Appendix of “Complex-valued Neurons Can Learn More but
Slower than Real-valued Neurons via Gradient Descent”

A Preliminaries

In this section, we first summarize frequently used notations in the following table.

Table 4: Frequently used notations.

Notation Description

c the d-dimensional complex space

E expectation

I(-) the indicator function

L the expected square loss of learning a neuron

N(0,I)  the standard Gaussian distribution
0,0,0  asymptotic notations

Pr probability

Py(x) the projection of & on Q

R2d the 2d-dimensional real space

Re(z) the real part of a complex number z

t the iteration index of gradient descent

U(a,b) the uniform distribution on the interval [a, b]

v the weight vector of a learning neuron

w the weight vector of a target neuron

x an input vector in R??

T; the ¢-th coordinate of x

xc xc = (21;...324) + (Tag1; - .. T2q)i € C

ZC the complex conjugate of x¢

Oab the angle between a and b

0, the argument of a complex number z

oy (2) the real part of the symmetrical version of zReL.U activation function

n the step size of gradient descent

T the ReLU activation function 7(z) = max{0, z}

P the learnable parameter of the symmetrical version of zZReLU activation function
gradient

Il -1l the 2-norm of a vector

We then give some basic lemmas that help us calculate the closed form of the expected loss.
Lemma 7. Let d = 1. For any w,v € R2? and a < b < a + 27, we have
A(w,v,a,b) = Egpr0,1) ['wTac vz -1, € [a, b])]
_ [[wllflv]]

1 [2(b— a) coS Oy 0 + SIN(Ooy + 01 — 2a) — SIN(Ooy — G — 2b)] .
7r

Proof. According to the probability density function of Gaussian distribution, we can calculate A in
the polar coordinate system as

A(w,v,a,b) Hw||||vH / / em2” c08(0y — @) cos(b, — ¢) do dr

lelll H / 5 cos(l — ) do
= ijﬂ [2(b — a) oS Oy i + SIN(Oay + O — 2a) — SIN(Oay — O — 20)] ,
7
where the second and third equalities hold from integrating over r and ¢, respectively. Thus, we have
completed the proof. O
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Lemma 8. Let d = 1. For any w,v € R?%, denote by 6 = 0w v the angle between w and v. Then
Sor any 1,1, € [0,7/2), define ¥, = min{v,,, 1, }. Then we have

B(w, v, 1/’11)7 1/11;) = E@NN((),I) [wa (’wgf«;)dwv (’Ugfc)]

Lol cos 9y, o [20m + sin(2¢m)] Ow,o € [0, [ty — Yul] .
_ ] Lellel ot 5 2(thw + Yy — Oy ) €08 O oy — SN (0o, 00 — 2003,
—sm(ﬁ v —20y)], Ow,v € [V — Yul, Yo + Yu) ,
0, Ow,v € (V0 + Yo, 7] -

Proof. We only consider the case of ¥,, < ¢,. The other case 1, > 1, can be proven similarly. We
prove the conclusion by discussion.

1. Suppose O 4 € [0, 1)y — 1y]. Then Lemma 7 leads to

B(wa v, wwa 77Z]v) = A('wa v, Ow — wwa Ouw + ww) = Saw,v[Qﬂjw + Sin(wa)] .

2. Suppose by v € [Vy — Yo, ¥y + V] and By, < 6, Then one knows from Lemma 7 that

B(’UJ, v, wwv ¢v) = A(’LU, v, 91) - wvv Gw + 1pw)
Il 4 s 00 ) 08By — S0 (B0 — 205) — Si (B 0 — 200)] -
4 E) )
T
3. Suppose Ou v € [y — Yu, Yo + ] and Oy, > 6,,. Based on Lemma 7, we have

B(“’v”ﬂﬂw/‘bv) = A(w7v79w - wwaev +¢v)

= wp(ww + Py — ow,v) Ccos aw,'u - Sin(9 2%) - bln( w,v wa” .

4. Suppose Oy € [ty + Y, 7. Then the support of o, (wl Zc) does not overlap with that of
oy, (vd Tc), which leads to B(w, v, 1y, 1,) = 0.

lolllvl
2

Combining the cases above completes the proof. O

B Proof of Theorem 1

In the main part of this section, we provide the closed form of the loss, definition of the ideal region,
and the detailed proof of Theorem 1. Subsection B.1 presents the optimization behaviors in the ideal
region. Subsection B.2 proves several convergence rate lemmas. Subsection B.3 gives some technical
lemmas to bound small terms in the proof.

Let w = (wy,ws). According to the spherical symmetry, we assume v = (1,0) without loss of
generality. According to Lemma 8, the expected loss can be calculated by
1
L (w, ) = B(w,'w,w,w) — B(w,v,¥,7/2) + *B(’U,’U,ﬁ/Q,ﬂ/2)
Lo Lin(20) + 20— (i~ 1 —ud], 0 0,m/2— ],
i3 %SIH(Q’(/J)U};L A L cos(2y)wa| + F|wa| + (5 + ¥ — O)w]

=5
g
G (20) + 20)(w2 + ), 6 e (m/2—bm/2 1),
14 T oy 4 sin(26)) (w? + wl) etz v,

where § = 0, ,, = arccos(w;/\/w? + w3). Forany R € (0, 1), define
Dy ={(w,¥) | |lw—v| < R, €[0,7/2],6 € [0,7/2 = 4]},
Dy ={(w,¥) | |lw—wv|| < R, ¢ €[0,7/2],0 € (7/2 = ¢, /2 + 1)} .
Let D = Dy U D4 denote the ideal region, i.e.,
D ={(w, ) | lw—v| < R,y €[0,7/2],0 € [0,7/2 + ]} .
We are now ready to prove Theorem 1.
Proof of Theorem 1. The proof is divided into four steps.

Step 1: D is closed under gradient descent. Before considering the convergence, we prove the
maintenance of inclusion by mathematical induction, i.e., (wo, 1) € D indicates (w;, ;) € D.
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1. Base case. The conclusion holds for ¢ = 0 from the condition.

2. Induction. Suppose that the conclusion holds for ¢ = k£ with £ € N. Then based on Lemmas 11
and 12, one knows
1—R?

—6(2)" = 9x) < VyLer(w, Yr) < ——— (4" — )" <0, 4)

where 1* = /2, the first inequality holds based on the induction hypothesis and |ws ;| < 1, and
the third inequality holds from R < 1. Thus, the updating rule ;11 = ¥y — NV Ler (Wi, Vi)
withn € (0,1/(127)) leads to

32U =t 2 U = i > (1 6n)(" — ) 20, 5)

where the first and fourth inequalities hold from the induction hypothesis. Meanwhile, Lemmas 9
and 10 imply

lwiss =l < (1= 5-lsin(0) +24]) lwe = vl| < B (6)
Combining Egs. (5) and (6), the conclusion holds for ¢t = k + 1.
Therefore, mathematical induction implies (w;, ¥;) € D when (wy, ¢g) € D.

Step 2: parameters converge to the global minimum in D. The convergence process consists of
two stages. In stage I, we deal with the convergence of 1) when (wy, ¥9) € D. Based on Eq. (4) and
the updating rule ¥541 = ¥ — NV y Loy (W, Yk ), one knows

2
vt~ < @ =0 [1 - T g g

Define a; = n(1— R?)(¢* —1;)/(4m). Then we obtain a;11 < a;(1—ay). From ¢* — 1, € [0, 7/2]
andn < 1/(127) < 4, one knows a; € [0, 1/2]. Thus, applying Lemma 14 to a; leads to

. R A7
VR SR

)

In stage II, we consider the convergence of w when (wq, ) € D. Based on Eq. (7), choosing
Ty > 16[n(1 — R?)] ! leads to * — 1)y < w/4 forany t > Ty, i.e., ¢y > 7/4 forany t > Ty. Thus,
for any ¢t > T4, Eq. (6) indicates

ool < (1= L) s =l < (1= )7 ®

where the first inequality holds from the monotonic increasing of sin(x) + « and ¥, > 7 /4, and the
second inequality holds because of ||wr, —v| < R < 1.

