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In this supplementary material, we present proofs of theorems in the main text, detailed explanations1

of the experiments, and additional experimental results. First, Section A shows algorithm details,2

including proofs of theorems, toy examples, and pseudocode. In particular, Section A.6-8 present3

additional differences from the existing trust region-based safe RL algorithms. Section B describes4

the detail of the experimental settings. Section C shows experimental results, including additional5

ablation experiments. Then, the proposed algorithm is compared with the state-of-the-art traditional6

RL algorithm in Section D. The traditional RL algorithm is trained with various sets of reward7

weights, but SDAC shows the highest reward sums among them. These experiments exhibit the8

challenge of reward tunning when using traditional RL algorithms to perform the locomotion tasks.9

Finally, Section E presents the computational analysis of the gradient integration method. The table10

of contents is listed in Table 1.11
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A Algorithm Details12

A.1 Proof of Theorem 3.113

We denote the policy parameter space as Ψ ⊆ Rd, the parameter at the tth iteration as ψt ∈ Ψ,14

the Hessian matrix as H(ψt) = ∇2
ψDKL(πψt ||πψ)|ψ=ψt , and the kth cost surrogate as Fk(ψt) =15

Fµ,πk (πψt ;α). As we focus on the tth iteration, the following notations are used for brevity: H =16

H(ψt) and gk = ∇Fk(ψt). The proposed gradient integration at tth iteration is defined as the17

following quadratic program (QP):18

gt = argmin
g

1

2
gTHg s.t. gTk g + ck ≤ 0 for ∀k, (1)

where ck = min(
√
2ϵgTkH

−1gk, Fk(πψ;α)−dk+ ζ). In the remainder of this section, we introduce19

the assumptions and new definitions, discuss the existence of a solution (1), show the convergence to20

the feasibility condition for varying step size cases, and provide the proof of Theorem 3.1.21

Assumption. 1) Each Fk is differentiable and convex, 2) ∇Fk is L-Lipschitz continuous, 3) all22

eigenvalues of the Hessian matrix H(ψ) are equal or greater than R ∈ R>0 for ∀ψ ∈ Ψ, and 4)23

{ψ|Fk(ψ) + ζ < dk for ∀k} ≠ ∅.24

Definition. Using the Cholesky decomposition, the Hessian matrix can be expressed as H = B ·BT25

where B is a lower triangular matrix. By introducing new terms, ḡk := B−1gk and bt := BT gt, the26

following is satisfied: gTkH
−1gk = ||ḡk||22. Additionally, we define the in-boundary and out-boundary27

sets as:28

IBk :=

{
ψ|Fk(ψ)− dk + ζ ≤

√
2ϵ∇Fk(ψ)TH−1(ψ)∇Fk(ψ)

}
,

OBk :=

{
ψ|Fk(ψ)− dk + ζ ≥

√
2ϵ∇Fk(ψ)TH−1(ψ)∇Fk(ψ)

}
.

The minimum of ||ḡk|| in OBk is denoted as mk, and the maximum of ||ḡk|| in IBk is denoted as29

Mk. Also, minkmk and maxkMk are denoted as m and M , respectively, and we can say that m is30

positive.31

Lemma A.1. For all k, the minimum value of mk is positive.32

Proof. Assume that there exist k ∈ {1, ...,K} such that mk is equal to zero at a policy parameter33

ψ∗ ∈ OBk, i.e., ||∇Fk(ψ∗)|| = 0. Since Fk is convex, ψ∗ is a minimum point of Fk, minψFk(ψ) =34

Fk(ψ
∗) < dk − ζ. However, Fk(ψ∗) ≥ dk − ζ as ψ∗ ∈ OBk, so mk is positive due to the35

contradiction. Hence, the minimum of mk is also positive.36

Lemma A.2. A solution of (1) always exists.37

Proof. There exists a policy parameter ψ̂ ∈ {ψ|Fk(ψ) + ζ < dk for ∀k} due to the assumptions.38

Let g = ψ − ψt. Then, the following inequality holds.39

gTk (ψ − ψt) + ck ≤ gTk (ψ − ψt) + Fk(ψt) + ζ − dk ≤ Fk(ψ) + ζ − dk. (∵ Fk is convex.)

⇒ gTk (ψ̂ − ψt) + ck ≤ Fk(ψ̂) + ζ − dk < 0 for ∀k.

Since ψ̂ − ψt satisfies all constraints of (1), the feasible set is non-empty and convex. Also, H is40

positive definite, so the QP has a unique solution.41

Lemma A.2 shows the existence of solution of (1). We introduce a new lemma, which shows ||bt|| is42

bounded by
√
ϵ.43

Lemma A.3. There exists T ∈ R>0 such that ||bt|| ≤ T
√
ϵ.44

Proof. By solving the dual problem of (1), gt can be expressed as:45

gt = −
K∑
k=1

λkH
−1gk s.t. λk = max

(
ck −

∑
j ̸=k λjg

T
j H

−1gk

gTkH
−1gk

, 0

)
for ∀k.
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The following inequality holds for ∀k:46

λk ≤ max

(
ck

||ḡk||2
, 0

)
≤ max

(√
2ϵ||ḡk||
||ḡk||2

, 0

)
≤

√
2ϵ

||ḡk||
.

Using triangular inequality,47

||bt|| = ||BT gt|| = ||
∑
k

λkB
TH−1gk|| ≤

∑
k

λk||BTH−1gk||

≤
√
2ϵ
∑
k

||BTH−1gk||
||ḡk||

= K
√
2ϵ.

Hence, for every constant T >
√
2K, the statement holds.48

Now, we show the convergence of the proposed gradient integration method in the case of varying49

step sizes.50

Lemma A.4. Suppose the following constants κ1, κ2 are given: 0 < κ1 <
√
2mRκ2

LK2
√
ϵ

and 0 < κ2 < 1.51

If
√
2ϵM ≤ ζ and a policy is updated by ψt+1 = ψt+βtgt, where κ1 ≤ βt ≤ 2

√
2ϵmR

L||bt||2 κ2, the policy52

satisfies Fk(ψ) ≤ dk for ∀k within a finite time.53

Proof. We can reformulate the step size as βt = 2
√
2ϵmR

L||bt||2 β
′
t, where L||bt||2

2
√
2ϵmR

κ1 ≤ β′
t ≤ κ2. Since the54

eigenvalues of H is equal to or bigger than R and H is symmetric and positive definite, 1
RI −H−155

is positive semi-definite. Hence, xTH−1x ≤ 1
R ||x||

2 is satisfied. Using this fact, the following56

inequality holds:57

Fk(ψt + βtgt)− Fk(ψt) ≤ βt∇Fk(ψt)T gt +
L

2
||βtgt||2 (∵ ∇Fk is L-Lipschitz continuous.)

