaverse, strives for increasingly immersive experiences, the abil-
ity to model 3D environments that naturally transition between day
and night becomes paramount. While current techniques based on
Neural Radiance Fields (NeRF) have shown remarkable proficiency
in synthesizing novel views, the exploration of NeRF’s potential for
temporal 3D scene modeling remains limited, with no dedicated
datasets available for this purpose. To this end, our approach har-
nesses the strengths of multi-view stereo, neural radiance fields,
and disentanglement strategies across diverse datasets. This equips
our model with the capability for generalizability in a few-shot
setting, allows us to construct an implicit content radiance field
for scene representation, and further enables the building of neural
radiance fields at any arbitrary time. Finally, we synthesize novel
views of that time via volume rendering. Experiments show that
TimeNeRF can render novel views in a few-shot setting without
per-scene optimization. Most notably, it excels in creating realistic
novel views that transition smoothly across different times, adeptly
capturing intricate natural scene changes from dawn to dusk.

CCS CONCEPTS
• Computing methodologies→ 3D imaging; Reconstruction.

KEYWORDS
Neural Radiance Field from Sparse Inputs; Volume Rendering; Time
Translation

1 INTRODUCTION
Novel view synthesis (NVS), an essential challenge in computer
vision, aims to synthesize unseen viewpoints from posed images. Its
applications range from virtual reality (VR) and augmented reality
(AR) to 3D scene reconstruction. Also, it’s a crucial technique to
achieve the metaverse. The rise of neural rendering techniques,
especially Neural Radiance Fields (NeRF) [35] and its successors
[29, 36, 50, 64], has ushered in impressive progress in novel view
synthesis. However, a notable drawback of these prior works is
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their reliance on per-scene optimization and the need for hundreds
of different viewpoint images. In practical scenarios, input views
are often limited, and re-optimizing the model for new scenes is
inefficient. Moreover, to achieve complete immersion in virtual
reality or the metaverse, creating environments that can transition
seamlessly from day to night is essential. Nevertheless, the explo-
ration of NeRF’s potential for temporal 3D scene modeling remains
limited, with few dedicated datasets available for this purpose.

In this paper, we present TimeNeRF, a framework designed to
achieve novel view synthesis in three aspects: 1) a few-shot set-
ting, 2) generalizing to new scenes captured under varying condi-
tions, and 3) handling temporal transitions in 3D scenes. Several
studies are devoted to realizing novel view synthesis from sparse
viewpoints [20, 40, 49, 58] and also ensuring generalizability to
previously unseen scenes [2, 19, 27, 30, 54, 63]. However, when it
comes to rendering novel views at different times, the viable option
for these methods is capturing an additional set of views at the
desired time. On the other hand, NeRF-W [33] and Ha-NeRF [3]
explore constructing neural radiance fields from images taken at
various times and under different illuminations. Though capable of
generating novel views at different times, they still depend on ap-
pearance codes from reference images and require many viewpoints
and per-scene optimization. Recently, CoMoGAN [43] introduces a
continuous image translation model capable of altering an image’s
appearance to correspond to a different time. Yet, when integrated
directly with a novel view synthesis model, it succumbs to the view
inconsistency problem, a limitation highlighted in earlier works
[6, 15, 16].

Consequently, a unified 3D representation model that general-
izes across different 3D scenes over time, especially in a few-shot
setting, remains a challenging open question. To address this issue,
we introduce TimeNeRF. Distinct from prior approaches, TimeNeRF
synthesizes novel views from limited viewpoints without necessi-
tating model retraining for previously unseen scenes. Moreover,
by constructing novel time-dependent neural radiance fields, our
method can render novel views at specific times without relying
on reference images.

The key idea of TimeNeRF, as shown in Fig. 1, is to first construct
a content radiance field, then transform it into the neural radiance
field of a specific moment by infusing the environmental change in-
formation relevant to the desired time into the content radiance field.
Specifically, our approach involves a two-stage training process.
The first stage focuses on disentangling content and environmen-
tal change factors, achieved through an image translation model.
The second stage begins by extracting geometry information from
a few input views via the appearance-agnostic geometry extrac-
tor. We build our model upon previous generalizable NeRF-based
methods but introduce a significant adjustment: the cost volume is
constructed from content features instead of being extracted from
standard convolutional network features, allowing our model to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) Few input views at time 𝑡0 (b) Content radiance field
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𝒕 = 𝒕1

target 
cam

𝒕 = 𝒕3
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(d) Novel view at time 𝑡𝑖
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Figure 1: Overview of TimeNeRF. By inputting few input views (a), our method first constructs a content radiance field that
filters out environmental changing factors (b), enabling us to obtain neural radiance fields at arbitrary times (c). Finally, our
model seamlessly renders novel views with a smooth transition of time (d), providing an immersive and realistic experience.

handle various capture conditions. Next, the implicit scene network
constructs a content radiance field based on the extracted geometry
and features. We then predict the time and extract time-irrelevant
features from the style feature obtained from a pre-trained style
extractor. Finally, we create time-dependent radiance fields by in-
corporating the time and the extracted features into the content
radiance field for novel view synthesis over time.

