
Supplementary: Continuously Improving Mobile
Manipulation with Autonomous Real-World RL

A. Videos

The main video summarizing our results can be found in
result video.mp4 in the zip folder. This depicts the robot
performing each of the tasks we consider - moving the chair 1)
with a table in the corner in the playpen, 2) with a table in the
middle of the playpen, 3) picking up a dustpan and vertically
orienting it such that it can stand up, 4) sweeping a paper bag
into a target region. We also include timelapse videos which
show how our approach adapts behavior over time.

B. Policy Training

For our experiments we run DrQ implemented in the official
RLPD codebase open-sourced by Ball et al. [1]. Since we
run image-based real robot experiments, we use learning
algorithm hyperparameters (including for the image encoders)
from Stachowicz et al. [4], which deployed RLPD for race
car driving. The observations are first encoded into a latent
space (separately for the actor and critic), and the processed
latent is used by the critic ensemble or the actor. Details of the
architecture for each of these, in addition to hyperparameters
for training is provided in Table I.

We use both image and vector observations for learning.
Each of these is processed by an image encoder or a 1-layer
dense encoding for vector observations, and the corresponding
latents are all concatenated together and then used as input for
the actor or critic. Note that we use separate encoders for the
critic and the critic. We use the architecture from Stachowicz
et al. [4] for encoding each image source, without using any
pre-trained embeddings, the network is retrained from scratch
for each new experiment. There are 4 RGB image sources. The
network encoders are provided with the last 3 frames for each
image source, except for the goal image, since this remains
fixed for the episode. The image sources are -

• Egocentric front-left image
• Egocentric front-right image
• Third-person fixed-cam current image
• Third-person fixed-cam goal image

We use (128,128) spatial resolution for the egocentric images,
and (256,256) for the images from the third person camera.
The latter uses a higher resolution since it is further away from
the scene and objects appear smaller/less clear.

In addition, we have two vector observations -
• Body pose - We compute the (x,y,θ) position of the

robot body in the SE(2) plane relative to the calibrated
playpen frame (calibration details in section -F). The
input to the network is 4 dimensional, consisting of

(x, y, cos(θ), sin(θ)). We use sin, cos transforms for the
angle to avoid discontinuities in input, since −π and π
represent the same orientation.

• Hand pose - This contains the 6-dof end effector orienta-
tion of the hand relative to the base position.

TABLE I: Hyperparameters used in the experiments

Category Hyperparameter Value

Training Batch size 256
Update to Sample Ratio 4

Actor/Critic Actor learning rate 3e-4
Critic learning rate 3e-4
Actor network architecture 2x256
Critic network architecture 2x256
Critic ensemble size 10

Image Encoder Layer count 4
Convolution size 3x3
Stride 2
Hidden channels 32
Output latent dim 50

There are certain learning parameters that are tuned sepa-
rately for each environment, which we list in Table II. This
was mainly to balance the exploration-exploitation trade-off
for learning new behavior, and pertain to the weight placed on
entropy maximization in DrQ (temperature and target entropy),
or to handle sparse rewards (number of min Q functions). We
use a maximum episode length of 16 for the chair and sweeping
tasks, and 8 for the dustpan task, since it has sparse reward.

TABLE II: Environment-tuned Hyperparameters

Env #MinQ Temp LR Init Temp Target Entropy

Chair 2 1e-4 0.5 -2
Dustpan 1 1e-3 0.1 -2

Sweeping 2 1e-4 0.1 -4

C. Rewards

1) Detection-Segmentation
For each task, there is an object of interest, the state

of which is used to compute the reward. We specify the
object using a text prompt, which is used by the detection
model to obtain a bounding box. This is then used to



condition the Segment Anything [2] model to obtain a
2D object mask. For text-based detection we use either
Grounding-Dino [3] or Detic [5]. For Grounding-Dino, we
append the task-specific prompt to the list of class names in
COCO [? ] (to avoid cases of false positive detection), and
we use Detic with objects365 vocabulary class names.
The task-specific text prompts we use are ’chair’ for the
chair tasks, ’red broom’ for the dustpan standup task, and
’box.bag.poster.signboard.envelope.tag.clipboard.street sign’
for the sweeping task. The object of interest in the sweeping
task is a paper bag being swept and we use many different
possible matching text descriptions since it is detected as
different classes due to its deformable nature. We list the
detection model and the confidence threshold for a detection
to be accepted for each task in Table III.

TABLE III: Detection Settings

Env Detection Model Confidence Threshold

Chair Grounding-Dino 0.4
Dustpan Grounding-Dino 0.2

Sweeping Detic 0.1

Once we obtain object masks, we can obtain the corre-
sponding object point-cloud using depth observations. Some
detections are rejected based on estimated position, eg: if there
is a detection of an object outside the playpen. This filtering
is essential since the robot often picks up on known infeasible
objects, eg: the box in the middle of the playpen, or some
chairs outside the railings.