= βtg
T
k gt +

L

2
β2
t ||gt||2

= βtg
T
k gt +

L

2
β2
t b
T
t H

−1bt (∵ gt = B−T bt)

≤ −βtck +
L

2R
β2
t ||bt||2. (∵ gTk gt + ck ≤ 0)

Now, we will show that ψ enters IBk in a finite time for ∀ψ ∈ OBk and that the kth constraint is58

satisfied for ∀ψ ∈ IBk. Thus, we divide into two cases, 1) ψt ∈ OBk and 2) ψt ∈ IBk. For the first59

case, ck =
√
2ϵ||ḡk||, so the following inequality holds:60

Fk(ψt + βtgt)− Fk(ψt) ≤ βt

(
−
√
2ϵ||ḡk||+

L

2R
βt||bt||2

)
≤ βt

√
2ϵ (−||ḡk||+mβ′

t)

≤ βt
√
2ϵm(β′

t − 1) ≤ κ1(κ2 − 1)
√
2ϵm < 0.

(2)

The value of Fk decreases strictly with each update step according to (2). Hence, ψt can reach IBk61

by repeatedly updating the policy. We now check whether the constraint is satisfied for the second62

case. For the second case, the following inequality holds by applying ck = Fk(ψt)− dk + ζ:63

Fk(ψt + βtgt)− Fk(ψt) ≤ βtdk − βtFk(ψt)− βtζ +
L

2R
β2
t ||bt||2

⇒Fk(ψt + βtgt)− dk ≤ (1− βt)(Fk(ψt)− dk) + βt(−ζ +
√
2ϵmβ′

t).

Since ψt ∈ IBk,64

Fk(ψt)− dk ≤
√
2ϵ||ḡk|| − ζ ≤

√
2ϵM − ζ ≤ 0.

Since m ≤M and β′
t < 1,65

−ζ +
√
2ϵmβ′

t < −ζ +
√
2ϵM ≤ 0.

Hence, Fk(ψt + βtgt) ≤ dk, which means that the kth constraint is satisfied if ψt ∈ IBk. As ψt66

reaches IBk for ∀k within a finite time according to (2), the policy can satisfy all constraints within a67

finite time.68
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Lemma A.4 shows the convergence to the feasibility condition in the case of varying step sizes. We69

finally show the proof of Theorem 3.1, which can be considered a special case of varying step sizes.70

Theorem 3.1. Assume that the cost surrogates are differentiable and convex, gradients of the71

surrogates are L-Lipschitz continuous, eigenvalues of the Hessian are equal or greater than a positive72

value R ∈ R>0, and {ψ|Fk(πψ;α) + ζ < dk, ∀k} ̸= ∅. Then, there exists E ∈ R>0 such that if73

0 < ϵ ≤ E and a policy is updated by the proposed gradient integration method, all constraints are74

satisfied within finite time steps.75

Proof. The proposed step size is βt = min(1,
√
2ϵ/||bt||), and the sufficient conditions that guarantee76

the convergence according to Lemma A.4 are followings:77

√
2ϵM ≤ ζ, and κ1 ≤ βt ≤

2
√
2ϵmR

L||bt||2
κ2 for ∃κ1, κ2.

From the first condition, ϵ ≤ ζ2/(2M2). To satisfy the second condition, the proposed step size βt78

should satisfy the followings:79

βt ≤
√
2ϵ

||bt||
≤ 2

√
2ϵmR

L||bt||2
κ2 ⇔ ||bt|| ≤

2mR

L
κ2.

If ϵ ≤ 2((mRκ2)/(LK))2, the following inequality holds:80

√
2ϵ ≤ 2mR

LK
κ2 ⇒ ||bt|| ≤ K

√
2ϵ ≤ 2mR

L
κ2. (∵ Lemma A.3.)

If 1 ≤
√
2ϵ/||bt||2, it is obvious that κ1 < 1 = βt. If 1 >

√
2ϵ/||bt||, we can get the followings by81

setting κ1 ≤ 1/K:82

κ1 ≤ 1

K
≤

√
2ϵ

||bt||
= βt. (3)

Hence, if ϵ ≤ E = 1
2min( ζ2

2M2 , 2(
mRκ2

LK )2), 0 < κ1 < min(
√
2mRκ2

LK2
√
ϵ
, 1
K ), and 0 < κ2 < 1, the83

sufficient conditions are satisfied.84

A.2 Toy Example for Gradient Integration Method85

The problem of the toy example in Figure 1 in the main paper is defined as:86

minimize
x1,x2

√
(
√
3x1 + x2 + 2)2 + 4(x1 −

√
3x2 + 4)2 s.t. x1 ≥ 0, x1 − 2x2 ≤ 0, (4)

where there are two linear constraints. The initial points for the naive and gradient integration methods87

are x1 = −2.5 and x2 = −3.0, which do not satisfied the two constraints. We use the Hessian matrix88

for the trust region as identity matrix and the trust region size as 0.5 in both methods. The naive89

method minimizes the constraints in order from the first to the second constraint.90
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A.3 Proof of Theorem 3.291

In this section, we show that a sequence, Zk+1 = T µ,π
λ Zk, converges to the ZπR. First, we rewrite92

the operator T µ,π
λ for random variables to an operator for distributions and show that the operator is93

contractive. Finally, we show that ZπR is the unique fixed point.94

Before starting the proof, we introduce useful notions and distance metrics. As the return ZπR(s, a)95

is a random variable, we define the distribution of ZπR(s, a) as νπR(s, a). Let η be the distribution96

of a random variable X . Then, we can express the distribution of affine transformation of random97

variable, aX + b, using the pushforward operator, which is defined by Rowland et al. [2018], as98