To train the model, it is ideal to have a dataset with various
capture views and different capture times. However, collecting
dense inputs of a scene is expensive, especially considering our
specific problem setup, which requires generating novel views at
particular times. This means that, in addition to the substantial
effort required to gather multiple views of the scene, we also need
to collect data at different times throughout the day, which in
practice becomes very costly. To overcome this, we train our model
on both the Ithaca365 dataset [9], which offers few different capture
views but has limited time information, and theWaymo dataset [51],
covering a range of capturing times (i.e., day, dusk, dawn, night).
Since these datasets do not contain time labels, we train the model
without relying on exact time data. Specifically, we leverage our
two-stage training approach with the design of our network to map
reference images into the time domain. The design also benefits
the testing phase, allowing us to render novel views at any time by
specifying the time code directly. Additionally, we introduce several
loss functions to ensure that our model exhibits cyclic changes and
that the transition results are adapted based on the inputs. We will
explain the details in the “Proposed Method” section. In general,
our main contributions are:

• An extended novel setting for view synthesis over time, which is
more practical for real-world applications.

• A novel time-dependent and NeRF-based approach that renders
novel views at arbitrary times from few inputs and achieves
generalizability to new scenes captured under any conditions.

• Extensive experiments showing TimeNeRF’s capability to transi-
tion smoothly across different times of the day.

2 RELATEDWORKS
2.1 Neural Radiance Field
Neural Radiance Field (NeRF) [35] revolutionized novel view syn-
thesis by modeling 3D scenes as an implicit neural representation.
It employs a multi-layer perceptron (MLP) to map 3D positions
and camera directions to colors and densities. Subsequent works
improve NeRF by combining implicit scene representation with
traditional grid representation [7, 14, 29, 36, 50, 56] or reducing
samples taken along each ray [24, 28, 38, 42]. Nevertheless, these
techniques are limited in generating views for different time points
and face challenges with varied illumination.

NeRF-W [33] extends the NeRF model by introducing a learned
appearance code for each image, allowing it to synthesize novel
views at different times by inputting different appearance codes.
The subsequent works [3, 23, 48, 52] adopt a similar idea. However,
these methods require per-scene optimization and a large number
of training views. Moreover, they lack the ability to query the view
at a specific time.

On the other hand, NeRF to dynamic scene [13, 31, 41, 44, 48]
aims to model a dynamic scene by learning a 4D implicit scene
representation. The inputs of the MLP include not only 3D coordi-
nates and direction but also time. While these approaches target
short-range temporal changes, like moving people or objects, we
emphasize modeling long-range time shifts, enabling realistic view
rendering from day to night. Furthermore, these methods also re-
quire many image views and re-optimizing the model for each new
scene.

2.2 Few-Shot NeRF
Recently, three major approaches have been proposed to enable the
synthesis of novel views from limited inputs. First, some methods
[17, 20, 40, 49, 58, 61] incorporate semantic and geometry regulariza-
tions to constrain the output color and density. Second, another line
of works attempts to leverage additional depth information such
as sparse 3D points [8, 46] or depth prediction from a pre-trained
model [12]. Third, some other approaches [2, 19, 27, 30, 39, 54, 57,
60, 63] attempt to condition the model with features extracted from
inputs, allowing it to be generalizable to new scenes. For example,
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MVSNeRF [2] proposes incorporating a 3D cost volume constructed
from the extracted feature of input views [11, 62] with the NeRF
model for assistance. This allows the model to develop geometry
awareness of scenes and increases model generalization ability.
Later works [19, 30, 39, 60] also adopt this idea. GeoNeRF [19] and
NeuRay [30] further take the occlusion problem into account by
predicting the visibility of each source view. ContraNeRF [60] intro-
duces a geometry-aware contrastive loss to improve generalization
in the synthetic-to-real setting. However, the methods above do
not support rendering a novel view at arbitrary times.

