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A IMPLEMENTATION DETAILS

A.1 ENCODER ARCHITECTURE

Below we provide details of the architectures used for the encoder.

Extension from ACD The first design of the architecture extends directly from ACD (Löwe et al.,
2020). In our experiments, we refer to this model as SDCI-Static.
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Figure 1 shows an overview of the structure of the model and equations from 1 to 4 denote the
model computations. First, the model computes a latent embedding for each object considering the
whole sequence. Then each embedding is forwarded through GNNs that caputre the inter-object
correlations between the elements present in the sequence. Finally, we obtain a pairwise embedding
for every pair of elements φij and compute the posterior distribution.More details of the architecture
settings, such as the network activations or the amount of hidden layers and their size can be found
in the original work from Löwe et al. (2020). The only difference of our SDCI-Static is the input
size of fφ1

, which needs to allow the one-hot representation of the state variable, and the output size
of fφ4

, which needs to generate a pairwise embedding for each of the K states as well.

The main advantage of using this architecture setting is the simplicity in implementation, since we
only require to modify the input and output sizes of some parts of the model. However, we notice
that the latent embedding generated when computing fφ1

drops completely the temporal dimension.
We argue this could cause the model to lose its expressiveness in capturing temporal correlations
between data and therefore observe inaccurate results in its empirical study.

Figure 1: Illustration of the implementation of the encoder where we extend direclty from ACD
(Löwe et al., 2020) and allow for conditioning on states. In the example, we consider 2 states.
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Figure 2: Illustration of the implementation of the encoder where we preserve the temporal dimen-
sion and aggregate it at last. In the example, we consider 2 states.

Preservation of temporal information The previous aspect is regarded as a potential flaw that
our SDCI-Static could show when aiming to capture the causal summary graph of a sample. For
this reason, we decide to re-design the model and preserve the temporal dimension for as long as
possible. In our experiments, we refer to this model as SDCI-Temporal.
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Figure 2 shows the structure of our SDCI-Temporal and equations from 5 to 9 denote the model
computations. We no longer use the whole sequence at first, but concatenate consecutive frames and
set it as the input to fφ1

, we perform this computation from 1 to T −1 time-steps. All the subsequent
steps, except for the aggregator fφaggr have the same structure as the previous model.

We have considered many settings for the aggregator fφaggr
, which aims to summarize the temporal

correlations captured throughout the whole sequence. First, an MLP has been proposed. However,
preliminary empirical results showed that SDCI-Temporal was not able to infer any causal structures
in the data. Finally, we proposed a 1D CNN to perform the aggregation, which reported better
results. The final fφaggr

consists of two-layer 1D CNN of 256 filters and a maxpool operation is
applied in the end to erase the temporal dimension. Future work towards designing better aggregator
schemes might consider attentive pooling (Lin et al., 2017), or simply perform an average pool.

B DATASETS

In this section we provide detailed information about the datasets used in this work.

B.1 LINEAR DATA

Previously it has been mentioned that the generated samples produced in the linear data are unstable.
However there exist many reasons why linear message passing operations have been selected as
one of the datasets of this work. First, they define a simple simulated environment where one can
debug and ensure that all the components are correctly implemented with ease. Furthermore, for
one-dimensional variables, pi ∈ R (which is our case), this dataset reduces to a first order Vector
Autoregressive (VAR) model (Sims, 1980), which is widely used in works related to causal discovery
for time-series data (Gong et al., 2015). The evolution of a sequence in this case can be expressed
as follows:

pt = Apt−1 + et (10)
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where A is the causal transition matrix and et is an independent noise process.

Regarding stability, the samples in this dataset are described by a causal transition matrix A where
the diagonal elements are α and the off-diagonal elements are βk where k is the edge-type interac-
tion.For a first-order VAR to be stable, the eigenvalues of A need to be smaller than one in absolute
value. Taking into account that each sample can obey a different underlying causal graph, one needs
to check that this condition holds for all the possible arrangements of the off-diagonal elements
(since the diagonal elements are always α). The number of matrices that one needs to check grows
rapidly for increasing variables, which makes this computationally infeasible (recall that computing
the eigenvalues of a matrix has cubic cost O(N3))

B.2 SPRING DATA

When considering springs with directed connections, we follow the generation procedure described
Kipf et al. (2018) with a small modification where the spring interaction between a pair of particles
can change over time (depending on the state).

In this dataset, N particles are simulated inside a 2D box where they can collide elastically with
its walls. Each pair of variables is connected with uniform probability with a spring. To allow for
identification of causal connections (directed edges), the connection is made unidirectional. The
springs interact via the Hooke’s law and this setting yield the following equations:

fij = −δk(ri − rj), r̈i =
N∑
j=1

fij , pi = {ri, ṙi} (11)

where fij is the unidirectional interaction from particle j to particle i, δk denotes the edge-type
for each pair of variables, and ri and ṙi denote the 2D position and velocity of each particle. The
continuous variable pi is constructed by concatenating the position and the velocity.

Notice that the previous equation is defines the evolution of the continuous variable for a single
time-step. In our setting, we have that k = G(stj)ji. Thus, fij will change over time, contrary to
Kipf et al. (2018). Since we consider two edge-types, we have δ0 = 0 and δ1 = 0.1. To generate
samples, we need to generate a random state-dependent causal graph G(s) and the initial location
and velocity. Then, trajectories are simulated by solving the previous differential equations using
leapfrog integration. The step size used is 0.001 and the trajectories are obtained by subsampling
each 100 steps.
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