(fa,b)#(η). To measure a distance between two distributions, Bellemare et al. [2023] has defined the99

distance lp as follows:100

lp(η1, η2) :=

(∫
R
|Fη1(x)− Fη2(x)|

p
dx

)1/p

, (5)

where Fη(x) is the cumulative distribution function. This distance is 1/p-homogeneous, regular,101

and p-convex (see Section 4 of Bellemare et al. [2023] for more details). For functions that map102

state-action pairs to distributions, a distance can be defined as [Bellemare et al., 2023]: l̄p(ν1, ν2) :=103

sup(s,a)∈S×Alp(ν1(s, a), ν2(s, a)). Then, we can rewrite the operator T µ,π
λ for random variables in104

(10) as an operator for distributions as below.105

T µ,π
λ ν(s, a) :=

1− λ

N

∞∑
i=0

λi

× Eµ

 i∏
j=1

η(sj , aj)

Ea′∼π(·|si+1)

[
(fγi+1,

∑i
t=0 γ

trt
)#(ν(si+1, a

′))
] ∣∣∣s0 = s, a0 = a

 , (6)

where η(s, a) = π(a|s)
µ(a|s) and N is a normalization factor. Since the random variable Z(s, a) and the106

distribution ν(s, a) is equivalent, the operators in (10) and (6) are also equivalent. Hence, we are107

going to show the proof of Theorem 3.2 using (6) instead of (10). We first show that the operator108

T µ,π
λ has a contraction property.109

Lemma A.5. Under the distance l̄p and the assumption that the state, action, and reward spaces are110

finite, T µ,π
λ is γ1/p-contractive.111

Proof. First, the operator can be rewritten using summation as follows.112

T µ,π
λ ν(s, a) =

1− λ

N

∞∑
i=0

λi
∑
a′∈A

∑
(s0,a0,r0,...,si+1)

Prµ(s0, a0, r0, ..., si+1︸ ︷︷ ︸
=:τ

)

 i∏
j=1

η(sj , aj)


× π(a′|si+1)(fγi+1,

∑i
t=0 γ

trt
)#(ν(si+1, a

′))

=
1− λ

N

∞∑
i=0

λi
∑
a′∈A

∑
τ

Prµ(τ)

 i∏
j=1

η(sj , aj)

π(a′|si+1)
∑
s′∈S

1s′=si+1

×
∑
r′0:i

(
i∏

k=0

1r′k=rk

)
(fγi+1,

∑i
t=0 γ

tr′t
)#(ν(s

′, a′))

=
1− λ

N

∞∑
i=0

λi
∑
a′∈A

∑
s′∈S

∑
r′0:i

(fγi+1,
∑i
t=0 γ

tr′t
)#(ν(s

′, a′))

× Eµ

 i∏
j=1

η(sj , aj)

π(a′|si+1)1s′=si+1

(
i∏

k=0

1r′k=rk

)
︸ ︷︷ ︸

=:ws′,a′,r′
0:i

=
1− λ

N

∞∑
i=0

∑
s′∈S

∑
a′∈A

∑
r′0:i

λiws′,a′,r′0:i(fγi+1,
∑i
t=0 γ

tr′t
)#(ν(s

′, a′)).

(7)
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Since the sum of weights of distributions should be one, we can find the normalization factor113

N = (1 − λ)
∑∞
i=0

∑
s∈S

∑
a∈A

∑
r0:i

λiws,a,r0:i . Then, the following inequality can be derived114

using the homogeneity, regularity, and convexity of lp:115

lpp(T
µ,π
λ ν1(s, a), T µ,π

λ ν2(s, a))

= lpp

(
1− λ

N

∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

λiws,a,r0:i(fγi+1,
∑i
t=0 γ

trt
)#(ν1(s, a)),

1− λ

N

∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

λiws,a,r0:i(fγi+1,
∑i
t=0 γ

trt
)#(ν2(s, a))

)

≤
∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

(1− λ)λiws,a,r0:i
N

lpp

(
(fγi+1,

∑i
t=0 γ

trt
)#(ν1(s, a)),

(fγi+1,
∑i
t=0 γ

trt
)#(ν2(s, a))

)
≤

∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

(1− λ)λiws,a,r0:i
N

lpp
(
(fγi+1,0)#(ν1(s, a)), (fγi+1,0)#(ν2(s, a))

)
=

∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

(1− λ)λiws,a,r0:i
N

γi+1lpp (ν1(s, a), ν2(s, a))

≤
∞∑
i=0

∑
s∈S

∑
a∈A

∑
r0:i

(1− λ)λiws,a,r0:i
N

γi+1
(
l̄p (ν1, ν2)

)p
≤ γ

(
l̄p (ν1, ν2)

)p
.

(8)

Therefore, l̄p (T µ,π
λ ν1, T µ,π

λ ν2) ≤ γ1/p l̄p (ν1, ν2).116

By the Banach’s fixed point theorem, the operator T µ,π
λ has a unique fixed distribution. We now show117

that the fixed distribution is νπR.118

Lemma A.6. The fixed distribution of the operator T µ,π
λ is νπR.119

Proof. From the definition of ZπR, the following equality holds [Rowland et al., 2018]: νπR(s, a) =120

Eπ [(fγ,r)#(νπR(s′, a′))]. Then, it can be shown that νπR is the fixed distribution by applying the121

operator T µ,π
λ to νπR:122

T µ,π
λ νπR(s, a) =

1− λ

N

∞∑
i=0

λi

× Eµ

 i∏
j=1

η(sj , aj)

Ea′∼π(·|si+1)

[
(fγi+1,

∑i
t=0 γ

trt
)#(ν

π
R(si+1, a

′))
] ∣∣∣s0 = s, a0 = a


=

1− λ

N

∞∑
i=0

λiEπ
[
(fγi+1,

∑i
t=0 γ

trt
)#(ν

π
R(si+1, ai+1))

∣∣∣s0 = s, a0 = a
]

=
1− λ

N

∞∑
i=0

λiνπR(s, a) = νπR(s, a).

(9)

123

Theorem 3.2. Let define a distributional operator T µ,π
λ , whose probability density function is:124

Pr(T µ,π
λ Z(s, a)=z) ∝

∞∑
i=0

Eµ

[
λi

i∏
j=1

π(aj |sj)
µ(aj |sj)

E
a′∼π(·|si+1)

[
Pr

(
i∑

t=0

γtRt+γi+1Z(si+1, a
′)=z

)]∣∣∣∣s0 = s, a0 = a

]
.