2.3 Natural Image Synthesis with Time
Translation

Transferring an image to another time zone, for example, from
day to night or summer to winter, usually involves style transfer
methods. The typical approach is to disentangle content and style
information, where style corresponds to the time-specific character-
istics. Subsequently, an image is transferred by replacing its original
style with the desired time-related style, which is extracted from
a reference image [18, 25, 26, 45]. However, this kind of method is
limited to domain transfer, lacks the ability to query a specific time,
and cannot achieve continuous translation across different time pe-
riods. Earlier works [10, 47, 55] on the continuous image translation
task assume linear domain manifolds, which may not be suitable
for daytime translation. Daytime translation should be cyclic, allow-
ing for translation from day to dusk, dusk to night, night to dawn,
and so forth. CoMoGAN [43] proposes the first continuous image
translation framework, which enables cyclic or non-linear trans-
lation through the design of the functional instance layer and the
guidance of a non-neural physical model. Besides, some research
efforts are focusing on timelapse generation [1, 4, 5, 37, 59], aiming
to generate a timelapse video based on a single source image. How-
ever, none of these works are equipped for time transitions in a 3D
space, which enhances the overall immersive experience in digital
realms, especially in the realm of the metaverse.

3 PROPOSED METHOD
Our goal is to synthesize novel views at any given time by learn-
ing implicit scene representations across time from sparse input
views that are not captured at the desired moment. We begin by
reviewing NeRF and highlighting the distinctions in our approach
(section 3.1). After detailing our training process (section 3.2), we
introduce our proposed framework. As depicted in Fig. 2, our frame-
work comprises five main components: 1) extracting geometry fea-
tures for each source view (section 3.3), 2) constructing a content
radiance field (section 3.4) which stores densities and content fea-
tures, whose environmental change factors have been excluded, 3)
estimating time and extracting time-irrelevant factors (section 3.5),
4) transferring content features at 3D locations to RGB colors of
the specific time point and complete a time-dependent radiance
field (section 3.6), and 5) rendering a novel view at the desired time
through volume rendering (section 3.1). Finally, the proposed loss
functions are designed to further improve cyclic changes and en-
hance the content adaptation based on the input data (section 3.7).
Due to space constraints, an in-depth description of the network ar-
chitecture and extra discussion are relegated to the supplementary

material. The codebase is ready to open and will be made publicly
available in due course.

3.1 Preliminaries
First of all, we briefly review the idea of NeRF [35]. NeRF optimizes
an MLP, whose input consists of 3D spatial location x and viewing
direction d, and whose output corresponds to colors c and densi-
ties 𝜎 , to represent a scene implicitly. In other words, it aims to
learn a continuous function: (c, 𝜎) = 𝐹𝜃 (x, d). To render a pixel in
an image, NeRF first samples 𝑀 points on the corresponding 3D
ray r and obtains the colors and densities of these sample points.
Then, NeRF renders the 2D-pixel color using the volume rendering
technique; the formula is described as follows.

𝐶 (r) =
𝑀∑︁
𝑖=1

𝑇𝑖 (1 − exp (−𝜎𝑖𝛿𝑖 )) c𝑖 . (1)

𝑇𝑖 = exp ©­«−
𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗
ª®¬ , (2)

where𝑀 is the number of sample points along a ray r and (c𝑖 , 𝜎𝑖 )
represent the color and density of point x𝑖 , respectively. 𝛿𝑖 denotes
the distance of the adjacent sample points.

In our method, we introduce novel modifications to the original
NeRF. First, following IBRNet [54], 𝛿𝑖 in eq. (2) is removed for
better generalizability. Second, to enable generalizability, we replace
the position x in the model’s input with the feature fx, which is
derived from the interpolation of features extracted from input
views at the projection pixels corresponding to the 3D position
x. Third, we aim to render a novel view at the arbitrary time 𝑡 .
Therefore, our TimeNeRF is designed to learn a continuous function:
(c𝑡 , 𝜎) = 𝐹𝜙 (fx, d, 𝑡), where c𝑡 is the color in direction d at position
x and time 𝑡 within a scene.

3.2 Training Process
We employ a two-stage training process to effectively disentan-
gle content and environmental change factors and subsequently
construct implicit scene representations. In Stage 1, we achieve
feature disentanglement by leveraging existing style translation
models comprising three modules: content extractor, style extractor,
and generator. Specifically, we train DRIT++ [26] on the Ithaca365
dataset [9], which contains images across varied weather and night-
time conditions. To enhance the content extractor in DRIT++, in-
stead of only using the content extractor’s output, we extract/select
content features from 3 different convolutional layers correspond-
ing to different semantic levels for styled image generation. This
strategy refines early-layer content extraction, as these features are
utilized to generate images, thereby boosting the model’s overall
content extraction ability.