2) Reward Function
Chair-moving tasks: For this task, we compute reward

at every timestep of the episode. Given the estimated chair
point cloud using the detection-segmentation system along with
depth observations, we estimate the center of mass xt and the
yaw rotation wt. Given the goal position g and orientation gw
(extracted from the goal image), we compute position xdiff and
yaw difference wdiff norms. Then the reward is given by :

rposition = −xdiff + e(−xdiff) + e(−10·xdiff)

rori = e(−wdiff) + e(−10·wdiff)

Total Reward = rposition + rori

Dustpan Standup In this task, it is difficult to provide
reward when the robot is interacting with the dustpan, since
the detection model fails to pick up on the dustpan from the
third person or egocentric image observations. We can measure
reward at the end of the episode (when the robot has released
its grasp) to detect the dustpan and estimate the center of the
handle xT , and provide a large bonus if the height of the handle
(z component of xT ) is above a set threshold. To prioritize
faster task completion, we use an alive penalty of -0.1. The
robot can terminate the episode earlier by releasing its gripper
and letting go of the handle.

rpenalty = −0.1

rbonus = 10 if xt height ≥ thresh

Total Reward =

{
rpenalty, if timestep t < T
rbonus, if end of episode, timestep T

Sweeping: Similar to the chair task, we compute reward at
every timestep of the episode. We estimate the point cloud of
the paper bag, let its center of mass be denoted by xt. The
target region is a rectangle, denoted by Gr. Let d(x,Gr) denote
the distance from position x to the closest corresponding point
on the rectangle given by Gr. Then the reward is given by:

rdistance = −0.2 · d(xt, Gr) + e(−10·xdiff)

rprogress = 10 ·max(0, d(xt−1, Gr)− d(xt, Gr))

rbonus =

{
10, if d(xt, Gr) = 0
0, else

Total Reward = rdistance + rprogress + rbonus

3) Success Criteria
The results we show for continual improvement during

training, as well as the evaluation of the final policies report
success rate. Success is defined for an episode in the following
manner for each of the tasks -

• Chair tasks - If the max reward obtained in the epsiode is
above 1. This implies the chair is very close to its target.

• Dustpan Standup - If the episode ends with a reward of
10 (indicating the dustpan is standing up).

• Sweeping - If the episode ends with a reward of 10
(indicating the paper bag is swept into the goal region).

D. Priors
For the chair moving tasks we use RRT* for planning a

path in SE(2) space with a simplified model that only has 2D
occupancy of the top surface of the table, and is not aware of the
chair, or robot-chair or chair-table interactions. This generates
a set of way-points for the target position of the center of
mass of the robot in SE(2) space, in global coordinates. We
use coordinate transforms to convert these targets to be in the
robot’s body frame in order to use the same action space as the
reactive RL policy. We are able to perform this computation
since we know the robot’s body position in global coordinates.
Specifically, we have Wbody = Wglobal∗T−1, where Wf denotes
the way-point with respect to frame f and T is the matrix
transform of the robot body center of mass with respect to the
global coordinates.
For sweeping, the prior is simply to stay within 0.5m of the
last detected location of the paper bag. For dustpan standup
we use a simple procedural function to generate trajectories to
create a prior dataset, which we detail in Algorithm 1

E. System Overview
We use a workstation with a single A5000 GPU to run RLPD

online, which requires about 20GB GPU memory, mostly owing



Algorithm 1 Prior generation for Dustpan Pickup

1: Initialize Prior data buffer D
2: Initialize Uniform noise distribution U with limits :

(−0.1,−0.1,−1) → (0.1, 0.1, 1)
3: for N = 1 to Number of episodes do
4: Initialize action list A = []
5: Set yaw hand rotation ω to either +0.5 or -0.5
6: for t = 1 to episode len do
7: Set vertical hand action z to be either +0.2 or -0.2
8: Add (z, ω, 0) + (n ∼ U) to A
9: end for

10: Add (−0.2, ω, 0) + (n ∼ U) to A
11: Execute A on the robot, record observations, add to D
12: end for
13: return Prior data buffer D

to all the image inputs that need to be processed. The detection
and segmentation models are run on cloud compute on a
single A100 GPU. The fixed third person camera images from
the realsense are streamed to a local laptop. Communication
between the laptop, workstation and cloud server is facilitated
via GRPC servers, and the main program script is run on the
workstation, which also controls the robot. Commands are
issued to the robot over wifi using the SpotSDK provided by
Boston Dynamics.

F. Map Calibration

We use the GraphNav functionality provided in the SpotSDK
by Boston Dynamics for Spot robots for generating a map of
the playpen. This involves walking the robot around with some
fiducials (we use 5) in the arena. This needs to be performed
only once, and is used to obtain a reference frame to localize
the robot, which is useful to record body pose information and
also to implement safety checks to make sure the robot is not
executing actions that collide with the playpen railings. While
Spot has inbuilt collision avoidance we implement an additional
safety layer based on the generated map to clip unsafe actions
that would move the robot too close to the playpen railings.

REFERENCES

[1] Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey
Levine. Efficient Online Reinforcement Learning with
Offline Data. In ICML, 2023. 1

[2] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment
Anything. arXiv preprint arXiv:2304.02643, 2023. 2

[3] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su,
Jun Zhu, et al. Grounding DINO: Marrying DINO with
Grounded Pre-Training for Open-Set Object Detection.
arXiv preprint arXiv:2303.05499, 2023. 2

[4] Kyle Stachowicz, Dhruv Shah, Arjun Bhorkar, Ilya
Kostrikov, and Sergey Levine. FastRLAP: A System
for Learning High-Speed Driving via Deep RL and

Autonomous Practicing. arXiv preprint arXiv:2304.09831,
2023. 1

[5] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Phillip
Krähenbühl, and Ishan Misra. Detecting Twenty-Thousand
Classes Using Image-Level Supervision. In ECCV, 2022.
2