(10)

Then, a sequence, Zk+1(s, a) = T µ,π
λ Zk(s, a) ∀(s, a), converges to ZπR.125
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Proof. The operator T µ,π
λ is γ1/p-contractive under the distance l̄p according to Lemma A.5. Also,126

the fixed distribution of the operator is νπR, which is equivalent to ZπR, according to Lemma A.6. By127

the Banach’s fixed point theorem, the sequence, Zk+1(s, a) = T µ,π
λ Zk(s, a) ∀(s, a), converges to128

the fixed distribution of the operator, ZπR.129

A.4 Pseudocode of TD(λ) Target Distribution130

We provide the pseudocode for calculating TD(λ) target distribution for the reward critic in Algorithm131

1. The target distribution for the cost critics can also be obtained by simply replacing the reward part132

with the cost.133

Algorithm 1 TD(λ) Target Distribution

Input: Policy network πψ , critic network Zπθ , and trajectory {(st, at, µ(at|st), rt, dt, st+1)}Tt=1.
Sample an action a′T+1 ∼ πψ(sT+1) and get Ẑtot

T = rT + (1− dT )γZ
π
θ (sT+1, a

′
T+1).

Initialize the total weight wtot = λ.
for t = T to 1 do

Sample an action a′t+1 ∼ πψ(st+1) and get Ẑ(1)
t = rt + (1− dt)γZ

π
θ (st+1, a

′
t+1).

Set the current weight w = 1− λ.
Combine the two targets, (Ẑ(1)

t , w) and (Ẑ
(tot)
t , wtot), and sort the combined target according

to the positions of atoms.
Build the CDF of the combined target by accumulating the weights at each atom.
Project the combined target into a quantile distribution with M ′ atoms, which is Ẑ(proj)

t , using
the CDF (find the atom positions corresponding to each quantile).
Update Ẑ(tot)

t−1 = rt−1 + (1− dt−1)γẐ
(proj)
t and wtot = λ

πψ(at|st)
µ(at|st) (1− dt−1)(1− λ+ wtot).

end for
Return {Ẑ(proj)

t }Tt=1.

A.5 Quantitative Analysis on TD(λ) Target Distribution134

We experiment with a toy example to measure the bias and variance of the reward estimation according135

to λ. The toy example has two states, s1 and s2; the state distribution is defined as an uniform;136

the reward function is defined as r(s1) ∼ N (−0.005, 0.02) and r(s2) ∼ N (0.005, 0.03). We train137

parameterized reward distributions by minimizing the quantile regression loss with the TD(λ) target138

distribution for λ = 0, 0.5, 0.9, and 1.0. The experimental results are presented in the table below.139

Table 2: Experimental results of the toy example.

5th iteration 10th iteration 15th iteration 20th iteration 25th iteration

λ = 0.0 4.813 (0.173) 4.024 (0.253) 3.498 (0.085) 3.131 (0.103) 2.835 (0.070)
λ = 0.5 4.621 (0.185) 3.688 (0.273) 2.925 (0.183) 2.379 (0.134) 2.057 (0.070)
λ = 0.9 4.141 (0.461) 2.237 (0.402) 1.389 (0.132) 1.058 (0.031) 0.923 (0.019)
λ = 1.0 2.886 (0.767) 1.733 (0.365) 1.509 (0.514) 1.142 (0.325) 1.109 (0.476)

The values in the table are the mean and standard deviation of the past five values of the Wasserstein140

distance between the true reward return and the estimated distribution. Looking at the fifth iteration,141

it is clear that the larger the λ value, the smaller the mean and the higher the standard deviation. At142

the 25th iteration, the run with λ = 0.9 has the lowest mean and standard deviation, indicating that143

training has converged. On the other hand, the run with λ = 1.0 has the biggest standard deviation,144

and the mean is greater than when λ = 0.9, indicating that the significant variance hinders training.145

In conclusion, we measured bias and variance quantitatively through the toy example, and the results146

are well aligned with our claim that λ can trade off bias and variance.147
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A.6 Policy Update Rule148

To solve the constrained optimization problem (6) in the main text, we find a policy update direction149

by linearly approximating the objective and safety constraints and quadratically approximating the150

trust region constraint, as done by Achiam et al. [2017]. After finding the direction, we update the151

policy using a line search method. Given the current policy parameter ψt ∈ Ψ, the approximated152

problem can be expressed as follows:153

x∗ = argmax
x∈Ψ

gTx s.t.
1

2
xTHx ≤ ϵ, bTk x+ ck ≤ 0 ∀k, (11)

where g = ∇ψJ
µ,π(πψ)|ψ=ψt , H = ∇2

ψDKL(πψt ||πψ)|ψ=ψt , bk = ∇ψF
µ,π
k (πψ;α)|ψ=ψt , and154

ck = Fk(πψ;α) − dk. Since (11) is convex, we can use an existing convex optimization solver.155

However, the search space, which is the policy parameter space Ψ, is excessively large, so we reduce156

the space by converting (11) to a dual problem as follows:157

g(λ, ν) = minxL(x, λ, ν) = minx{−gTx+ ν(
1

2
xTHx− ϵ) + λT (Bx+ c)}

=
−1

2ν

gTH−1g︸ ︷︷ ︸
=:q

−2 gTH−1BT︸ ︷︷ ︸
=:rT

λ+ λT BH−1BT︸ ︷︷ ︸
=:S

λ

+ λT c− νϵ

=
−1

2ν
(q − 2rTλ+ λTSλ) + λT c− νϵ,

(12)

whereB = (b1, .., bK), c = (c1, ..., cK)T , and λ ∈ RK ≥ 0 and ν ∈ R ≥ 0 are Lagrange multipliers.158

Then, the optimal λ and ν can be obtained by a convex optimization solver. After obtaining the159

optimal values, (λ∗, ν∗) = argmax(λ,ν)g(λ, ν), the policy update direction x∗ are calculated by160

1
ν∗H

−1(g −BTλ∗). Then, the policy is updated by ψt+1 = ψt + βx∗, where β is a step size, which161

can be found through a backtracking method (please refer to Section 6.3.2 of Dennis and Schnabel162