After Stage 1 training, DRIT++ offers disentangled content fea-
tures and enables the creation of stylized images as pseudo ground
truth for Stage 2 training. In Stage 2, we train our TimeNeRF (de-
tailed in section 3.3 to section 3.6) using input (source) views from
the Ithaca365 dataset and using reference images from the Waymo
dataset [51]. By merging source images’ content features with ref-
erence images’ style features for training guidance, we can learn
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Figure 2: Architecture Overview. The proposed framework comprises five main parts: (a) The appearance-agnostic geometry
extractor is designed to extract geometry features for each input view. The design of this module allows the model to operate
in a few-shot setting without the need for per-scene optimization. It constructs cost volumes and works under various capture
conditions by utilizing the content features (section 3.3). (b) For each sample point x, the implicit scene network predicts
its corresponding content feature and density by aggregating geometry features, content features, and viewing directions,
thus constructing a content radiance field (section 3.4). (c) The factor extraction module predicts both the time and time-
irrelevant features. Note that time prediction is only required during training (section 3.5). (d) The time-dependent radiance
field constructor transforms the content radiance field into the time-dependent radiance field based on the information from
the factor extraction module (section 3.6). (e) Finally, a novel view at time 𝑡 is rendered via standard volume rendering.

the implicit 3D scene representations across time 𝐹𝜙 (·). The reason
behind using the two datasets is elaborated in section 4.1.

3.3 Appearance-Agnostic Geometry Extractor
Given input views {𝐼𝑖 }𝑁𝑖=1 and their corresponding camera pa-
rameters {𝐸𝑖 , 𝐾𝑖 }𝑁𝑖=1, we extract content features at three levels
{𝑐 𝑓 (𝑙 )

𝑖
}𝑁
𝑖=1 (i.e., 𝑙 = 0, 1, 2 and 𝑙 = 0 is the lowest level feature) for

the 𝑁 input views using the pre-trained content extractor. The
content features exclude environmental change factors, such as
temporal and weather factors, because the image style has been re-
moved using the pre-trained model. This allows us to handle input
views under varying capture conditions. Next, for each input view 𝑣 ,
we select 𝑆 nearby views and construct cost volumes [11, 19, 30, 62]
at three levels {𝐶 (𝑙 )

𝑣 }2
𝑙=0 by warping the content features of the 𝑆

nearby views to align with view 𝑣 using the corresponding camera
parameters. Finally, the cost volumes {𝐶 (𝑙 )

𝑣 }2
𝑙=0 are put into a 3D-

Unet to obtain geometry features {𝑔 (𝑙 )𝑣 }2
𝑙=0 for the input view 𝑣 . In

the following, we denote {𝑐 𝑓 (𝑙 )
𝑖

}2
𝑙=0 as 𝑐 𝑓𝑖 and {𝑔 (𝑙 )

𝑖
}2
𝑙=0 as 𝑔𝑖 .

3.4 Implicit Scene Network
After obtaining geometry features, we may use them to predict
colors and densities (section 3.1). However, this would lose the

ability of modeling style change over time. Instead, we propose con-
structing a content radiance field, an implicit scene representation
without environmental change factors. To achieve this, inspired
by GeoNeRF [19], we aggregate the extracted geometry features
to predict each sample point’s density and content features. For a
sample point x ∈ R3 along a ray r, we interpolate geometry fea-
tures {𝑔𝑖 }𝑁𝑖=1 and 2D content features {𝑐 𝑓𝑖 }𝑁𝑖=1, as opposed to the 2D
features used in GeoNeRF, to get its corresponding features {𝑔x

𝑖
}𝑁
𝑖=1

and {𝑐 𝑓 x
𝑖
}𝑁
𝑖=1 at point x. These are then aggregated to estimate the

density and content feature for x. The procedure is described below.
First, we aggregate features via fully-connected layers and multi-

head attention layers [53], which facilitate the exchange of infor-
mation between different views.

𝜎x, {�̃�x
𝑖 }

𝑁
𝑖=1 = 𝐻 ({𝑐 𝑓 x𝑖 }𝑁𝑖=1, {𝑔

x
𝑖 }

𝑁
𝑖=1), (3)

where𝐻 consists of fully-connected layers andmulti-head attention
layers. 𝜎x is the density of x and {�̃�x

𝑖
}𝑁
𝑖=1 denotes the enhanced

features of x for each input view. To obtain the 3D content feature 𝜉x
for a point x ∈ R3, we predict the weights of input views {𝑤x,𝑣

𝑖
}𝑁
𝑖=1

and use them to calculate the weighted sum of 2D content features
{𝑐 𝑓 x

𝑖
}𝑁
𝑖=1. That is

{𝑤x,𝑣
𝑖

}𝑁𝑖=1 = softmax
(
MLP𝑤

(
{�̃�x

𝑖 | | Δ𝑑x𝑖 }
𝑁
𝑖=1

))
, (4)
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𝜉x =

𝑁∑︁
𝑖=1

𝑤
x,𝑣
𝑖

· 𝑐 𝑓 x𝑖 , (5)

where Δ𝑑x𝑖 represents the direction difference between the query
view 𝑣 and input view 𝑖 by computing the cosine similarity, and
the concatenation is denoted by | |. We predict the weights via an
MLP that considers both the direction difference Δ𝑑x𝑖 and �̃�x

𝑖
in

eq. (4). 𝜉 stands for {𝜉 (𝑙 ) }2
𝑙=0. Each individual 3D content feature

𝜉 (𝑙 ) is computed from the 2D content features {𝑐 𝑓 (𝑙 )
𝑖

}𝑁
𝑖=1 at level 𝑙

by eq. (5).

