
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TimeNeRF: Building Generalizable Neural Radiance Fields across
Time from Few-Shot Input Views

Anonymous Authors

1 Additional Implementation Details
1.1 Architecture
1.1.1 The modifications of DRIT++
In Stage 1, we utilize DRIT++ [6] for feature disentanglement. As
described in the main paper, we extract content features at three
different levels from different convolutional layers of the content ex-
tractor, in contrast to the original DRIT++, which relies only on the
final layer output of the content extractor. These multi-level content
features capture different semantic information. We then merge
each level of content features with the style feature to generate styl-
ized images, as illustrated in Fig. 1. Utilizing features from multiple
layers in the generation process encourages the model to leverage
more content features and enhances the model’s capabilities for
stylized image generation.

1.1.2 Details of the implicit scene network
The specific implementation details of 𝐻 (·), mentioned in Sec.
3.4 of the main paper, are adapted from GeoNeRF [4]. Following
GeoNeRF, we employ Multi-Head Self-Attention (MHSA) [9] and
full-connected layers to aggregate information of different input
views. Below, we explain the procedure:

First, to facilitate the exchange of information between different
views, features are aggregated via MHSA layers [9] by the following
equations.

𝜎̃x, {𝑤̃x
𝑖 }

𝑁
𝑖=1 = MHSA(ℎ(𝑐 𝑓 x), {𝑔x𝑖 }

𝑁
𝑖=1) . (1)

ℎ(𝑧) = FC(mean(𝑧) | |var(𝑧)) . (2)

Here, 𝑐 𝑓 x represents {𝑐 𝑓 x
𝑖
}𝑁
𝑖=1, the content features of 𝑁 input

views. 𝑔x
𝑖
is the interpolation of the geometry feature at x from

the input view 𝑖 . | | is the concatenation and FC refers to fully-
connected layers. MHSA layers combine features from different
views, producing enhanced features 𝜎̃ and {𝑤̃𝑖 }𝑁𝑖=1.

Then, an auto-encoder (AE) network is applied to the features
{𝜎̃𝑝 }𝑀𝑝=1 of all the sample points {x𝑝 }𝑀𝑝=1 along the ray r for facili-
tating information exchange along the ray and achieve the updated
density features {𝜎′𝑝 }𝑀𝑝=1 of the𝑀 points by

{𝜎′𝑝 }𝑀𝑝=1 = AE
(
{𝜎̃𝑝 }𝑀𝑝=1

)
, (3)

where 𝜎̃𝑝 is obtained from eq. (1) for the sample point x𝑝 in the ray
r. After enhancing the geometry information, an MLP is used to
predict the final density of each 3D sample point by

𝜎 = MLP𝜎 (𝜎′) . (4)

1.1.3 Details of the time-dependent radiance field constructor
As discussed in Sec. 3.5 of the main paper, our time-dependent
radiance field constructor,𝑇 , uses a two-branch network to convert
the content radiance field into the time-dependent radiance field.
The architecture design, as shown in Fig. 2 including branches 𝑇1
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Figure 1: DRIT++ modification. To improve the content ex-
tractor in DRIT++, we extract content features at three levels
from the convolutional layers and merge each of them with
the style feature in the generator.

f1

MLPRGBt+

T1

T2 f2

3D content feature 
𝝃𝐱

𝐜𝐭
𝐱

time 𝐭

time-irrelevant 
feature 𝐚

3D content feature 
𝝃𝐱

Figure 2: Time-Dependent Radiance Field Constructor.
We have developed a two-branch network for the Time-
Dependent Radiance Field Constructor to adequately model
the temporal variations.

and𝑇2 along with an MLP for color decoding, ensures our construc-
tor adequately models the temporal variations. Specifically, the first
branch𝑇1 combines 3D content feature 𝜉 with time 𝑡 , to serve as the
template for the change over time. The second branch𝑇2 integrates
3D content feature 𝜉 with both time 𝑡 and time-irrelevant feature
𝑎 to further tune the color according to time-irrelevant features
𝑎. Finally, the output features of 𝑇1 and 𝑇2 are then summed and
passed through an MLP to generate the time-dependent color c𝑡 .