[1996]).163

Before using the above policy update rule, we should note that the existing trust-region method with164

the risk-averse constraint [Kim and Oh, 2022a] and the equations (1, 5, 6) of the main text are slightly165

different. There are two differences: 1) the objective is augmented with an entropy bonus, and 2) the166

surrogates are expressed with Q-functions instead of value functions. To use the entropy-regularized167

objective for the trust region method, it is required to show that the objective is bounded by the KL168

divergence. We present the existence of bound in Appendix A.7. Next, there is no problem using the169

Q-functions because it is mathematically equivalent between the original surrogates [Kim and Oh,170

2022a] and the new ones expressed with Q-functions defined in (5) of the main text. However, we171

experimentally show that using the Q-functions in off-policy settings has advantages in Appendix172

A.8.173

A.7 Bound of Entropy-Augmented Objective174

In the main text, the objective of the safe RL problem is augmented by entropy regularization as175

follows:176

J(π) := E [ZπR(s, a)|s ∼ ρ, a ∼ π(·|s)] + βE

[ ∞∑
t=0

γtH(π(·|st))|ρ, π, P

]
. (13)

To use the entropy-regularized objective for the trust region method, it is required to show that177

the objective is bounded by the KL divergence. To this end, we show that the entropy-regularzied178

objective in (13) has a bound expressed by the KL divergence in this section. Before showing the179

boundness, we present a new function and a lemma. A value difference function is defined as follows:180

δπ
′
(s) := E [R(s, a, s′) + γV π(s′)− V π(s) | a ∼ π′(·|s), s′ ∼ P (·|s, a)] = E

a∼π′
[Aπ(s, a)] ,

where Aπ(s, a) := Qπ(s, a)− V π(s, a).181

Lemma A.7. The maximum of |δπ′
(s) − δπ(s)| is equal or less than ϵR

√
2Dmax

KL (π||π′), where182

ϵR = max
s,a

|Aπ(s, a)|.183
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Proof. The value difference can be expressed in a vector form,184

δπ
′
(s)− δπ(s) =

∑
a

(π′(a|s)− π(a|s))Aπ(s, a) = ⟨π′(·|s)− π(·|s), Aπ(s, ·)⟩.

Using Hölder’s inequality, the following inequality holds:185

|δπ
′
(s)− δπ(s)| ≤ ||π′(·|s)− π(·|s)||1 · ||Aπ(s, ·)||∞

= 2DTV(π
′(·|s)||π(·|s))maxaA

π(s, a).
186

⇒ ||δπ
′
− δπ||∞ = maxs|δπ

′
(s)− δπ(s)| ≤ 2ϵRmaxsDTV(π(·|s)||π′(·|s)).

Using Pinsker’s inequality, ||δπ′ − δπ||∞ ≤ ϵR
√
2Dmax

KL (π||π′).187

Theorem A.8. Let us assume that maxsH(π(·|s)) < ∞ for ∀π ∈ Π. The difference between the188

objective and surrogate functions is bounded by a term consisting of KL divergence as:189 ∣∣J(π′)− Jµ,π(π′)
∣∣ ≤ √

2γ

(1− γ)2

√
Dmax

KL (π||π′)

(
βϵH + ϵR

√
2Dmax

KL (µ||π′)

)
, (14)

where ϵH = max
s

|H(π′(·|s))|, Dmax
KL (π||π′) = max

s
DKL(π(·|s)||π′(·|s)), and the equality holds190

when π′ = π.191

Proof. The surrogate function can be expressed in vector form as follows:192

Jµ,π(π′) = ⟨ρ, V π⟩+ 1

1− γ

(
⟨dµ, δπ

′
⟩+ β⟨dπ, Hπ′

⟩
)
,

where Hπ′
(s) = H(π′(·|s)). The objective function of π′ can also be expressed in a vector form193

using Lemma 1 from Achiam et al. [2017],194

J(π′) =
1

1− γ
E
[
R(s, a, s′) + βHπ′

(s) | s ∼ dπ
′
, a ∼ π′(·|s), s′ ∼ P (·|s, a)

]
=

1

1− γ
E

s∼dπ′

[
δπ

′
(s) + βHπ′

(s)
]
+ E
s∼ρ

[V π(s)]

= ⟨ρ, V π⟩+ 1

1− γ
⟨dπ

′
, δπ

′
+ βHπ′

⟩.

By Lemma 3 from Achiam et al. [2017], ||dπ − dπ
′ ||1 ≤ γ

1−γ
√
2Dmax

KL (π||π′). Then, the following195

inequality is satisfied:196

|(1−γ)(Jµ,π(π′)− J(π′))|

= |⟨dπ
′
− dµ, δπ

′
⟩+ β⟨dπ − dπ

′
, Hπ′

⟩|

≤ |⟨dπ
′
− dµ, δπ

′
⟩|+ β|⟨dπ − dπ

′
, Hπ′

⟩|

= |⟨dπ
′
− dµ, δπ

′
− δπ⟩|+ β|⟨dπ − dπ

′
, Hπ′

⟩| (∵ δπ = 0)

≤ ||dπ
′
− dµ||1||δπ

′
− δπ||∞ + β||dπ − dπ

′
||1||Hπ′

||∞ (∵ Hölder’s inequality)

≤ 2ϵRγ

1− γ

√
Dmax

KL (µ||π′)Dmax
KL (π||π′) +

βγϵH
1− γ

√
2Dmax

KL (π||π′) (∵ Lemma A.7)

=
γ

1− γ

√
Dmax

KL (π||π′)

(√
2βϵH + 2ϵR

√
Dmax

KL (µ||π′)

)
.