3.5 Factors Extraction Module
To infuse environmental change information into the content radi-
ance field, one intuitive approach is to use the style feature extracted
from the pre-trained style extractor. The style feature inherently
contains both time-relevant and time-irrelevant environmental fac-
tors since the translation model is trained to transfer images to
diverse weather conditions and varying times. However, to purely
manipulate the timing of radiance fields, it’s imperative to separate
time-related and time-irrelevant information further from the style
feature. To this end, we employ two MLPs: 𝑔𝑡 (·) predict time in-
formation 𝑡 and 𝑔𝑎 (·) extracts time-irrelevant features 𝑎 from an
image. During training, we extract 𝑡 from a reference image and 𝑎
from input images.

To encapsulate the cyclical progression of a day, we design
𝑔𝑡 (·) to map the style feature of a reference image onto the in-
terval [0, 2𝜋), symbolizing the entire 24-hour cycle. The mapping
is trained in an unsupervised manner, utilizing our pseudo styl-
ized image loss 𝐿𝑠𝑡𝑦𝑙𝑒𝑚𝑠𝑒 (eq. (8)) to guide the model in extracting
time-related information from reference images and mapping it
to the time range [0, 2𝜋). By this design, without time labels for
training, we can still simulate the variations occurring at different
times within a day. After training, the transition of a day is encoded
within [0, 2𝜋), enabling us to recreate scenes at a desired time 𝑡 by
tuning 𝑡 during testing.

3.6 Time-Dependent Radiance Field
Constructor

The objective of time-dependent radiance field constructor “𝑇 ” is to
transform the 3D content feature 𝜉x into a time-variant color cx𝑡 for a
point x. This involves fusing 𝜉x with time-irrelevant environmental
features 𝑎 of input views and time 𝑡 . Essentially, we learn a mapping:
cx𝑡 = 𝑇 (𝜉x, 𝑎, 𝑡).

The design of 𝑇 is based on two main ideas: Firstly, we embed 𝑡
into (𝑐𝑜𝑠 (𝑡), 𝑠𝑖𝑛(𝑡)), ensuring uniqueness for each value in [0, 2𝜋).
This, in conjunction with 𝐿Δ𝑡 (eq. (10)), facilitates cyclic changes.
Secondly, to ensure the model focuses on learning variations based
on time, we introduce a two-branch network. The first branch,
fusing 𝜉 with 𝑡 , acts as the template for the change over time. The
second branch, merging 𝜉 with both 𝑡 and 𝑎, is to further tune the
color according to time-irrelevant features 𝑎.

The network (detailed in Supplementary) is designed in a coarse-
to-fine manner. We exploit content features at three different levels
{𝜉 (𝑙 ) }2

𝑙=0. The predicted color c𝑡 is refined progressively by integrat-
ing high-level features down to low-level information. Specifically,
we obtain the feature of branch 1, 𝑓1, by combining content features

𝑡 = 𝜋

𝑡 = 0

input views

𝑡 = 𝑡0

Figure 3: Novel view synthesis across times. The images in the
yellow box represent the two input views of a test scene. The
images around the circle are novel views at different times.
The image in the orange box is synthesized for the time of
input views 𝑡0 (eq. (11)), whose image style is consistent with
input views.

from three levels with time 𝑡 . Meanwhile, we derive the feature of
branch 2, 𝑓2, by integrating content features from three levels with
both time 𝑡 and time-irrelevant features 𝑎. Finally, we combine 𝑓1
and 𝑓2 to produce the color c𝑡 .

3.7 Loss Functions
MSE loss. The mean square error loss L𝑚𝑠𝑒 in eq. (7) ensures
accurate 3D scene construction in our model. Different from the
colors c𝑡 described in section 3.6, the predicted colors c in eq. (6)
for calculating 𝐶 (r) in this loss are derived from the weighted sum
of the original input image colors {𝐼𝑖 }𝑁𝑖=1, aiding in the learning of
densities 𝜎 (eq. (3)) and weights {𝑤𝑖 }𝑁𝑖=1 (eq. (4)).

cx =

𝑁∑︁
𝑖=1

𝑤
x,𝑣
𝑖

· 𝐼x𝑖 . (6)

L𝑚𝑠𝑒 =
1
|𝑅 |

∑︁
r∈𝑅

∥𝐶 (r) −𝐶 (r)∥22, (7)

where 𝑅 is the set of rays in each training batch. 𝐼x
𝑖
is the projection

color of point x to image 𝐼𝑖 . 𝐶 (r) is the predicted color computed
by eq. (1) using color c in eq. (6); 𝐶 (r) is the ground truth color of
the target view.
Pseudo stylized loss. The pseudo stylized loss L𝑠𝑡𝑦𝑙𝑒𝑚𝑠𝑒 aims to
guide the model to learn temporal transition by minimizing the
difference between our predicted time-dependent pixel color and
the pseudo ground truth colors.