Step 3: the loss converges to 0 in D. We estimate the convergence of the expected loss when
(wo, o) € D. Forany (w, ) € D, define non-negative quantities A, = ||w—v| and A, = ¥p*—1.
We provide an upper bound for L., by discussion.

1. Suppose (w, 1)) € D;. Then we have

1 1 : 1 .. 1
< I St — A3 CAZ) < A3 4 ZA2
Lar(w, ¥) < 7 = 5-(6" = A1 - AL) < - AL + 2A2 | ©)

where the first inequality holds based on sin(21)) + 2t = sin(2Ay) 4 2¢* — 24y, > 29" —2A3,
and the second inequality holds from non-negative A.
2. Suppose (w, ) € Ds. The expected loss can be rewritten as

Leslaw, ) =  — 5 in(20) +20](1 = A%)

4

+ %[(605(21/1) — 1)|wa| + (sin(2¢) + 2¢ + 26 — 2¢™ )w ]
11, . 1 x

<7 5@ = AN —AL) + [(m+20 - 207w (10)

1 Lo 3 2 1

4 %("/J _Aw)(l_Aw)""%Aw(l'i'Aw)

1 1 1
< —A3 + A, +-A2
o T o Bw T 55w

<,
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where the first inequality holds from 7 > sin(2¢)) +2¢ > 2¢* — 2A3% and cos(2¢) — 1 < 0, the
second inequality holds based on 6 < tan 0 < A,, and w; < 1 4 A, and the third inequality
holds from Ay > 0.

Combining Egs. (9) and (10), one knows that the following holds for any (wq,¢p) € D andt > T

32m3 N\t
e ()
n3(1 — R2)3¢3 48
where the first inequality holds from Afv < Ay, and the second inequality holds by Egs. (7) and (8).

1
Lcr(wtv'(/}t) < %Afp,t + Aw,t < (11)

Step 4: initialization falls into D with constant probability. Let po = Pr[(wo, o) € D] for
simplicity. From g ~ U(0,7/2), the requirement ¢) € [0, 7/2] is satisfied. Denote by p(w) the
probability density function of A/(0, I2). Then one has
: R?
po=Pillwo vl <R = [ p(w)dw > u(B.R) min p(w) > o 02
weB(v,R) weB(v,R) 16
Let R? = 1/2. We obtain from Egs. (11) and (12) that

8000 n t+1-32/n 1
Pr |:Lcr(’wt7wt) < W + ( - ZS) :| p 39

which completes the proof. O

B.1 Optimization Behaviors

The following two lemmas indicate the linear convergence of w in D and Ds, respectively.
Lemma9. Let w' = w — NV Lo (w, ¥). If (w,v) € Dy and n € (0,4), then we have

' —vll < (1= {Elsin(20) +20]) [ — o] .
Proof. For any (w, ¢) € Dy, one has

(FuLer(w, ), 0 =) = ( {-sin(20) + 20w = o) w0~ 0) = - in(20) + 200 o]

Meanwhile, )
)2 [sin(2¢)) + 29[| (w — v)||* .

Then according to Lemma 13 and ¢ € [0, 7/2], for any n € (0,4), one has
n .
' —vll < (1= {Elsin(20) +20]) [ — o] .

which completes the proof. O
Lemma 10. Let w' = w — NV Loy (w, ). If (w,v) € Dy and n € (0,1/(127)), then we have

' —vll < (1= Z1=[sin(20) + 291 ) [ — o] .

[V Lex (w, )] =

—~

Proof. Firstly, we prove the strong convexity in Ds. For any (w, 1)) € D, one has
27 (Vi Ler (W, 1), w — v)

- B sin(2¢) + (I +—0)+ wl'“’ﬂ (w1 — 1) + [sin(29) + 20wy (wy — 1)

w% + w;
) 2 (13)
—5 0 os(2¢) + 5 2+} |wa| + [sin(2¢)) + 24p]w3
= [sin(2¢) + 2¢][|lw — v|* = Ry — R,
where
R, = [( —) — 9) — = sm(Qw)} (wpy —1) and R = B — %cos(2w) — ﬁ |wa] .
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According to Lemmas 15 and 16, Eq. (13) can be bounded by

L (sin(2) + 20w —o|? .

127
(14)
Secondly, we provide an upper bound of gradient in D5. For any (w, ) € Da, the gradient satisfies

47T2||V'chr(w7w)H2 = Tl +T2 )

(VuLeslw, ) w0-0) > - (5 = 7 ) Bin(z0) +26] o >

where

2
T = <[sin(2¢) + 29wy — %sin(mp) — (g +1— 9) _ “;1“’2|2) ’

wi + w3
1 1 w?
T, — - M) — = 4 — 1
b <{2cos( V) 2+w%+w§
From Lemmas 17 and 18, one knows
Vo Lex (w, ) [|* < [sin(2¢)) + 2¢][|w — v]|* . (15)

Finally, based on Egs. (14) and (15) and Lemma 13, we conclude

[ sen(un) + bin2e) + 21”102)2 .

lw' — o] < ¢ 1- (Glﬂ - n> lsin(24) + 2¢] [w — vl| < (1 - Z1-[sin(20) + 291 ) [ — o],

where the first inequality holds based on /1 — 2 < 1 — 2/2 forany = € [0,1] and n € (0,1/(127)).
Thus, we have completed the proof. O

The following two lemmas depict the gradient with respect to ¥ in D7 and D», respectively.
Lemma 11. Let ) = ¢ — nV Lo (w, ¥). If (w, ) € Dy, then

(I 0) < VoL < (2 )’

T 47

Proof. For any (w, ) € Dy, one has
1
Vi Ler(w, ) = —5—[eos(2¢) + 1](1 = [[w — v]*) .

For any ¢ € [0, /2], we have 1 (/2 — ¢)? < cos(2¢)) + 1 < 2(m/2 — 1)%. Meanwhile, one has
0 < ||w; — v|| < R. Thus, the gradlent with respect to 1) can be bounded by

1/ 2 1—-R? 2
D g L T ) g (7 - ) )
T (2 ¢) Vo La(w,9) 4 2 v

which completes the proof of the lower bound. O
Lemma 12. If (w,v) € Do, then

()~ 2 (T ) fwal < VLo, ) < _2R2 (G-+)

Proof. The gradient of L., with respect to ¢ in D5 can be calculated by
27V Ler(w, ) = [1 + cos(2¢)]w? — [1 4 cos(2¢))]wy + [1 + cos(2¢)]wi — sin(2¢))|wo|
= 1+ cos(2)][[lw — || — 1] + [1 + cos(20) w; — sin(2e) ws] .
Firstly, we prove the upper bound for V, Le, (w, ¢). It is observed that
[1 4 cos(2¢)]wy — sin(2¢))|wa| < 2 cosp(wy sind — |we| cosh) =0,

where the first inequality holds based on 77/2 > ¢ > w/2 — 6 > 0, and the first equality holds from
w1 = rcos f and |ws| = rsin 6. Substituting Eq. (24) into Eq. (16), we obtain

(16)

27V Lo (w, 1) < [1 + cos(200)][[|w — o||> = 1] < — —232 (Z- w) 7
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where the second inequality holds according to 1 + cos(2t) > 1 (7/2 — 1) for any ¢ € [0, 7/2]
and ||lw — v|| < R.