If π′ = π, the KL divergence term becomes zero, so equality holds.197
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A.8 Comparison of Q-Function and Value Function-Based Surrogates198

The original surrogate is defined as follows:199

Jµ,π(π′) := J(π) +
1

1− γ
E
dµ,µ

[
π′(a|s)
µ(a|s)

Aπ(s, a)

]
, (15)

where Aπ(s, a) := Qπ(s, a)− V π(s, a), and the surrogate is the same as that of OffTRPO [Meng200

et al., 2022] and OffTRC [Kim and Oh, 2022a]. An entropy-regularized version can be derived as:201

Jµ,π(π′) = J(π) +
1

1− γ

(
βE
dπ

[H(π′(·|s))] + E
dµ,µ

[
π′(a|s)
µ(a|s)

Aπ(s, a)

])
. (16)

Then, the surrogate expressed by Q-functions in (5) of the main text, called SAC-style version, can202

be rewritten as:203

Jµ,π(π′) = J(π) +
1

1− γ

(
βE
dπ

[H(π′(·|s))] + E
dµ,π′

[Qπ(s, a)]
)
. (17)

In this section, we evaluate the original, entropy-regularized, and SAC-style versions in the continuous204

control tasks of the MuJoCo simulators [Todorov et al., 2012]. We use neural networks with two205

hidden layers with (512, 512) nodes and ReLU for the activation function. The output of a value206

network is linear, but the input is different; the original and entropy-regularized versions use states,207

and the SAC-style version uses state-action pairs. The input of a policy network is the state, the208

output is mean µ and std σ, and actions are squashed into tanh(µ + ϵσ), ϵ ∼ N (0, 1) as in SAC209

[Haarnoja et al., 2018]. The entropy coefficient β in the entropy-regularized and SAC-style versions210

are adaptively adjusted to keep the entropy above a threshold (set as −d given A ⊆ Rd). The211

hyperparameters for all versions are summarized in Table 3.

Table 3: Hyperparameters for all versions.

Parameter Value

Discount factor γ 0.99
Trust region size ϵ 0.001
Length of replay buffer 105

Critic learning rate 0.0003
Trace-decay λ 0.97
Initial entropy coefficient β 1.0
β learning rate 0.01

212

The training curves are presented in Figure 1. All methods are trained with five different random213

seeds. Although the entropy-regularized version (16) and SAC-style version (17) are mathematically214

equivalent, it can be observed that the performance of the SAC-style version is superior to the215

regularized version. It can be inferred that this is due to the variance of importance sampling. In the216

off-policy setting, the sampling probabilities of the behavioral and current policies can be significantly217

different, so the variance of the importance ratio is huge. The increased variance prevents estimating218

the objective accurately, so significant performance degradation can happen. As a result, using the219

Q-function-based surrogates has an advantage for efficient learning.220

10



(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3

(d) Humanoid-v3 (e) Swimmer-v3 (f) Walker2d-v3

Figure 1: MuJoCo training curves.

B Experimental Settings221

(a) Point goal. (b) Car button. (c) Cassie. (d) Laikago. (e) Mini-Cheetah.

Figure 2: (a) and (b) are Safety Gym tasks. (c), (d), and (e) are locomotion tasks.

Safety Gym. We use the goal and button tasks with the point and car robots in the Safety Gym222

environment [Ray et al., 2019], as shown in Figure 2a and 2b. The environmental setting for the goal223

task is the same as in Kim and Oh [2022b]. Eight hazard regions and one goal are randomly spawned224

at the beginning of each episode, and a robot gets a reward and cost as follows:225

R(s, a, s′) = −∆dgoal + 1dgoal≤0.3,

C(s, a, s′) = Sigmoid(10 · (0.2− dhazard)),
(18)

where dgoal is the distance to the goal, and dhazard is the minimum distance to hazard regions. If226

dgoal is less than or equal to 0.3, a goal is respawned. The state consists of relative goal position,227

goal distance, linear and angular velocities, acceleration, and LiDAR values. The action space is228

two-dimensional, which consists of xy-directional forces for the point and wheel velocities for the229

car robot.230

The environmental settings for the button task are the same as in Liu et al. [2022]. There are five231

hazard regions, four dynamic obstacles, and four buttons, and all components are fixed throughout the232

training. The initial position of a robot and an activated button are randomly placed at the beginning233

of each episode. The reward function is the same as in (18), but the cost is different since there is no234

dense signal for contacts. We define the cost function for the button task as an indicator function that235

outputs one if the robot makes contact with an obstacle or an inactive button or enters a hazardous236

region. We add LiDAR values of buttons and obstacles to the state of the goal task, and actions are237

the same as the goal task. The length of the episode is 1000 steps without early termination.238

Locomotion Tasks. We use three different legged robots, Mini-Cheetah, Laikago, and Cassie, for239

the locomotion tasks, as shown in Figure 2e, 2d, and 2c. The tasks aim to control robots to follow240

a velocity command on flat terrain. A velocity command is given by (vcmd
x , vcmd

y , ωcmd
z ), where241
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vcmd
x ∼ U(−1.0, 1.0) for Cassie and U(−1.0, 2.0) otherwise, vcmd

y = 0, and ωcmd
z ∼ U(−0.5, 0.5).242

To lower the task complexity, we set the y-directional linear velocity to zero but can scale to any243

non-zero value. As in other locomotion studies [Lee et al., 2020, Miki et al., 2022], central phases are244

introduced to produce periodic motion, which are defined as ϕi(t) = ϕi,0+f ·t for ∀i ∈ {1, ..., nlegs},245

where f is a frequency coefficient and is set to 10, and ϕi,0 is an initial phase. Actuators of robots246

are controlled by PD control towards target positions given by actions. The state consists of velocity247

command, orientation of the robot frame, linear and angular velocities of the robot, positions and248

speeds of the actuators, central phases, history of positions and speeds of the actuators (past two249

steps), and history of actions (past two steps). A foot contact timing ξ can be defined as follows:250

ξi(s) = −1 + 2 · 1sin(ϕi)≤0 ∀i ∈ {1, ..., nlegs}, (19)
where a value of -1 means that the ith foot is on the ground; otherwise, the foot is in the air. For251

the quadrupedal robots, Mini-Cheetah and Laikago, we use the initial phases as ϕ0 = {0, π, π, 0},252

which generates trot gaits. For the bipedal robot, Cassie, the initial phases are defined as ϕ0 = {0, π},253

which generates walk gaits. Then, the reward and cost functions are defined as follows:254

R(s, a, s′) = −0.1 · (||vbasex,y − vcmd
x,y ||22 + ||ωbase

z − ωcmd
z ||22 + 10−3 ·Rpower),

C1(s, a, s
′) = 1angle≥a, C2(s, a, s

′) = 1height≤b, C3(s, a, s
′) =

nlegs∑
i=1

(1− ξi · ξ̂i)/(2 · nlegs),
(20)

where the power consumption Rpower =
∑
i |τivi|, the sum of the torque times the actuator speed, is255

added to the reward as a regularization term, vbasex,y is the xy-directional linear velocity of the base256

frame of robots, ωbase
z is the z-directional angular velocity of the base frame, and ξ̂ ∈ {−1, 1}nlegs is257

the current feet contact vector. For balancing, the first cost indicates whether the angle between the258

z-axis vector of the robot base and the world is greater than a threshold (a = 15◦ for all robots). For259

standing, the second cost indicates the height of CoM is less than a threshold (b = 0.3, 0.35, 0.7 for260