The specifics of 𝑇1 and 𝑇2 are shown in Fig. 3. We use content
features at three levels {𝜉 (𝑙 ) }2

𝑙=0 and integrate them from the high-
level features (i.e, capturing more global information) to the low-
level features (i.e., focusing on local details) along with time-related
style information.

1.2 Training details
1.2.1 Stage 1 training
To manipulate the time, one possible way is to disentangle time-
related information from images in Stage 1. However, doing so
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Figure 3: Details of T1 and T2. The figure illustrates the architecture design of 𝑇1 and 𝑇2 used in the time-dependent radiance
field constructor (Fig. 2).

without supervision across diverse weather conditions is challeng-
ing. Weather factors such as lighting and shadows can interfere
with accurate time information extraction.While training themodel
on images from a single weather condition might simplify the task,
it risks overfitting to that specific weather condition. For example,
CoMoGAN [8], which has the capability of continuous time trans-
lation, is trained on a dataset of images captured at different times
but only on sunny days. As shown in Fig. 4, when an input image
captured on a rainy day is transferred to daytime, it produces a
color-biased sky, which is unreasonable.

To avoid this, we first extract style features from images in Stage
1 that encompass all environmental change factors, including both
time and weather (time-irrelevant) information. In Stage 2, we then
disentangle these factors. By training on a diverse set of weather
conditions, our training approach prevents the model from overfit-
ting to a specific weather condition and makes it easier to separate
time and weather information from the style feature.

1.2.2 The inputs of the factor extraction module
As mentioned in the main paper, we hypothesize that the extracted
style encompasses both time and weather information and pro-
pose to disentangle these two factors utilizing the factor extraction
module. As detailed in Sec. 3.5 of the main paper, we employ two

Input image (a) CoMoGAN (b) TimeNeRF

Figure 4: CoMoGAN and TimeNeRF under a rainy day. (a)
is the stylized result from CoMoGAN, which converts the
rainy scene to the daytime condition. However, it generates
a color-biased scene (i.e., the sky). (b) In contrast, TimeNeRF
is able to translate images according to different weather
conditions without a color bias. More examples can be found
in Fig. 6.

Multi-Layer Perceptrons (MLPs) to predict time 𝑡 and extract time-
irrelevant information (e.g. weather) denoted as 𝑎. In the following,
we explain our reasoning for extracting 𝑡 from a reference image
and 𝑎 from an input image during training.

The objective of our model is to learn the time transitions occur-
ring throughout the day while preserving the weather conditions
present in the input data. To this end, we extract the time-irrelevant
feature 𝑎 from the input view to preserve the weather conditions
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Figure 5: Ablation study on DRIT++ modification. According
to the reference image, we transformed the input image into
a stylized night-time image using (a) the original DRIT++ and
(b) our modified model.

and remove the time-relevant part from the style feature. For learn-
ing time transitions, we utilize reference images captured at various
times to provide the model with additional time information dur-
ing training. Specifically, we extract time-related factors 𝑡 from
these reference images and learn to map the style features of refer-
ence images into [0, 2𝜋). In the testing phase, our model is capable
of simulating time transitions by specifying the time 𝑡 directly
without referring to any image, making our method different from
the reference-based style transfer methods like DRIT++ [6] and
HiDT [1].

2 Additional Experimental Results
2.1 Ablation study
DRIT++ modification. As shown in Fig. 5(a), some residual light
remains in the sky within the style-transferred image generated by
the original DRIT++ [6]. This is likely because the content feature
in DRIT++ still contains some daytime information. In contrast, our
modified DRIT++, considering features in three levels, produces a
more accurate transferred result (Fig. 5(b)).

2.2 Under diverse weather conditions
Besides the results shown in Fig. 3 of the main paper, to evaluate
our model’s performance of novel view synthesis across times un-
der varied conditions, we test TimeNeRF with views captured in
diverse weather scenarios (i.e., rainy, snowy, and cloudy days). The
synthesized results with texture consistency and temporal smooth-
ness shown in Fig. 6 demonstrate the robustness of TimeNeRF to
diverse weather conditions.