Secondly, we verify the lower bound for V;, L, (w, 9). It is observed that
27V Ler(w, ¥) = —[1 + cos(2¢))] — sin(2¢)) |ws]

> 2 (T )"~ sin(2e) s
> -2 (T -0) —2(5 ) sl

where the first inequality holds because of [1 + cos(Qw)lwl > 0 and ||w — v|| > 0, the second
inequality holds according to 1 + cos(2¢) < 2(7/2 — 1)*, and the third inequality holds based on
sin(2y) < m — 21 for ¢ € [0, 7/2]. Thus, we have completed the proof. O

B.2 Convergence Rate Lemmas

The following lemma provides a sufficient condition for linear convergence of gradient descent.
Lemma 13. [f there exist two constants c1 and co such that

(Vi(w),w—v) > cifw—wv|* and |[Vf(w)]* <cfw -,
then w' = w — nV f(w) withn € (0,2¢1/c2) and ¢ = \/1 — 2c11 + cn? € (0, 1) satisfies
[w’ =] < cw -] .
Proof. It is observed that
[ —v|* = [lw =V f(w) - v|

= [|w —|* = 20(V f(w), w — v) + 77|V f(w)]?

< (1= 2e1m + con?)Jw — v
For i € (0,2¢1/¢2), the coefficient 1 — 2¢;n+ 627]2 is smaller than 1, which completes the proof. [

The following lemma gives a sufficient condition for convergence with an inversely proportional rate.
Lemma 14. Let {a;}°, C [0,1/2] represent a real-valued sequence.

L Ifagry < ai(1 — ay), then ay < t-%l

2. Ifagr = ay(1 — ay), then ay > t‘_lT"l
Proof. We prove the first conclusion by mathematical induction.

1. Base case. For ¢t = 0, the conclusion holds from ag < 1/2 < 1.
2. Induction. Suppose that the conclusion holds for ¢ = k with k¥ € N. Then it is observed that

1 1 k 1
S T (1_ k+1) S Skrz
where the first inequality holds from the induction hypothesis and the monotonicity of (1 — z)
for x € [0,1/2]. Thus, the conclusion holds for ¢ = k + 1.
Therefore, mathematical induction completes the proof of the first conclusion.
We proceed to verify the second conclusion by mathematical induction.

1. Base case. For t = 0, the conclusion holds from ag > ag.

2. Induction. Suppose that the conclusion holds for ¢ = k with k € N. Then one has

ao ( g > _ ap(k +1—ag) L 0

k+1 k+1 (k+1)2 7 k+2°

where the first inequality holds from the induction hypothesis and the monotonicity of z(1 — x)

for x € [0,1/2], and the second inequality holds based on ag < 1/2. Thus, the conclusion holds
fort=Fk+ 1.

ap41 2

Therefore, mathematical induction completes the proof. O
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B.3 Technical Lemmas
We present upper bounds for some small terms used in the proof.

Lemma 15. Let Ry = [(3 — v — 0) — §sin(2¢)] (w1 — 1). If (w, ) € Do, then

Ry < 3 bin(20) + 29w — o]

Proof. Let 7 = \/w} + w3 denote the norm of w. Then according to the definition of 6, one has
w1 = rcos @ and |we| = rsin §. Thus, we can rewrite R as

Ry = {(g — —9) - ;sin(Qw)} (rcosf —1).

We provide the upper bound for R; by discussion.

1. Suppose rcos — 1 > 0. Based on the definition of D5, we have 5= 6 < 0. Meanwhile,
¥ € [0, /2] indicates sin(2¢) > 0. Thus, one knows Ry < 0.

2. Suppose 7 cosf — 1 < 0. R; can be rewritten as
R = %[sin(?@[})ﬁLMJ](l—27"(3os/9+r2)+1?§7 (17)
where
~ 1. . T
R= 5[sm(2w) + 2¢]r(cos b — r) + (5 — 9) (rcos —1).

If cos§ — r < 0, it is observed that R < 0 because of ¥,0 € [0,7/2) and rcosf — 1 < 0. If
cos —r > 0, then

R< gr(cosﬁ—rﬂ— (g —0) (rcosf —1) = —gT2—|—(7T—9)COSQ’/’— (g —0) =: f(r),

where the inequality holds since sin(21)) 4 21/ is monotonically increasing. The discriminant of
fis
1
A(9) = (m — 0)?*cos® 0 — m(m — 26) < ;92(7r —260)(20 — 3m)
where the first inequality holds since cos? 6 < 1—46% /72 on [0, 7/2]. According to 6 € [0, 7/2],
one knows A(f) < 0, which indicates f(r) < 0, and thus, R < 0 when cosf — r <

0.
Combining the cases above, we obtain R < 0, which, together with Eq. (17), implies R; <
[sin(2¢) + 2¢)(1 — 2r cos 6 + r?).

Combining the cases above, one knows
1 1
R; < §[sin(2w) +2¢](1 — 2rcosf +1r?) = i[sin(Qw) + 2¢]|w — v,
which completes the proof. O
%} |wal. If (w, ) € Da, then

w1
wf+w

Lemma 16. Let Ry = [% — 3 cos(20) —
1. ,
Ry < Lfsin(206) + 20 oo — ]

Proof. Let 7 = \/w? + w3 denote the norm of w. Then according to the definition of 6, one has
wy = rcosf and |we| = rsin §. Thus, we can rewrite Ry as

Ry = [g(l — cos(2¢)) — cosf| sinf .
We provide the upper bound for Ry by discussion.

1. Suppose 5[1 — cos(21)] — cos @ < 0. From § € [0, 7/2], we have Ry < 0.
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2. Suppose 5[1 — cos(2¢)] — cos§ > 0. It is observed that r < 2 cos 6 since |w — v||? < 7§ < 1
holds from the definition of D,. Thus, the supposition indicates cos# < £[1 — cos(2¢)] <
[1 — cos(2%))] cos 0, which, together with 6 € [0, 7 /2], implies ¢ > 7/4. Tt is observed that

1 1
flr)y= 5(1 —2rcosf +1%) — (r — cos @) sinf = 5(7" —cosf —sinf)*> >0,
which indicates

1
=[sin(29) + 2¢)(1 — 2rcosf +1r?) = =(1 — 2rcosf +12) = (r — cosf)sind > Ry ,
™

1

2
where the first inequality holds from ¢ > /4, and the third inequality holds because of
cos(2¢) > —1.

Combining the cases above, we obtain

Ry < ~[sin(26) + 20](1 — 2rcosf +2) = ~ [sin(2) + 24w — o],

which completes the proof. O

Lemma 17. Let T = ([sin(21/1) + 2¢Jwy — $sin(2¢) — (5 + ¢ —0) — wi|ws| )2. If (w,y) €

w?+w3
Do, then we have
Ty < Trfsin(24)) + 2¢]||w — v||* .

Proof. It is observed that T} = [[sin(2¢)) + 2¢](wy — 1) + T11 + T12]2 with

w1 |wa|

1
T = 3 sin(2y) + (¢ +60— g) and Ty = — 5 - (18)

2
wi + wy

Firstly, denote by ¢ € (0, 1) a parameter determined later and we calculate an upper bound for 77,
by discussion.