L𝑠𝑡𝑦𝑙𝑒𝑚𝑠𝑒 =
1
|𝑅 |

∑︁
r∈𝑅

∥𝐶𝑡 (r) −𝐶𝑝𝑠𝑒𝑢𝑑𝑜 (r)∥22, (8)

where 𝐶𝑡 (r) is the predicted color computed by eq. (1) using c𝑡
illustrated in section 3.6, and 𝐶𝑝𝑠𝑒𝑢𝑑𝑜 (r) is the pixel color of the
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pseudo ground truth, which is the style-transferred output via the
pre-trained translation model (DRIT++) given the target view and
reference image.
Loss term of Δ𝑡 . Besides the design where we transform time 𝑡
into (cos(𝑡), sin(𝑡)) to ensure cyclic changes, we introduce the Δ𝑡
loss. This loss function in eq. (10) leverages a small MLP, denoted
as 𝐷 , to estimate the time difference based on color variations.
The predicted time difference is then compared to the pseudo time
difference Δ𝑡 :

Δ𝑡 =

{
|𝑡 − 𝑡 ′ | if |𝑡 − 𝑡 ′ | ≤ 𝜋

2𝜋 − |𝑡 − 𝑡 ′ | if |𝑡 − 𝑡 ′ | > 𝜋.
(9)

LΔ𝑡 = ∥𝐷 (c𝑡 , c𝑡 ′ ) − Δ𝑡 ∥22, (10)
where 𝑡 and 𝑡 ′ are randomly sampled from [0, 2𝜋), and c𝑡 and c𝑡 ′ are
the predicted colors at times 𝑡 and 𝑡 ′, respectively. By minimizing
this loss, our color predictions are guaranteed to align with time-
based changes.
Reconstruction loss. This loss is to ensure that rendered views
match the original appearance when the input time aligns with the
capture time. This further allows the rendered views of different
times to adapt to the inputs. Particularly,

𝑡0 = 𝑔𝑡 (𝑠𝐼 ), 𝑎𝑛𝑑 (11)

L𝑡0𝑟𝑒𝑐 =
1
|𝑅 |

∑︁
r∈𝑅

∥𝐶𝑡0 (r) −𝐶 (r)∥22, (12)

where 𝑡0 is derived from predicting the time of an input view 𝐼

(eq. (11)) and 𝑠𝐼 is the style feature of 𝐼 .
Total loss. The total loss is as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑚𝑠𝑒 + 𝜆1L𝑠𝑡𝑦𝑙𝑒𝑚𝑠𝑒 + 𝜆2LΔ𝑡 + 𝜆3L𝑡0𝑟𝑒𝑐 , (13)

where we set 𝜆1 = 0.5, 𝜆2 = 0.01, and 𝜆3 = 0.5.

4 EXPERIMENTS
4.1 Datasets
Collecting a dataset with different views and diverse capture times
is challenging and unavailable. To address this, we train our model
using both the Ithaca365 dataset [9] and the Waymo dataset [51].
Ithaca365 provides different capture views but limited time varia-
tions, while Waymo offers images from different times (day, dusk,
dawn, and night) on sunny days. From Ithaca365, which includes
conditions like sunny, cloudy, rainy, snowy, and nighttime, we
randomly selected 2180 scenes with 3 distinct views. This allows
TimeNeRF to be versatile for various conditions during testing. On
the other hand, reference images for learning time information are
taken from Waymo. In all experiments, TimeNeRF is trained with
the aforementioned dataset configurations. For testing, we evaluate
the model’s generalizability using scenes outside the training set,
as well as the T&T dataset [22] and the LLFF dataset [34].

4.2 Implementation Details
During training, we use 𝑁 = 2 input views due to the Ithaca365
dataset’s limitations of having only 4 distinct viewpoints per scene,
yet 2 of them are nearly overlapping. However, our model is flexible
enough to handle more views during testing. We train TimeNeRF

over 15 epochs, sampling 1024 rays as the training batch. The num-
ber of sample points 𝑀 is set to 128. The Adam optimizer [21] is
applied with a 5 × 10−4 learning rate and a cosine scheduler with-
out restarting the optimizer [32]. In the testing phase, we neither
re-train nor fine-tune our model for new scenes.