Mini-Cheetah, Laikago, and Cassie, respectively), and the last cost is to check that the current feet261

contact vector ξ̂ matches the pre-defined timing ξ. The length of the episode is 500 steps. There is no262

early termination, but if a robot falls to the ground, the state is frozen until the end of the episode.263

Hyperparameter Settings. The structure of neural networks consists of two hidden layers with264

(512, 512) nodes and ReLU activation for all baselines and the proposed method. The input of value265

networks is state-action pairs, and the output is the positions of atoms. The input of policy networks266

is the state, the output is mean µ and std σ, and actions are squashed into tanh(µ+ ϵσ), ϵ ∼ N (0, 1).267

We use a fixed entropy coefficient β. The trust region size ϵ is set to 0.001 for all trust region-based268

methods. The overall hyperparameters for the proposed method can be summarized in Table 4.

Table 4: Hyperparameter settings for the Safety Gym and locomotion tasks.

Parameter Safety Gym Locomotion

Discount factor γ 0.99 0.99
Trust region size ϵ 0.001 0.001
Length of replay buffer 105 105

Critic learning rate 0.0003 0.0003
Trace-decay λ 0.97 0.97
Entropy coefficient β 0.0 0.001
The number of critic atoms M 25 25
The number of target atoms M ′ 50 50
Constraint risk level α 0.25, 0.5, and 1.0 1.0
threshold dk 0.025/(1− γ) [0.025, 0.025, 0.4]/(1− γ)
Slack coefficient ζ - minkdk = 0.025/(1− γ)

269

Since the range of the cost is [0, 1], the maximum discounted cost sum is 1/(1 − γ). Thus, the270

threshold is set by target cost rate times 1/(1− γ). For the locomotion tasks, the third cost in (20)271

is designed for foot stamping, which is not essential to safety. Hence, we set the threshold to near272

the maximum (if a robot does not stamp, the cost rate becomes 0.5). In addition, baseline safe RL273

methods use multiple critic networks for the cost function, such as target [Yang et al., 2021] or square274

value networks [Kim and Oh, 2022a]. To match the number of network parameters, we use two critics275

as an ensemble, as in Kuznetsov et al. [2020].276
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Tips for Hyperparameter Tuning.277

• Discount factor γ, Critic learning rate: Since these are commonly used hyperparameters, we278

do not discuss these.279

• Trace-decay λ, Trust region size ϵ: The ablation studies on these hyperparameters are280

presented in Appendix C.3. From the results, we recommend setting the trace-decay to281

0.95 ∼ 0.99 as in other TD(λ)-based methods [Precup et al., 2000]. Also, the results show282

that the performance is not sensitive to the trust region size. However, if the trust region size283

is too large, the approximation error increases, so it is better to set it below 0.003.284

• Entropy coefficient β: This value is fixed in our experiments, but it can be adjusted automat-285

ically as done in SAC [Haarnoja et al., 2018].286

• The number of atoms M,M ′: Although experiments on the number of atoms did not287

performed, performance is expected to increase as the number of atoms increases, as in288

other distributional RL methods [Dabney et al., 2018].289

• Length of replay buffer: The effect of the length of the replay buffer can be confirmed290

through the experimental results from an off policy-based safe RL method [Kim and Oh,291

2022a]. According to that, the length does not impact performance unless it is too short. We292

recommend setting it to 10 to 100 times the collected trajectory length.293

• Constraint risk level α, threshold dk: If the cost sum follows a Gaussian distribution,294

the mean-std constraint is identical to the CVaR constraint. Then, the probability of the295

worst case can be controlled by adjusting α. For example, if we set α = 0.125 and296

d = 0.03/(1 − γ), the mean-std constraint enforces the probability that the average cost297

is less than 0.03 during an episode greater than 95% = Φ(ϕ(Φ−1(α))/α). Through this298

meaning, proper α and dk can be found.299

• Slack coefficient ζ: As mentioned at the end of Section 3.1, it is recommended to set this300

coefficient as large as possible. Since dk − ζ should be positive, we recommend setting ζ to301

mink dk.302

In conclusion, most hyperparameters are not sensitive, so few need to be optimized. It seems that α303

and dk need to be set based on the meaning described above. Additionally, if the approximation error304

of critics is significant, the trust region size should be set smaller.305
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C Experimental Results306

C.1 Safety Gym307

In this section, we present the training curves of the Safety Gym tasks separately according to the308

risk level of constraints for better readability. Figure 3 shows The training results of the risk-neutral309

constrained algorithms and risk-averse constrained algorithms with α = 1.0. Figures 4 and 5 show310

the training results of the risk-averse constrained algorithms with α = 0.25 and 0.5, respectively.311

Figure 3: Training curves of risk-neutral constrained algorithms for the Safety Gym tasks. The solid
line and shaded area represent the average and std values, respectively. The black dashed lines in the
second row indicate thresholds. All methods are trained with five random seeds.

Figure 4: Training curves of risk-averse constrained algorithms with α = 0.5 for the Safety Gym.
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Figure 5: Training curves of risk-averse constrained algorithms with α = 0.25 for the Safety Gym.

C.2 Ablation Study on Components of SDAC312

There are three main differences between SDAC and the existing trust region-based safe RL algorithm313

for mean-std constraints [Kim and Oh, 2022a], called OffTRC: 1) feasibility handling methods in314

multi-constraint settings, 2) the use of distributional critics, and 3) the use of Q-functions instead of315

advantage functions, as explained in Appendix A.6 and A.8. Since the ablation study for feasibility316

handling is conducted in Section 5.3, we perform ablation studies for the distributional critic and317

Q-function in this section. We call SDAC with only distributional critics as SDAC-Dist and SDAC318

with only Q-functions as SDAC-Q. If all components are absent, SDAC is identical to OffTRC [Kim319

and Oh, 2022a]. The variants are trained with the point goal task of the Safety Gym, and the training320

results are shown in Figure 6. SDAC-Q lowers the cost rate quickly but shows the lowest score.321