1. Suppose |wy; — 1| 4 |ws| > ro. Then one has
1. 1.
[T11] < 5 sin2) 44 < 5 [sin(26) + 20]fur — 1] + fwa]]
0

where the first inequality holds from 6 < 7.
2. Suppose |wy — 1| 4 |wa] < ro. Then it is observed that wy > 1 — rg + |wsz| > 0. Thus,

r=/w? + w? > /(1 —r9)%+ 2we|(Jwa| +1 —1¢) =1 —10,

where the second inequality holds because of ry < 1. Then we can bound |ws| from below as

1—7’0
2

where the second inequality holds since 6 < 2sin 6 for all § € [0, 7/2]. Meanwhile, we bound 6
from above as

|w2| 1 —To -1 1-— To -1
0 <tanf = —— < +1 < +1 =Ty, (20)

|ws| 7o

|wa] = rsinf = (1 —rg)sinf > 0, (19)

where the second inequality holds from wy > 1 — rg + |ws|, and the third inequality holds based
on |ws| < 7¢. Then we obtain an upper bound of T} as follows

Tl <0< 2zl o vl 2

STor S Uoro)(m—2r0) S (L= ro)(m = 2rg) P @) 20l flun =1 ]

where the first inequality holds from the monotonicity of % sin(21) 4 ¢ and ¥ < 7, the second
inequality holds from Eq. (19), and the third inequality holds based on 7y > 7 — 6 and Eq. (20).
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Combining the cases above, we have proven

R 2
27’07 (1 — 7"0)(’/T — 27’0)

|T11| < max{ } [sin(2¢)) + 2¢][|wy — 1] + |wa]] .
Choosing ro = i [n +6 — \/pi%2+4r + 36} , we obtain an upper bound of T7; as follows

[Tl < 5 lsin(26) + 26w — 1] + s ] 1)

Secondly, we provide an upper bound for 7%5. We claim and prove by discussion that

fwal < 2/w? + wd(lwr — 1 + [wal) (22)

1. Suppose wy < 1/2. Then it is observed that |wy, — 1| > 1/2, which implies

fwal < \Jwd +wd < \Jwd +wd 2w — 1 < 24/w? +wd(lwr — 1+ fwal)

2. Suppose wy > 1/2. Then one has \/w? + w3 > 1/2, which indicates

wa| < Jwi — 1] + |wa] < 24/wi +wi(jwr — 1| + |wal) .

From the definition of D5, one has g > > g — 6 > 0, which indicates

™ w1

> sin 28111(7—9):(3089:7.
vzl NTEEE:

Then we obtain an upper bound of |T72| as

(23)

2w .
T12| < — - w2(|w1*1|+|w2|) < 2¢(lwr =1+ wz]) < [sin(2¢)+2¢](Jwr —1[+|w2]) , (24)
1 2

where the first inequality holds according to Eq. (22), and the second inequality holds based on
Eq. (23). Finally, combining Egs. (21) and (24), we conclude

Ty < [|[sin(2¢) + 2¢](wy — 1)| + max{|T1], |Tio[}]* < Trlsin(2¢) + 2¢]Jw — v||?

where the first inequality holds based on 777 > 0 and 732 < 0, and the second inequality holds
because of sin(2¢)) + 2¢ < 7 for any ¥ € [0, 7 / 2]. Thus, we have completed the proof. O

Lemma 18. Ler Ty = ([ cos(20) — § + A ]sgn(wQ) [sin(2¢)) +2¢]w2>2_ If (w, ) €
Do, then we have
Ty < Trfsin(24)) + 2¢]||w — v||* .

Proof. From cos ) = w; /y/w? + w3, one has cos(m — 20) =1 — 2cos® 0 = 1 — 2w? /(w} + w3).
Thus, we have

f|cos(21/)) —cos(m—20)| <Y+6— % <Ti,

2
’ B cos(2¢)) — % Ij:] sgn(wq)| =

where the first inequality holds because of | cosa — cos b| < |a — bl, and the second inequality holds
based on the definition of 7% in Eq. (18) and sin(2¢) > 0. Recalling the upper bound of 77; in

Eq. (21), we obtain
1
T < 5 COS(2¢) ) + w% n ’LU% sgn(wg)

< 7rfsin(2¢) + 2¢]lw — 0%,

2
1 w7

T |[sin(24) + 2w1w2|)

which completes the proof. O
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C Proof of Theorem 2

In the main part of this section, we present the closed form of the loss, definition and properties of
the ideal region, and the detailed proof of Theorem 2. Subsection C.1 provides the optimization
behaviors. Subsection C.2 gives some convergence rate lemmas.

According to Lemma 8, the expected square loss L. can be calculated by
1 1
Lcc(waww) = §B(wawawwa ww) - B(wavawwvwv) + §B(U,’Ua¢m 1%) . (25)
For R € (0,1), ¢y € [0,6], and ¥, € [1/2 — &y, /2], define
D, = {(waww) ‘ ||w - 'UHoo R,y € [wlku}aew,v € [07 ‘ww - ’L/)v‘]} s
Dy = {(w,Yu) | [w —v[lec < R,Yuw € [Y1, %0, Ow,w € (1w — ol w +10)}
Let D = D; U Dy indicate the ideal region, i.e.,

D = {(w,¢w) | |[w = v]oc < R, Yw € Y1, Yu], 0w € [0, %0 + 3]} .

By spherical symmetry, we assume v = (1,0) without loss of generality in the rest proof. For
conciseness, define s,, = sin(2¢,,) + 2, and s, = sin(2¢,) + 21,. The following lemma
discusses the properties of the ideal region, concerning the closeness of the region under gradient
descent and the probability that an initialization falls into this region.

Lemma 19. Let v, € [77/20,27/5]. If we choose the parameters as
1 109 109 1
= 55 = Yo — 7740, u = Yo Tanils d < 5= R,
R=g5 =t qppfts Ve=wntppft, and 0<ms p5ht
then all conditions in Lemmas 20-25 are satisfied. If wo ~ N (0, I2) and 1y, 0 ~ U(0,7/2), then

<
<

Pr [(’wo,ww,o) € D] = 107°.

Proof. We first prove that all conditions in the lemmas are satisfied.
e Lemma 20. It is observed that the first condition holds from
1 1 1
<—R=—-—-<2
TS 120" T 120 25 ©
According to v, > 1, > /4, we have 1), sin(21),,) < 1, sin(2t, ), which implies
vlu veu 7 u 20
;ws — Yus > m5u/ >(1-=R)sy, =2 (1—R)sy,
Yy ¥, + 109R/100 = 7x/20 + 109R/100

where the fourth inequality holds since s,, is monotonic. Thus, the second condition is satisfied.

Sv

e Lemma 21. The first condition 7 < 2 has been satisfied above. It is observed that ¢); >
77 /20—109R/100. Thus, The second condition holds from ¢; /20 > 7x/400—109R /2000 > R.
The third condition holds since

109R _ 5Ri;

maX{?ﬁu*%?%*M}:W\ 3

e Lemma 22. The only condition 7 < 2 has been satisfied.

e Lemma 23. The first condition holds because of R = 1/25 < 1/2. The second condition holds
based on cos? ¥, > cos?(2m/5) > 1/25. The third condition holds from n < R/120 < 3R/2.

e Lemma 24. The first condition R < 1/2 has been satisfied above. The second and third conditions
hold because of
7w 109R R

m
mi — — == —>—2>n.
3 inftou = vo, b0 =i} 3 7100 ~ 1207 "

e Lemma 25. The first condition R < 1/2 has been satisfied above. The second one holds from

101R 3R _109R _

in R 9< on X 1A — Yu T Yoo
arcsin [t 490 < =5em + 5 S g T Ve ¥
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We then prove the second conclusion. Let py = Pr[(wo, 1y ,0) € D] for simplicity. Then we have

po = Priyy < Yuo <) -Prll —R<wi <1+ R]-Pr[-R < wy < R

109R 1
=—— . —[erf(1+ R) —erf(1 — R)] - erf(R)
50 2
>107%,
where erf(x) denotes the error function. Thus, we have completed the proof. O

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let R, ;, and 1, be the same as those in Lemma 19. Suppose that
(wo,¥w,0) € D. Then Lemma 19 implies (wy, %y, ) € D for any ¢ € N. The proof of con-
vergence is divided into several stages.