2.3 Analysis of Possible Alternative Approaches
and Their Weaknesses

Alternative approaches that aim to achieve a similar system goal as
the proposed TimeNeRF can be considered. However, these alterna-
tives have certain weaknesses that make them unsuitable solutions.
Below, we detail these issues.

Novel view synthesis, then style transfer: Synthesizing novel
views and subsequently transferring styles can lead to view/geometry
inconsistency issues, as discussed in Section 4.4 of the main paper.
This issue arises because the style transfer model lacks awareness
of 3D geometry, which results in the introduction of unrealistic
effects in the scene without considering its underlying 3D structure.
Consequently, these methods may struggle with artifacts due to
their reliance on 2D information.

Style transfer, then novel view synthesis: On the other
hand, applying style transfer to input images before reconstructing
a 3D scene and synthesizing novel views may prove ineffective.
Given that style transfer operates in 2D space, it often merges
inconsistent styles captured from different viewpoints into the
3D scenes. This inconsistency can lead to inaccuracies in NeRF
geometry, resulting in imprecise synthesized novel views. Some
examples of these inaccuracies are illustrated in Fig. 10.

2.4 Additional Qualitative and Quantitative
Studies

2.4.1 Qualitative results.
In Fig. 7, we showcase additional synthesized novel views for the
Family, Horse, Playground, and Train scenes from the TT dataset [5].
These results demonstrate our model’s ability to smoothly generate
novel views over time in diverse scenarios. Additionally, we present
more qualitative results from the LLFF dataset [7] and the Ithaca365
dataset [3] in Fig. 8. This provides a comparative analysis against
state-of-the-art (SOTA) NeRF-based methods focused purely on
novel view synthesis without temporal variations. Compared to
these SOTA methods, TimeNeRF is able to produce clearer details.

2.4.2 Quantitative results.
To further assess the quality of synthesized images across various
times, we conduct two additional analyses and comparisons. First,
we evaluate color consistency across different periods by calculating
the mean histogram correlation for the Y, Cb, and Cr color channels
over time. This analysis helps determine how well color properties
are maintained throughout different phases of the day. Second, we
measure the style consistency between the synthesized images and
reference images to measure the overall style coherence of our
image synthesis. Detailed explanations of both methodologies are
provided below.

Color Consistency Analysis Using YCbCr Color Space. To
demonstrate that our method provides better color consistency
over time and produces fewer color biases, we analyze the mean
histogram correlations in the Y, Cb, and Cr channels over time,
as shown in Fig. 9. Here, we measure the correlation between the
color histogram at a specific time (daytime) and those at other times.
Ideally, the Y channel should show a decrease in correlation as the
time difference increases, reflecting changes in illumination. In
contrast, the correlations in the Cb and Cr channels should remain
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Method Ithaca365 [3] T&T [5]
Cb Cr Cb Cr

DRIT++[6] 0.409 0.436 0.392 0.461
HiDT[1] 0.315 0.304 0.302 0.294
CoMoGAN[8] 0.398 0.544 0.428 0.612
Ours 0.702 0.722 0.614 0.769

Table 1: Analyzing the Mean Histogram Correlation of the
Cb and Cr Color Channels Over Time. This table presents
the calculated mean histogram correlation of the Cb and Cr
channels, which reflects color consistency over different peri-
ods. Color consistency should be maintained across varying
time intervals. Therefore, higher mean correlation values
for the Cb and Cr channels are anticipated

Method Ithaca[3] T&T [5]
CoMoGAN Ours CoMoGAN Ours

Day 9.2933 8.9319 9.0664 8.8019
Dusk/Dawn 9.5158 9.3940 9.1345 8.7307
Night 10.4778 10.3871 10.6849 10.4031