4.3 Novel View Synthesis Across Time
To show TimeNeRF’s capability of rendering novel views over
varying times, we use the same input views to render 16 novel
views, querying the same target viewpoint but specifying times as
𝑡 =

{
𝑖
16 · 2𝜋

}15
𝑖=0. As shown in Fig. 3, TimeNeRF correctly produces

distinct appearances for each specific time, capturing transitions
that resemble the natural shifts seen throughout the day.
Comparison. To the best of our knowledge, no existing method is
designed for rendering novel views across time. For comparison, we
combine view synthesis algorithms with image translation models,
which transform images to reflect different times of the day. We
utilize our model to produce novel views. Next, DRIT++ [26], HiDT
[1], and CoMoGAN [43] are used to transfer images across times.
Note that DRIT++ and HiDT require extra reference images
for the desired time-relevance features. Thus, we use frames
from 24-hour time-lapse videos as reference images to generate
images spanning an entire day. Conversely, CoMoGAN, similar
to our approach, can directly specify times. The results in Fig. 4
synthesize the 𝑝𝑙𝑎𝑦𝑔𝑟𝑜𝑢𝑛𝑑 scene in the T&T dataset using 3 input
views. While these methods can generate variations based on time,
they sometimes yield undesirable effects, such as incorrect black
patches during nighttime and color bias on the ground. Furthermore,
all of these methods have the cross-view appearance inconsistency
issue (geometric inconsistency), detailed in section 4.4.

In comparison to previously discussed methods, our approach
achieves more accurate cyclic appearance changes through consis-
tent time translation. To validate this, we conducted a comprehen-
sive user study. In this study, we presented participants with trans-
formation results at eight distinct times of day: pre-dawn, dawn,
mid-morning, afternoon, dusk, evening, and late night. These re-
sults, generated by our method and other referenced methods, were
shown alongside a reference image corresponding to each specific
time. Participants were tasked with identifying the method that
ensured consistent translation between frames and most accurately
matched the time depicted in each reference image. The findings of
this study, depicted in Fig. 7, demonstrate that our method facili-
tates smoother transitions across different times of the day. Please
refer to the supplementary materials for more analysis.
Generalizability. Additionally, we evaluate our model on the T&T
dataset [22] in Fig. 4, demonstrating its adaptability to different
datasets. More results under varying conditions are shown in the
supplementary material.

4.4 View Consistency
Following [6, 15, 16], we employ the warped LPIPS metrics [65] and
RMSE to measure consistency across different views. The score is
computed by 𝐸 (𝑂𝑣,𝑂𝑣′ ) = 𝑓 (𝑂𝑣,𝑊 (𝑂𝑣′ ), 𝑀𝑣,𝑣′ ), where𝑂𝑣 and𝑂𝑣′

represents the generated image 𝐼𝑣, 𝐼𝑣′ , and their camera parameters.
Wewarp the result from view 𝑣 ′ to view 𝑣 using the depth estimation
in our model, which is estimated by replacing c𝑖 in eq. (1) to the
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Figure 4: Comparison of view synthesis across time. We generate novel views at 7 different times to show the cyclic changes of
a day from 3 input views. Unlike our approach, other methods first need to utilize the view synthesis model to render the novel
view before executing time transitions, denoted by *. Besides, these methods may produce color bias and incorrect dark areas
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Ground truth (a) w/o 𝐿𝑡0𝑟𝑒𝑐 (b) w/o 𝐿Δ𝑡 (c) One-branch (d) Ours
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Figure 5: Ablation study. (a) shows the result when 𝐿𝑡0𝑟𝑒𝑐 is omitted (eq. (12)) (b) illustrates the outcome without 𝐿Δ𝑡 (eq. (10)).
(c) depicts the result when the two-branch network is not utilized (section 3.6). Finally, (d) is the result from our complete
framework.

Method
Ithaca365 [9] T&T [22]

Average Family Horse Playground Train Average
LPIPS↓ RMSE↓ LPIPS↓ RMSE↓ LPIPS↓ RMSE↓ LPIPS↓ RMSE↓ LPIPS↓ RMSE↓ LPIPS↓ RMSE↓

DRIT++*[26] 0.098 0.061 0.094 0.076 0.056 0.110 0.084 0.064 0.052 0.096 0.072 0.086
HiDT*[1] 0.082 0.065 0.102 0.090 0.069 0.126 0.076 0.070 0.057 0.115 0.076 0.100
CoMoGAN*[43] 0.164 0.070 0.138 0.086 0.088 0.125 0.144 0.074 0.087 0.088 0.114 0.093
Ours 0.058 0.038 0.066 0.045 0.034 0.064 0.053 0.040 0.036 0.058 0.047 0.052