Step 1: w; converges to 0. In stage I, we consider the convergence of wy; when (wg, 1, 0) € D.
From Lemmas 22 and 23, the optimization behaviors of ws is the combination of minimizing
a contraction mapping or an almost absolute function. Thus, Lemma 26 with r; = ro = R,

c3 = 54,/(27), g = (cos? 1, — V2R)/(27), and g, = 2/3 implies
| 2| < C% (COS2 7/}11 - \/§R) < C%
= 47T01t = 47T01t

for teNT. (26)

Step 2: 1, converges to ¢,,. In stage II, we prove the convergence of 1, ; when (wo, 1.,,0) € D.
From Lemmas 24 and 25, the convergence of v, is limited by that of ws, i.e., ¢, tends to the
global minimum with constant-order gradient when the error of v,, is larger than that of ws, while
becomes far away from the global minimum otherwise. Then Lemma 27 with 1 = ro = 109R/100,

a = c2(cos? 1, — V2R)/(4mcy), g = cos? 9, /(47), and g, = 9 indicates

< C% (COS2 Py — \/iR)

10c2
W}w - '(/)v‘ X 4 2
TC1

1
+9c| - < —2 for teNT. 27)
t Clt

Step 3: w; converges to 1. In stage III, we investigate the convergence of w1 ; when (wq, ¥y 0) € D.
From Lemmas 20 and 21, the gradient points to the global minimum with a remainder controlled by
the error of w; and 1,,. Then Lemma 28 with d; = 1/4, d,, = 1/2, and e = 20c3/(7cy) leads to

20c3

-1/ <
|w1 | = mcrt

for teNT. (28)

Step 3: the expected loss converges to 0. We now estimate the convergence of the expected square
loss when (wq, ¥,0) € D. For any (w, v,,) € D, define non-negative quantities A,, = ||Jw — v||
and Ay = |1, — 1,|. We provide an upper bound for L. by discussion.

1. Suppose (w, 1,) € D;. Then we have
AT Lec(w, ) = [|w][*sy — 2[Jw]|[|v] €OS oy, v 5m + 0125,
< lwlP(s0 + s2) = 2lwlllv]l(1 = AL) (50 = s2) + [[v]*s,
< A(llwl® + 2llw][ o)Ay + (sv + 2[lwll[lv])AS,
<3244 + 8Afu ,

where the first inequality holds from s,, < s, + sa, €086y = /1 —AZ > 1 — Afu, and
Sm = Sp—8a with sa = 2A,,+sin(2A,,), the second inequality holds since | |w]| — ||v]|] < A2,
and sa < 4A, and the third inequality holds based on |w| < 2 and s, < 7.

2. Suppose (w, ;) € Dsy. Let § = 64 . Then one knows

AT Lee(w, ) = [[w][*s0 + [[0]| s
— [lw|[lv|[[2(¢w + ¢y — 0) cos @ + sin(2¢p,, — 0) + sin(2¢), — 0)]
so(lw] = [[v])? + ([[wl]* — [[wl[[[v]| cos ) (s — )

+ lwl|[v]|f cos 6 + 2[|w][[v]|s, (1 — cos6) .
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Then according to ||w]| — [|[v]|] < Aw, Sw — So < 4Ay, 0 < arcsinA,, < 24, and
cosf >1— A2 we have

4rLee < 4[|w]]? — [Jw]|[|v]| cos 8] Ay + 2[[w]|[|v]| cos 0, + (1 + 2[|w] [[v]|)s, A2,
< 16A¢ + 5A4 ,

where the second inequality hodls based on ||w| < 2, s, < 7, and A, < V2R = \/5/25.
Combining the cases above, one knows from A,, < 5/8 that for any (w, ,,) € D, the loss satisfies
Lec(w, ) < 324y + 57 .
Then based on (wy, 1,,¢) € D and Egs. (26)-(28), we obtain from ¢y > 1 that

320c3 n 5¢3 100c3 < 400¢3

Lo (wy, < =
cc( t wwit) cit dmeqt et cit

)

which holds with probability at least 10~ from Lemma 19. Thus, we have completed the proof. []

C.1 Optimization behaviors

The following two lemmas consider the gradient with respect to w; in Dy and D, respectively.

Lemma 20. Let w; = w1 —1Vy, Lec(W, 1y ) with (w, 1) € Dy. Ifn € (0,2) and (1—R) sy, < Sy,
then we have

w 1 .
Vo, Lee(w, 1) = %(wl —1)+ %[sw —min{sy,s,}] and |wy -1 < R.

Proof. For any (w, ¢,,) € D1, one has
SU} S?U

vwchc(wyww) = % [wl - min{swa Sv}] = E(wl - 1) +7r, (29)

where  denotes a remainder defined by r = 5= [s,, — min{s.,, s, }]. Then Eq. (29) implies

' g)l—”s—”‘ 1 <(1—77S—“’)R 7
jwf 1] P uoy — 1] + Pu) Rt oL
where the first inequality holds from the triangle inequality, and the second inequality holds based on

1 —nsyw/(2m) 2 0and |wy — 1| < R. We proceed to complete the proof by discussion.

[$ — min{ sy, $y}] , (30)

e Suppose that min{s,,, s,} = $,. Then Eq. (30) implies

-1 <(1—’78—“’)R<R
|U}1 | 271_ )

where the second inequality holds from n > 0 and s,, > 0.
e Suppose that min{s,,, s, } = s,. Then one knows from Eq. (30) that

wi =1/ < (1= T2) R+ 7’7(5”2_ ) <R,
s Y

where the second inequality holds because of (1 — R)S,, < Sy.

Combining the cases above completes the proof. O

Lemma 21. Let wy = wy — NV, Lec (W, 9y) with (w,1y,) € Da. If n € (0,2), R < /20 and
max{1, — Py, ¥y, — 1} < BRY;/3, then we have

w _awv 1 .
Vin Lec (W, 1) = 222 (wy = 1) = [(50—50)+ 26000 —sin b)) and |} 1] <R,

Proof. For any (w, 1,,) € Da, the gradient of L.. with respect to w; can be calculated by

Sw — O,
vwchc = 27T'w,'v(

Sw — ew,v
—(

1
wy — 1)+ —[(Sw — Sv) + 2(Orp 0 — SIN Oy )] = o

-1
47 w1 )+,
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where 7 denotes a remainder defined by © = [(Sy — Sy) + 2(0ap 0 — SiL 04y )]/ (47). Then we have

R(syw — o)
2 ’

U(Sw - Qw,v)

=1 <1 -
|w) | < o

jwi =1+ [nr| < R+ ||r] - 3D
where the first inequality holds from the triangle inequality, and the second inequality holds based on
N(Sw — Ow.w) < NSy < 2w and |wy — 1] < R. Itis observed that

S b > L1~ b > L0~ 2R, 32)

where the first inequality holds based on s,, > 21; + sin(24;) and sin; > 3, /4 for ¢ < 7w /4,
and the second inequality holds from 6., ,, < arcsin R < 2R. Meanwhile, one has

max{wu - 1/}1)7 1/% - ¢l} 2R3
- + _,
47 T 37
where the first inequality holds from the triangle inequality, and the second inequality holds according
to the 4-Lipschitzness of 26 + sin(26), 8 — sin 6 < 62/6 for any 6 > 0, and 6, , < 2R. Substituting
Egs. (32) and (33) into Eq. (31), we obtain

Ir] < (33)

1 .
|$w — Su| + %|9w’v —8in by | <

i =1/ < R+ - [12max{th, — ., — i} + 8R® + 1287 —21R] < R,

where the second inequality holds from max{t,, — ¥, ¥, — ¥} < 5Ry;/3 and R < ¢;/20 < 1
Thus, we have completed the proof. O

The following two lemmas focus on the gradient with respect to ws in D7 and Do, respectively.
Lemma 22. Let wh = wa — NV, Lec (W, 1) with (w, ) € D1. Ifn € (0,2), then we have

] < (1= T2 Jun] and fus| < R
s

Proof. For any (w, ¢,,) € D1, one has V., Lec(w, ¢,,) = 24*2. Thus, we have

Tom
wh = (1= 22w, . (34)

According to s, € [0,7] and 7 € (0, 2), the coefficient 1 — ns,,/(2) is positive and smaller than 1.
Based on (w), 1,,) € D1, one knows |ws| < R. Then Eq. (34) implies

NSw
jwpl = (1= T2 ) jwa| < R,
which completes the proof. O

Lemma 23. Let wh = wy — NV w, Lec (W, 1) with (w,1,,) € Da. If R < 1/2, V2R < cos? 1,
and n < 3R/2, then we have

cos? 1, — V2R

o and |wh| < R.