Table 2: Style Consistency Analysis. In this table, we calculate
Fréchet Inception Distance (FID) between the style features
of the synthesized image set and the reference set to evaluate
the level of style consistency across different time periods.
Smaller distance values indicate that the corresponding style
is more similar to the style of the reference image at the time
period. Our TimeNeRF demonstrates better style consistency
compared to CoMoGAN [8].

more consistent. Our results indicate that all methods produce a
“U” shaped curve in the Y channel, which mirrors the real-world
relationship between illumination and time difference. However,
our method demonstrates greater consistency in the Cb and Cr
channels. We quantify this by calculating mean correlations, with
results detailed in table 1. Notably, our method achieves higher
mean correlations in both the Cb and Cr channels compared to
previous methods. This suggests that the lower mean correlations
observed in these state-of-the-art methods may result from artifacts
in the generated images.

Style Consistency Analysis. In this section, we evaluate the
quality of image synthesis by measuring the style consistency be-
tween the synthesized images and the reference images. The style
extractor module from DRIT++ [6] is employed to extract style
features from an image. As outlined in section 4.3 of the main paper,
we synthesize novel views at three different times of the day: day,
dusk/dawn, and night. For each time period, novel images are gen-
erated using TimeNeRF, and their style features are subsequently
extracted. We then measure the Fréchet Inception Distance (FID)
between the style features of the synthesized image set and the ref-
erence set to evaluate the level of style consistency across different
time periods. The results are presented in table 2. We assess our
method using the Itheca365 [3] and TT datasets [5]. Our proposed
TimeNeRF method demonstrates better style consistency compared

to the state-of-the-art CoMoGAN [8], showcasing its efficacy in
synthesizing visually consistent images over time.

3 The implementation code
We are prepared to share the source code for implementation. How-
ever, due to limitations on the submission file size exceeding the
model’s weight, we are unable to provide the pretrained model at
this time. If there are any requests regarding pretrained models for
cross-checking purposes, please feel free to reach out to us
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(b) Snowy day
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(c) Cloudy day
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Figure 6: Synthesis under diverse weathers. We show the synthesis results at 16 different time points. The input images are
captured on a (a) rainy, (b) snowy, and (c) cloudy day. For each scene, two input images are utilized for 3D reconstruction. The
images in the yellow box represent the two input views of a test scene. The images around the circle are novel views at different
times. The image in the orange box is synthesized for the time of input views 𝑡0.
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Figure 7: Qualitative results on the T&T [5] dataset. We generate novel views at 7 different times to show the cyclic changes of a
day. For each scene, 3 input images are utilized for 3D reconstruction in this experiment.

Novel view GT MVSNeRF [2] GeoNeRF [4] Ours

Ithaca365
[3]

LLFF [7]

Figure 8: Qualitative results of pure view synthesis. We show the view synthesis results from MVSNeRF, GeoNeRF, and our
model on the LLFF dataset and the ithaca365 dataset. Compared to these SOTA methods, TimeNeRF is able to produce clearer
details.
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Figure 9: the mean histogram correlations in the Y, Cb, and Cr channels. The x-axis represents time differences, while the y-axis
indicates correlation values. “real_imgs” correspond to frames extracted from multiple 24-hour videos. Ideally, the Y channel’s
correlation should decrease as the time difference increases, whereas the Cb and Cr channels should exhibit relatively stable
correlations compared to the Y channel.

Input view 1 Input view 2 Input view 3 Synthesized Novel view

Figure 10: Style transfer, then novel view synthesis. We first transfer the style of the input views using CoMoGAN [8], and then
use these style-transferred input views to synthesize a novel view through GeoNerf [4]. The red boxes in the images highlight
regions where there are inconsistencies between the input views and the synthesized novel views produced by this alternative
approach.


	1 Additional Implementation Details
	1.1 Architecture
	1.2 Training details

	2 Additional Experimental Results
	2.1 Ablation study
	2.2 Under diverse weather conditions
	2.3 Analysis of Possible Alternative Approaches and Their Weaknesses
	2.4 Additional Qualitative and Quantitative Studies

	3 The implementation code
	References