Table 1: Comparison of view consistency. We evaluate the consistency scores (LPIPS and RMSE) using 15 scenes from the
Ithaca365 dataset, each with 2 target views; 4 scenes from the T&T dataset, each with 15 pairs of target views. For each target
view, we generate results at 16 different time points. Our method achieves better cross-view consistency in different datasets.

depths of sample points. This process is denoted by𝑊 (𝑂𝑣′ ).𝑀𝑣,𝑣′

is a mask of valid pixels and 𝑓 is the measurement metric, such as
LPIPS or RMSE. Both quantitative and qualitative analyses (table 1
and Fig. 6) demonstrate that our method achieves better cross-view
consistency. This improvement stems from our innovative approach
of directly modeling time-relevant appearance changes within a 3D
space, in contrast to the image translation approaches that operate
in 2D space.

4.5 Few-Shot View Synthesis
To demonstrate TimeNeRF’s capability in the traditional novel view
synthesis task, we evaluate it on the Ithaca365 and LLFF datasets
[34], comparing its performance with other few-shot generaliz-
able 3D modeling approaches. For a fair comparison, we train all
the models on the Ithaca365 dataset. The quantitative compari-
son for the Ithaca365 and LLFF datasets is presented in table 2.
While TimeNeRF’s primary innovation lies in modeling the tempo-
ral dynamics of 3D scenes, this experiment reveal that our model
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Figure 6: View inconsistency issue. We render 2 target views
corresponding to the same time using the same set of 3 in-
put views. The red boxes highlight the inconsistent regions
between views. Among these results, our method produces
more consistent views.

Figure 7: Novel view synthesis across times.We conduct a user
study to ask subjects to select results that aremore consistent
translation between frames and accurately corresponds to
the time depicted in the reference image on T&T dataset. The
number represents the percentage of preference based on 25
trial participants.

outperform MVSNeRF and matches the capabilities of GeoNeRF in
in view synthesis.

Method Ithaca365 [9] LLFF [34]
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MVSNeRF[2] 25.90 0.703 0.485 16.58 0.513 0.503
GeoNeRF[19] 27.46 0.768 0.364 19.62 0.597 0.415
Ours 27.67 0.773 0.367 19.71 0.593 0.418

Table 2: Novel view synthesis. The best and the second best
result are highlighted in bold and underline, respectively.

4.6 Ablation Study
The designed loss functions.We study the effectiveness of our
designed loss functions. The reconstruction loss is designed to en-
sure that the model renders views with accurate appearances when
the input time coincides with the input views’ capture time. More-
over, it allows the rendered views to adapt based on these inputs for
different times. In Fig. 5(a), the model without 𝐿𝑡0 generates a road
that appears blue at 𝑡 = 𝑡0, although it should be gray. The delta
t loss aims to ensure that the model produces unique outputs for
each 𝑡 ∈ [0, 2𝜋). Fig. 5(b) shows the results obtained when training
the model without 𝐿Δ𝑡 . We observe that the model renders similar
outputs at 𝑡 = 𝜋

2 and 𝑡 = 3𝜋
2 .

Two-branch network. In Fig. 5(c), we note that omitting the
two-branch network from our time-dependent radiance field con-
structor (section 3.6) leads to mapping failures within [0, 2𝜋). The
model generates nearly black-and-white scenes at 𝑡 = 0 and 𝑡 = 𝜋

2 .
This limitation is due to the lack of the first branch, which serves as
a template to constrain the output. By incorporating our proposed
two-branch network and the designed loss functions (Fig. 5(d)), we
achieve consistent and accurate results across all time points.

5 CONCLUSION AND DISCUSSION
We propose TimeNeRF, a novel framework for view synthesis that
renders views at any time from limited input views without per-
scene optimization. We have effectively leveraged existing datasets
to address the lack of data availability for the aforementioned task.
Our model transitions smoothly across time by creating a content
radiance field and transforming it into a time-dependent radiance
field. In addition, our designed loss functions ensure cyclic changes
and adaptive results based on inputs. Evaluations show TimeNeRF’s
capability to produce photorealistic views across time.

As the initial solution in few-shot, generalizable novel view syn-
thesis across arbitrary viewpoints and times, TimeNeRF has show-
cased its efficacy on various datasets. Nevertheless, significant op-
portunities for advancement remain. For a comprehensive 3D scene
model, the dynamics of lighting angles from diverse sources—such
as the sun and streetlights—and the associated constraints of object
shadows relative to these light sources need to be accounted for.
Additionally, achieving appearance and view consistency in both
static and dynamic objects throughout varying times of the day
poses a substantial challenge that could dramatically enhance user
experience. Moreover, incorporating diffusion models as a tool for
data augmentation presents a promising direction to address the
scarcity of available data, which could catalyze further enhance-
ments in model performance. These considerations may underline
future research on 3D modeling technologies.
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