< vszcc(wvww)Sgn(wQ) <

Wl N

Proof. For any (w, 1,,) € Da, the gradient of L.. with respect to wy can be calculated by

2
2wy

1 1
Vs Lo, ) = == sw3 + — ( cos(2th,,) + 08(2,) + —ae
wi + w;

5 gy ) sgn(ws) . (35)

Since (w, 1y,) € Do, one knows that |w; — 1| < R and |ws| < R. Thus, we have
20-R?  _ 2w}
VI-RZ+ R Vg w3
where the first inequality holds because of R € [0, 1/2]. Then we have

2(1 - V2R) <

<2(1+R),

2
2wy

2 2
Vwi + wy

26

cos(2t,,) + cos(24,) + <14cos(2¢,) +2(1+ R) <5, (36)



where the second inequality holds based on R < 1/2. Meanwhile, one has

2w?
cos(21,,) +cos(2,) + ———= > —1+cos(2¢,) +2 1—v2R) = 2(cos? U—\/iR . (37
(200) +eos(20) + — ey (200) +2(1= V2R) = 2(cos" 4, ~V2R)
It is observed that 0 < s,,|wa| < Z since s, € [0, 7] and |w2| < R < 3. Then substituting Eqgs. (36)
and (37) into Eq. (35) we obtam
cos? 1), — V2R 1 ) 2
T < vngcc(w wa)sgn(wg) Z Z < g .

Thus, one knows from Eq. (35) that
|wl2| = HwQ‘ - T]vszCC(wv’l/)'w)Sgn(w2)| < max{|w2|vnvszCC(qu/)’w)Sgn(wQ)} <R,

where the first inequality holds from |a — b| < max{a, b} for non-negative numbers @ and b, and the
second inequality holds based on |w2| < R and np < 3R/2. Thus, we have completed the proof. [

The following two lemmas investigate the gradient with respect to 1, in Dy and D, respectively.

Lemma 24. Let ), = 1y, — NV, Loc (W, y) with (w,¢,) € D1. IfR < 1/2, 1 < w(¢y, —10) /3,
and n < w(, — ;) /3, then we have

3| w

< 8g0(Yw — o) Vi, Lec(w,0w) < = and 4y, € [, ] -

Proof. For any (w, ¢,,) € D1, the gradient of L., with respect to v, can be calculated by

1+ cos(@n)lL — w — vl st < s
Vi Leolw, ) = { L1+ cos(@ih)]|w]? Yo > o

where the gradient at ¢, = v, can be any subgradient. For any (w, 1,,) € D2, we have ¢, €
[¥1, ], which indicates 2 cos? 1), < 1+ cos(2t,,) < 2. Meanwhile, all points in Dy satisfies
1-2R*<1—||lw—-wv|?<1land (1-R)? < |w|* < (1+ R)?+ R Thus, the gradient of L.
with respect to 1, can be bounded by

cos? i, 3
w < Sgll(¢w - ’lpv)vwchc(wa 2/}w) g ; )

where the first and second inequalities holds based on R < 1/2. Then w’ satisfies

1% = '(/Jw - nvd)w Lcc( ww) max {wwv 'va } '(/)u 5

where the first inequality holds from discussing the relation between v, and 1,,, and the second
inequality holds based on ,, < %, and ) < 7(¥,, — 1),,)/3. Meanwhile, one has

1/); =y — 77V¢w CC(w d)w) min {ﬂ)w, Py — } Ui,

where the first inequality holds from discussing the relation between v,, and 1),,, and the second
inequality holds based on v, > 1; and < 7(t),, — 10;)/3. Thus, we have completed the proof. [

Lemma 25. Let ), = ¢, —1Vy, Lec (W, y,) with (w,¢,,) € Da. If R < 1/2 and arcsin R+-9n <
Py — Yy, then we have

T 2 s 1 /m 2
9 —2(=— —2(=— < <=2 (= - ! )
9 X 2 (2 ww> 2 (2 ¢w> |U)2| X Vd)chc S 4 (2 ql)w) and ¢w S [whwu]
Proof. For any (w, v,,) € D1, the gradient of L.. with respect to v, can be calculated by
2
Vo Lec(W, ¥y) = H;”ﬂ'_' [1 4+ cos(2ty,)] — %[cos O o + COS(Onp,0 — 200y)] -

It is observed that the above expression is the same as the gradient of L., with respect to ¥ in
Eq. (16). The only difference comes from the domain of w, which is ||w — v|| < R in Lemma 12 and

|lw — v|lco < R here. Then according to ||z|| < \f||;c||oo in R?, one knows from Lemma 12 that

S0 -2 (T ) 25— ) lunl < Vi Leelw, ) < 7 (5 —0)
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where the first inequality holds according to |7/2 — 9, | < 7/2 and |ws| < 1, and the third inequality
holds based on R < 1/2. Then v}, satisfies

¢;<ww+9n<¢u+9w,v+9n<wua

where the second inequality holds from the condition 6., ,, > %y, — | in the definition of Do, and
the third inequality holds according to

Owp < arcsin R < by, — by, — 97 .

Meanwhile, it is observed that the gradient is always negative, which implies ¢!, > 1, > ;. Thus,
we have completed the proof. O

C.2 Convergence Rate Lemmas

This section presents some sufficient conditions for convergence with an inversely proportional rate.

Lemma 26. Let f : K — R represent a function with a global minimum x*, where K C R indicates
the convex domain satisfying B(x*,r1) C K C B(x*,12). Suppose that there exist constants
€1, C3, g1, Gu such that ¢; < r1/gy and for any x € K, at least one of the following holds.

I |2/ —2*| < (L—csn)|z —ax*| and (2' —2*)(z —2*) =2 Owitha' =z —nV f(x) andn € (0, c1].
2. g <sgu(x — x*)Vf(x) < gy forany x # x* and |V f(2*)| < gu.

Then for any co > max{1/cs,2r2/g1,2c19u/91}, the sequence {x:}°, generated by gradient
descent xy11 = x¢ — eV f(xy) with xg € K and ny = min{cy, co/t} satisfies

2
_ Qg

ith
wi 9%,

e € K and |xy—z"| <

+ |2

Proof. Firstly, we prove x; € K. Suppose x; € K fort = k. We prove z; 1 € K by discussion.

1. If the first condition holds, then x4 ; is a convex combination of z; and «*. Thus, x44+; € K.

2. If the second condition holds and sgn(xp41 — «*) = sgn(xy — x*), then 2,41 is a convex
combination of x; and z*. Thus, x4+ € K.

3. If the third condition holds and sgn(xy4+1 — x*) # sgn(zx — =*), then one knows from 7; < ¢y

and |V f(x)| < gy that |21 — 2*| < ¢194 < 71, where the second inequality holds based on
¢1 < 1r1/gy. Thus, B(z*,r;) C K leads to z;41 € K.

Combining the cases above, xy € K and mathematical induction completes the proof of x; € K.

Secondly, we prove |z; — z*| < a/t. Lettyg = ca/c;. According to co > 2¢19./91 = 2¢1, one
knows tg > 2. For t < 1y, it is observed that

. a _a

|z, — 2| <re < — < -,
to St

where the first inequality holds based on K C B(x*,r3), the second inequality holds because of
a = c3g1/(2c1) = rato. Thus, the conclusion holds for any ¢ < to. Suppose that |z), — z*| < a/k
holds for k > to — 1. We then prove |zx11 — 2*| < a/(k + 1) by discussion.

1. If the first condition holds, then we have
* CoC3 a a
1 — <|1- ST
[h+1 = a7 ( k+1> kS k41
where the first inequality holds based on the first condition and the induction hypothesis, and the
second inequality holds from ¢z > 1/c3. Thus, the conclusion holds for ¢t = k + 1.