SDAC-Dist shows scores similar to SDAC, but the cost rate converges above the threshold 0.025. In322

conclusion, SDAC can efficiently satisfy the safety constraints through the use of Q-functions and323

improve score performance through the distributional critics.324

Figure 6: Training curves of variants of SDAC for the point goal task.
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C.3 Ablation Study on Hyperparameters325

To check the effects of the hyperparameters, we conduct ablation studies on the trust region size ϵ326

and entropy coefficient β. The results on the entropy coefficient are presented in Figure 7a, showing327

that the score significantly decreases when β is 0.01. This indicates that policies with high entropy328

fail to improve score performance since they focus on satisfying the constraints. Thus, the entropy329

coefficient should be adjusted cautiously, or it can be better to set the coefficient to zero. The results on330

the trust region size are shown in Figure 7b, which shows that the results do not change significantly331

regardless of the trust region size. However, the score convergence rate for ϵ = 0.01 is the slowest332

because the estimation error of the surrogate increases as the trust region size increases according to333

Theorem A.8.334

(a) Entropy coefficient β.

(b) Trust region size ϵ.

Figure 7: Training curves of SDAC with different hyperparameters for the point goal task.
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D Comparison with RL Algorithms335

In this section, we compare the proposed safe RL algorithm with traditional RL algorithms in the336

locomotion tasks and show that safe RL has the advantage of not requiring reward tuning. We use337

the truncated quantile critic (TQC) [Kuznetsov et al., 2020], a state-of-the-art algorithm in existing338

RL benchmarks [Todorov et al., 2012], as traditional RL baselines. To apply the same experiment to339

traditional RL, it is necessary to design a reward reflecting safety. We construct the reward through340

a weighted sum as R̄ = (R−
∑3
i=1 wiCi)/(1 +

∑3
i=1 wi), where R and C{1,2,3} are used to train341

safe RL methods and are defined in Appendix B, and R is called the true reward. The weights of the342

reward function w{1,2,3} are searched by a Bayesian optimization tool1 to maximize the true reward343

of TQC in the Mini-Cheetah task. Among the 63 weights searched through Bayesian optimization,344

the top five weights are listed in Table 5.345

Table 5: Weights of the reward function for the Mini-Cheetah task.

Reward weights w1 w2 w3

#1 1.588 0.299 0.174
#2 1.340 0.284 0.148
#3 1.841 0.545 0.951
#4 6.560 0.187 4.920
#5 1.603 0.448 0.564

Figure 8 shows the training curves of the Mini-Cheetah task experiments where TQC is trained using346

the weight pairs listed in Table 5. The graph shows that it is difficult for TQC to lower the second347

cost below the threshold while all costs of SDAC are below the threshold. In particular, TQC with348

the fifth weight pairs shows the lowest second cost rate, but the true reward sum is the lowest. This349

shows that it is challenging to obtain good task performance while satisfying the constraints through350

reward tuning.351

Figure 8: Training curves of the Mini-Cheetah task. The black dashed lines show the thresholds
used for the safe RL method. The solid line represents the average value, and the shaded area shows
one-fifth of the std value. The number after TQC in the legend indicates which of the reward weights
in Table 5 is used. All methods are trained with five different random seeds.

1We use Sweeps from Weights & Biases Biewald [2020].
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E Computational Cost Analysis352

E.1 Complexity of Gradient Integration Method353

In this section, we analyze the computational cost of the gradient integration method. The proposed354

gradient integration method has three subparts. First, it is required to calculate policy gradients355

of each cost surrogate, gk, and H−1gk for ∀k ∈ {1, 2, ...,K}, where H is the Hessian matrix of356

the KL divergence. H−1gk can be computed using the conjugate gradient method, which requires357

only a constant number of back-propagation on the cost surrogate, so the computational cost can be358

expressed as K ·O(BackProp).359

Second, the quadratic problem in Section 3.1 is transformed to a dual problem, where the trans-360

formation process requires inner products between gk and H−1gm for ∀k,m ∈ {1, 2, ...,K}. The361

computational cost can be expressed as K2 ·O(InnerProd).362

Finally, the transformed quadratic problem is solved in the dual space ∈ RK using a quadratic363

programming solver. Since K is usually much smaller than the number of policy parameters, the364

computational cost almost negligible compared to the others. Then, the cost of the gradient integration365

is K ·O(BackProp) +K2 ·O(InnerProd) +C. Since the back-propagation and the inner products366

is proportional to the number of policy parameters |ψ|, the computational cost can be simplified as367

O(K2 · |ψ|).368

E.2 Quantitative Analysis369

Table 6: Training time of Safe RL algorithms (in hours). The training time of each algorithm is
measured as the average time required for training with five random seeds. The total training steps
are 5 · 106 and 3 · 106 for the point goal task and the Mini-Cheetah task, respectively.

Task SDAC (proposed) OffTRC WCSAC CPO CVPO

Point goal (Safety Gym) 7.96 4.86 19.07 2.61 47.43
Mini-Cheetah (Locomotion) 8.36 6.54 16.41 1.99 -

We analyze the computational cost of the proposed method quantitatively. To do this, we measure370

the training time of the proposed method, SDAC, and the safe RL baselines. We use a workstation371

whose CPU is the Intel Xeon e5-2650 v3, and GPU is the NVIDIA GeForce GTX TITAN X. The372

results are presented in Table 6. While CPO is the fastest algorithm, its performance, such as the373

sum of rewards, is relatively poor compared to other algorithms. The main reason why CPO shows374

the fastest computation time is that CPO is an on-policy algorithm, hence, it does not require an375

insertion to (and deletion from) a replay memory, and batch sampling. SDAC shows the third fastest376

computation time in all algorithms and the second best one among off-policy algorithms. Especially,377

SDAC is slightly slower than OffTRC, which is the fastest one among off-policy algorithms. This378

result shows the benefit of SDAC since SDAC outperforms OffTRC in terms of the returns and CV,379

but the training time is not significantly increased over OffTRC. WCSAC, which is based on SAC, has380

a slower training time because it updates networks more frequently than other algorithms. CVPO, an381

EM-based safe RL algorithm, has the slowest training time. In the E-step of CVPO, a non-parametric382

policy is optimized to solve a local subproblem, and the optimization process requires discretizing383

the action space and solving a non-linear convex optimization for all batch states. Because of this,384

CVPO takes the longest to train an RL agent.385
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