2. If the second condition holds and sgn(zy11 — 2*) = sgn(xx — ™), then one knows
. a C21 a

_ < — — <

k41 x|\k E+1 " k+17

where the first inequality holds from the induction hypothesis and the second condition, and the
second inequality holds because of

a g a a—cogik  cagi(to/2 — k)

ko k+1 k+1  k(k+1) k(k+1)

<0,
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where the first equality holds based on co > 1/c3, the second equality holds from the choice of a
and t, and the first inequality holds from ¢y > 2 and k > ¢ty — 1 > to/2. Thus, the conclusion
holds fort = k + 1.

3. If the second condition holds and sgn(xy1 — x*) # sgn(xy, — ™), then it is observed that
C29u a

k1 S k+1°

where the first inequality holds from the second condition, and the second inequality holds based
ona = c3g;/(2¢1) > cagy. Thus, the conclusion holds for t = k + 1.

|Tpy1 — ™| <

Combining the cases above, we have completed the proof. O

Lemma 27. Let f : K — R represent a function with a global minimum x*, where K C R indicates
the convex domain satisfying B(z*,r1) C K C B(x*,r2). Let {0:}52, be a positive sequence
bounded by 0; < a/t. Suppose that there exist constants gy, g,, such that for any x € K, the following
holds

L If |y — 2*| > 0y, then g < sgu(axy — 2*)V f(24) < gu.
2. If |xy — ™| < Oy, then |V f(x4)] < g
Let ¢; > 0, and ¢o > max{2ry/g;,2¢1 }. Suppose that the sequence {x;}7°2, generated by gradient

descent z;11 = x; — 0V f(xy) with zp € K and 7, = min{cy, co/t} satisfies x; € K for any
t € NT. Then the following holds for any ¢ € NT

b 2
|zy — 2" < - with b= max 2a+czgu,% .
t 201

Proof. Let tg = 2b/(c29;) > ca/c1 = 2. Forany 0 < t < o, it is observed that

g _b b
2 to t

Thus, the conclusion holds for 0 < ¢ < ¢o. Suppose that |z, — 2*| < b/k holds for k > t; — 1. We

then prove |zx41 — 2*| < b/(k + 1) by discussion.

|z — 2| <re <

1. If the first condition holds and sgn(xyy1 — 2*) = sgn(x — =*), then we have

b _cg b

k k+1 k41’
where the second inequality holds from the induction hypothesis, and the third inequality holds
based on b = cag;to/2 and to/2 < tg — 1 < k. Thus, the conclusion holds for ¢t = k + 1.

2. If the first condition holds and sgn(zy4+1 — x*) # sgn(zx — «*), then we have

|[h1 — 27| <ok — 27 = 19 <

C2Gu < b

k+1 " k+1’
which implies that the conclusion holds for ¢t = k + 1.

|Zk+1 — %] < Met19u <

3. If the second condition holds, then one knows

| *‘ < | *‘ + < a + C20Gu < b

T -z < e — x W< -+ = —

k+1 k Nk+19 E o k+1 k1

where the second inequality holds based on |zx+1 — z*| < 6541 < a/(k + 1), and the third
inequality holds because of b > 2a + c2g,,. Thus, the conclusion holds fort = k£ + 1.

Combining the cases above, we have completed the proof. O

Lemma 28. Letr f : K — R represent a function with a global minimum x*, where K C R indicates
the convex domain satisfying K C B(z*, R). Let {x}32, denote the sequence generated by gradient
descent vy11 = xy — 1V f(24) with zg € K and n, = min{cy, co/t}, satisfying ¥, € K fort € N,
Suppose that the gradient satisfies V f (xy) = d(xy — x*) 4+ 14, where d; < d < dy and |r| < e/t. If
c1 < 1/dy, and co > 2/d;, then we have

c . R
|z, — 2| < 7 with c:max{,CQe} .
a
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Proof. Let ty = ca/c1. We prove the conclusion by mathematical induction.

1. Base case. For 0 < t < tg, it is observed that

o — | SRS — <
to

+ 10

Thus, the conclusion holds for 0 < ¢ < ¢g.
2. Induction. Suppose that |z — 2*| < ¢/k holds for k > ¢ty — 1. Then we have
|Tes1 — 2" = [(1 = dm) (2 — %) — e < (1= dmg)zp — 27|+ mrlrel
where the first inequality holds based on dn < c1d,, < 1. Then the induction hypothesis leads to

| 1< (1 2\ ¢ n ce ¢

Ty —@ | S| 1—— ) -+ F < 7—,

ol k) kR k+1

where the first inequality holds according to cod; > 2, and the second inequality holds based on

¢ > cge. Thus, the conclusion holds for ¢t = k + 1.

Therefore, mathematical induction completes the proof. O

D Proof of Theorem 4

We begin the proof with two lemmas. For any non-zero vector a in R? and 6 € [0, 7], define
S(a,0) = {x € R? | O € [0a — 0,04 + 0]} as the sector region with central angle 26 that is
symmetric with respect to a. Let Ny ¢ represent the truncated standard Gaussian distribution on
S(a, 0), of which the probability density function is

1 =3l S(a. 0
_ ) g€ 2 xz € S(a,0),
p(z) { 0, otherwise .

The following lemma provides a lower bound for the expected squared inner product on S(a, 0).

Lemma 29. Let d = 1. For any w € R??, non-zero a € R??, and 6 € [0, /2], we have
2
Eornes |(w72)°] 2 Sl

Proof. Let 6, indicate the phase of w, i.e., w = ||w]|(Sin Gy, + c0s fyi). Then calculating the
expectation in the polar coordinate system leads to

T 2 ||w||2 e a+9 _1,2
Ex N [(w T 3(C0S Oy COS ¢ + 5in By, sin ) ?e 2" dep dr

||w||2 G

: {w sm(?@)cos(?@a,w)},

2

where the second equality holds based on integrating over r and ¢ separately, and the identity
€08(0q, — b)) = 0S84, 4. The expectation in Eq. (38) can be further bounded by

T 2 _ 2 7i . 1 . 2
o [(w72)"] = ol (1= g sin(20)) + 5 sin20) cos 6

1
> _ 4 2
> (1 20 51n(29)> lwl|

92
> = wl?,
where the first inequality holds according to 6 € [0, /2], and the second inequality holds because of
sin(z) < o — 23 /12 for all § € [0, 7/2]. Thus, we have completed the proof. O

The following lemma provides a lower bound for expressing a complex-valued vector with four
real-valued vectors under a symmetric constant.
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Lemma 30. Let vy, € R with k € [4] and v € R%. If vy + v3 = vy + vy, then we have
4
1
>l —v- Tk = DIP > o).
k=1

Proof. According to the generalized mean inequality, one knows

4 2
1 1

2 ok = DI > (Z i —v -1k >||> > ll(w1—v)—vatva—va]* = 7 lv]*,

where the second inequality holds because of the triangle inequality, and the first equality holds based

on the condition v; + v3 = vy + v4. Thus, we have completed the proof. O

We are now ready to prove Theorem 4.

Proof of Theorem 4. We define Ny w = > i, a;7(w, @) for simplicity. From d = 1, the weight
vector wj is a 2-dimensional real-valued vector. Let 0, = arctan(w, Lw; 9) € (=1, 21 — )] denote

the phase of w;. We assume 6,, = 0 without loss of generality. Denote by Ow the 7/2-symmetrical
phase set induced from W and v, i.e.,

@w:{ewﬁ(j;l)” ie[n],je[4]}u{iw+(j_21)7T z‘e{—l,+1},je[4]}.

It is observed that there is an integer m < n + 2 such that |©w| = 4m. We sort all phases in Oy as
@W:{Gi}izl with — Y <0y < - <Oy, =20 —1.
Let N,y represent an arbitrary two-layer RVNN with weight phases from Ow, i.e.,

Ng,u(x ZBZ w;x) with 6, =6;.

It is observed that N3 y degenerates to NmW with suitable parameters. Thus, the expected square
loss L. can be bounded as

1 2
Lie(e, W) > 5 1nf B xro) | (Nou (@) = oy (00 Zc)]
4m (39)
1 Ab; 2
=5 f ) Eennaia0) [(NB,U(m) — ay(v¢ Zc)) } ;

where Af; = (0; — 0;_1)/2 and a; = (% =291 with 6y = 0,(,,.+1). The indices can be divided into
m groups as Z; = {i + (k — 1)m | k € [4]} with i € [m]. Denote by i, the index of ¢/, i.e., 0;,, = .
Then Eq. (39) becomes

1 m
Lic(a, W) > iénlgz
T i=1

AY; _
— D Fon(a,.00)) [(Wau(@) - ou(vl@c)’]

.o (40)
1. ..
= > B S B v, a0 [(( v G <00 T2)7]
T =1 JEL;

where the first inequality holds since Af; remains the same in Z;, the second inequality holds based
on the activation regions of ReLU and zReL U, and the definition of v; as follows

JAm-l I+4m, 1<0,
Z Bswusay with ¢(l) = { ) 0<l<4m, 41)
l=j—m l74m I >4m.

Applying Lemma 29 to Eq. (40), we obtain

1. Ab; .
Lie(e, W) > 3 in Z 3 B0 oy, w1 <)
JEL;
min{iy,m} 4
1 (AG;)3 9
STV SRR 5 S M
i=max{1,iy—m+1} k=1
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where the second inequality holds based on the definition of v; x = V4 (k—1)(n41) and Af; = Ab;
for any j € Z;. Based on Eq. (41), one has v; 1 + v; 3 = v; 2 + v; 4. Then Lemma 30 implies

min{iy,m}
1, (A0 1,
> — .z
LeloW)z g > Sy

i=max{1,iy —m+1}

o s 3

O "““%”"} A

Z o3 i
247r(n t 1) i=max{1,iy—m+1}

ol ming2y, 7 — 20
247(n +1)2 ’

where the second inequality holds because of the generalized mean inequality. Thus, we have
completed the proof. O

E Proof of Theorem 6

We begin with a lemma providing a lower bound for convergence.

Lemma 31. If there exists a constant c such that
(Vf(w),w—v) <clw—wv]?,
then w' = w — nV f(w) withn € (0,1/(2c)) satisfies
[w’ = v|| > /1= 2en]jw —vl|.
Proof. From the updating rule, it is observed that
[’ = v* > [[w - v|* = 2n(w — v, Vf(w)) > (1 = 2en)|w - ||,
which completes the proof. O
We then prove Theorem 6.

Proof of Theorem 6. Denote by R = ||jwy — v||. The convergence analysis consists of several stages.

Stage 1: the error of i) decreases below a threshold fast. By the same arguments as those in
the proof of Theorem 1, n € (0,1/(127)) indicates (w;,;) € D for any ¢ € N. Recalling the
convergence of 1 in Eq. (7), we have ¢, > 7/4 whent > [16n~*(1 — R?)~']. From Eq. (4), one
knows Vy, Ly (wy, ¢¢) = —6(¢p* — 9¢). Then we have

(Vo Ler(we, o), " = 1) > —6(0" —0)?.
Then we obtain from 7 € (0,1/12) and Lemma 31 that
W=t > (1-120) 207 — o) (42)
Thus, one has

(1 — 1202 ()" — o) <" —apy < — with ¢ > T, =16n71(1 — R?)~!.

T
4

Step 2: both errors of w and 1) decrease below small constants fast. Based on Eq. (8), we have

n t—T1
[w: — v < (1 - f) for t>T, (43)
48
which, together with Eqs. (7) and (42), implies that
t/2 * * 1 1
(1 —=12n)""2 (" —tho) <Y* =ty < o= and  |wo| < |Jwy —v|| < o,
384 384 44
with 5 T — max 7y 1384 32007 (44)
Z " In(1 + n/48) (1 — R?)
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Step 3: w converges faster than . For any ¢ > T5, Lemmas 11 and 12 imply

* * * 1 *
(Vi Ler(wy, ), ¥ — %) < 20" — ) + 2(p* — 1) waye| < %(1/} — 1),
where the second inequality holds based on Eq. (44). Then Lemma 31 indicates
V' — by = /1= n/A8(W" — ) for t =Ty,
which, together with Eq. (43), indicates

Ty In(1 — 12n) + 2In(y* — t)
In(1 — n/48)

|y ¢] < |lwe —v|| <YP* —y with ¢ > T =21 + . (45)

Step 4: ¢ converges with an inversely proportional rate. For any ¢ > T3, it is observed from
Lemmas 11, 12, and Eq. (45) that

VyLor(we, ) 2 —4(4" = ¢)? .
Let a; = 4n(¢* — 1;). Then the updating rule implies a;+1 > a¢(1 — a;). Choosing ) € (0,1/(4m))
guarantees a; € [0,1/2]. Then Lemma 14 indicates

(1 — 1202 (4" — 1ho)

ey >
Y=y [T 1

for t>1Ty. (46)

Step 5: the loss converges to 0 with an inversely proportional rate. Define non-negative quantities
Ay = ||lw — v|| and Ay = ¢* — ). We provide a lower bound for L, by discussion.
1. Suppose (w, 1)) € D;. Then we have
1 1 1 1 1
L, > - — — (Y — A1 -A%)) = — — —
(w,9) > 7 — (49 2)( w) = g o P
where the first inequality holds based on sin(2t)) +21) = sin(2A,) +2¢* =24, < 29" — A3 /2
for any ¢ € [0, 7/2], and the second inequality holds from A, < /2.
2. Suppose (w, ) € Ds. The expected loss can be rewritten as

Al 4+ —AZ2r—AY) > —A), @47

1 1
Ler(w,¢) = 1 E[sin(%) +2¢](1 - A?u)

+ = l(cos(2) — D] + (sin(29) + 29 + 20 — 2]
1 1 1

> 1 (gt - AN AL+ leos20) - Dlwal] (48
1 1 1

= 1 8?(4¢* - Afp)(l —AZ) - %Aw
8T 2T

where the first inequality holds from sin(21))+2¢ < 2¢* —Ai/2 and sin(2)+2¢+20—2¢* >
0, the second inequality holds based on cos(2¢)) — 1 > —2 and |wa| < Ay.

Combining Egs. (47) and (48), one knows that the following holds for any (wq, %) € D and t > T3

1 5 1 N (1 _ 12”)3T3/2(¢* _ 1/}0)3 1 (1 n )t*Tg

T P T v ) R =il G

where the second inequality holds from Eqgs. (43) and (46). Thus, we have completed the proof. [

Lcr('wtv wt) 2

F Simulation Experiments

Experimental settings. A training set of size 7,000 and a test set of size 3,000 are generated by a
randomly initialized target neuron (can be a real-valued or a complex-valued neuron). After random
initialization, a complex-valued neuron and a real-valued neuron are trained by gradient descent with
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the empirical mean square loss and a learning rate of 0.1 for 100 epochs (or 300 epochs when the loss
does not converge).

Experimental results. It should be noticed that a complex-valued neuron cannot always learn a target
neuron. From the theoretical formulation, our convergence rate holds with a small constant probability.
From the loss landscape, there exist constant pieces in the parameter space, i.e., the complex-valued
neuron does not learn anything after initialization. Thus, we cannot expect a complex-valued neuron
to learn a target neuron all the time. In the experiments, we train the complex-valued neuron with
several random initializations and find that our theoretical conclusions occur in experiments. This
phenomenon verifies our theories and also motivates a novel learning algorithm for CVNNSs, as
discussed in the conclusion part.
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